
A Distributed Argumentation Framework

using Defeasible Logic Programming

Matthias Thimm a Gabriele Kern-Isberner a

a Information Engineering Group, Faculty of Computer Science
Technische Universität Dortmund, Germany

draft – 2007-12-05

Abstract. Defeasible Logic Programming (DeLP) by García and Simari
is an approach to realise non-monotonic reasoning via dialectical ar-
gumentation. We extend their approach by explicitly supporting dis-
tributed entities in the argumentation process on a structural basis. This
makes the modelling of distributed argumentation systems like a jury
court by using DeLP techniques possible. In this framework possibly
many different agents with different opinions argue with each other on
a given logical subject. We compare our framework with general DeLP

and present the results.

Keywords. Logic Programming, Argumentation, Defeasible Argumentation,
Distributed Argumentation, Multi Agent Systems.

1. Introduction

Mimicking commonsense-reasoning using non-monotonic logics is one of the main
topics in AI. Defeasible Logic Programming (DeLP) [5] is an approach to realise
non-monotonic reasoning via dialectical argumentation by relating arguments and
counterarguments for a given logical query. A dialectical process that considers all
arguments and counterarguments for the query is used in order to decide whether
the query is believed by the agent or not. So in DeLP argumentation is treated as
an internal deliberation mechanism of one agent to determine the set of pieces of
information which are most believed.

But in general the term argumentation is much more abstract. It can also
be the exchange of arguments and counterarguments between several agents in
a multi agent environment where every agent tries to convince other agents of a
specific opinion. Consider a jury court, where every juror has a personal opinion
about the guilt or innocence of an accused person. The jurors give arguments for
one or the other and attack other jurors’ arguments with counterarguments. In
the end one argument may prevail and its conclusion is given to the initiator of
the query, e. g. the judge.

There are many approaches to realize negotiation in multi agent systems.
Whereas in [1,7] and especially in [2], the focus is on using argumentation for



persuasion, in this paper we use argumentation to reach a common conclusion of
a group of agents. Considering the jury court it is reasonable to assume that there
are jurors who are less competent in jurisdiction than others. However it is the
main goal to reach an agreement regarding the given case rather than unifying
the jurors beliefs.

This paper proposes and discusses an approach for a distributed system which
provides the capability of argumentation using the notions of DeLP. In this system
agents exchange arguments and counterarguments in order to answer queries given
from outside the system. The framework establishes a border between its interior
and exterior as from outside the system it is seen as a general reasoning engine.
Internally this reasoning is accomplished by defeasible argumentation where every
agent tries to support or defeat the given query by generating arguments for or
against it and by generating counterarguments against other agents’ arguments.
In the end the most plausible argument prevails and its conclusion is the answer
to the original query.

The rest of this paper is structured as follows: in Section 2 we give a brief
overview on DeLP. In Section 3 a framework for modelling distributed argumen-
tation using DeLP is proposed. Section 4 compares the framework with general
DeLP and in Section 5 we conclude.

2. Defeasible Argumentation

Defeasible Logic Programming (DeLP) [5] is a logic programming language which
is capable of modelling defeasible knowledge. With the use of a defeasible argu-
mentation process it is possible to derive conclusive knowledge.

The basic elements of DeLP are facts and rules. The set of rules is divided
into strict rules, i. e. rules which derive certain knowledge, and defeasible rules,
i. e. rules which derive uncertain or defeasible knowledge. We use a first-order
language without function symbols except constants, so let L be a set of literals,
where a literal h is atom A or a negated atom ¬A, where the symbol ¬ represents
the strong logic negation. Overlining will be used to denote the complement of a
literal with respect to strong negation, i. e. it is p = ¬p and ¬p = p for a ground
atom p.

Definition 1 (Fact, strict rule, defeasible rule). A fact is a literal h ∈ L. A strict
rule is an ordered pair h ← B, where h ∈ L and B ⊆ L. A defeasible rule is an
ordered pair h−�B, where h ∈ L and B ⊆ L.

A defeasible rule is used to describe uncertain knowledge as in “birds fly”. We use
the functions body/1 and head/1 to refer to the head resp. body of a defeasible
or strict rule.

Definition 2 (Defeasible Logic Program). A Defeasible Logic Program P = (Π,∆),
abbreviated de.l.p., consists of a (possibly infinite) set Π of facts and strict rules
and of a (possibly infinite) set ∆ of defeasible rules.

Example 1 ([5], example 2.1). Let P = (Π,∆) be given by



Π =







chicken(tina) scared(tina)
penguin(tweety) (bird(X)← chicken(X))
bird(X)← penguin(X)) (¬flies(X)← penguin(X)







,

∆ =















flies(X)−� bird(X)
¬flies(X)−� chicken(X)
flies(X)−� chicken(X), scared(X)
nests_in_trees(X)−� flies(X)















.

In the following examples we abbreviate the above predicates by their first letters,

e. g. in the following the predicate c/1 stands for chicken/1.

A de.l.p. P = (Π,∆) describes the beliefbase of an agent and therefore contains
not all of its beliefs. With the use of strict and defeasible rules it is possible to
derive other literals, which may be in the agent’s state of belief.

Definition 3 (Defeasible Derivation). Let P = (Π,∆) be a de.l.p. and let h ∈ L.
A (defeasible) derivation of h from P , denoted P |∼ h, consists of a finite sequence
h1, . . . , hn = h of literals (hi ∈ L) such that hi is a fact (hi ∈ Π) or there exists
a strict or defeasible rule in P with head hi and body b1, . . . , bk, where every bl
(1 ≤ l ≤ k) is an element hj with j < i. Let F(P) denote the set of all literals
that have a defeasible derivation from P .

If the derivation of a literal h only uses strict rules, the derivation is called a strict
derivation.

As facts and strict rules describe strict knowledge, it is reasonable to assume
Π to be non-contradictory, i. e. there are no derivations for complementary literals
from Π only. But if Π∪∆ is contradictory (denoted Π∪∆ |∼ ⊥), then there exist
defeasible derivations for two complementary literals.

Definition 4 (Argument, Subargument). Let h ∈ L be a literal and let P = (Π,∆)
be a de.l.p.. 〈A, h〉 is an argument for h, iff A ⊆ ∆, there exists a defeasible
derivation of h from P ′ = (Π,A), the set Π ∪ A is non-contradictory and A is
minimal with respect to set inclusion. The literal h will be called conclusion and
the set A will be called support of the argument 〈A, h〉. An argument 〈B, q〉 is a
subargument of an argument 〈A, h〉, iff B ⊆ A.

Example 2. In the de.l.p. P from Example 1 the literal f(tina) has the
two arguments: 〈{f(tina)−� b(tina)} , f(tina)〉 and 〈{f(tina)−� c(tina), s(tina)} ,
f(tina)〉.

Definition 5 (Disagreement). Let P = (Π,∆) be a de.l.p.. Two literals h and h1

disagree, iff the set Π ∪ {h, h1} is contradictory.

Two complementary literals p und ¬p disagree trivially, because for every de.l.p.
P = (Π,∆) the set Π ∪ {p,¬p} is contradictory. But two literals which are not
contradictory, can disagree either. For Π = {(¬h ← b), (h ← a)} the literals a
and b disagree, because Π ∪ {a, b} is contradictory.



Definition 6 (Counterargument). An argument 〈A1, h1〉 is a counterargument to
an argument 〈A2, h2〉 at a literal h, iff there exists a subargument 〈A, h〉 of
〈A2, h2〉, such that h and h1 disagree.

If 〈A1, h1〉 is a counterargument to 〈A2, h2〉 at a literal h, then the subargument
〈A, h〉 of 〈A2, h2〉 is called the disagreement subargument. If h = h2, then 〈A1, h1〉
is called a direct attack on 〈A2, h2〉 and indirect attack, otherwise.

Example 3. In P from Example 1 there is 〈{¬f(tina)−� c(tina)}, ¬f(tina)〉 a di-
rect attack to 〈{f(tina)−� b(tina)}, f(tina)〉. Furthermore 〈{¬f(tina)−� c(tina)},
¬f(tina)〉 is an indirect attack on 〈{(n(tina)−� f(tina)), (f(tina)−� b(tina))},
n(tina)〉 with the disagreement subargument 〈{(f(tina)−� b(tina))}, f(tina)〉.

A central aspect of defeasible argumentation is a formal comparison criterion
among arguments. For some examples of preference criterions see [5]. For the rest
of this paper we use an abstract preference criterion ≻ defined as follows.

Definition 7 (Preference Criterion ≻). A preference criterion among arguments
is an irreflexive, antisymmetric relation and will be denoted by ≻. If 〈A1, h1〉
and 〈A2, h2〉 are arguments, 〈A1, h1〉 will be strictly preferred over 〈A2, h2〉, iff
〈A1, h1〉 ≻ 〈A2, h2〉.

Example 4. A possible preference relation among arguments is Generalized Speci-
ficty [8]. According to this criterion an argument is preferred to another argument,
iff the former one is more specific than the latter, i. e. (informally) iff the former
one uses more facts or less rules. For example, 〈{c−�a, b}, c〉 is more specific than
〈{¬c−� a},¬c〉. For a formal definition see [8,5].

As ≻ is antisymmetric by definition, there cannot be an equipreference among an
argument and its counterargument. So we only have to consider the cases, that
one argument is better than the other or that two arguments are incomparable
with ≻.

Definition 8 (Defeater). An argument 〈A1, h1〉 is a defeater of an argument
〈A2, h2〉, iff there is a subargument 〈A, h〉 of 〈A2, h2〉, such that 〈A1, h1〉 is a coun-
terargument of 〈A2, h2〉 at literal h and either 〈A1, h1〉 ≻ 〈A, h〉 (proper defeat)
or 〈A1, h1〉 ⊁ 〈A, h〉 and 〈A, h〉 ⊁ 〈A1, h1〉 (blocking defeat).

When considering sequences of arguments, then the definition of defeat is not
sufficient to describe a conclusive argumentation line. Defeat only takes an argu-
ment and its counterargument into consideration, but disregards preceeding ar-
guments. But we expect also properties like non-circularity or concordance from
an argumentation sequence. See [5] for a more detailed description of acceptable
argumentation lines.

Definition 9 (Acceptable Argumentation Line). Let P = (Π,∆) be a de.l.p. and
let Λ = [〈A1, h1〉, . . . ,An, hn〉] be a sequence of arguments. Λ is called acceptable
argumentation line, iff 1.) Λ is a finite sequence, 2.) every argument 〈Ai, hi〉 with
i > 1 is a defeater of his predecessor 〈Ai−1, hi−1〉 and if 〈Ai, hi〉 is a blocking
defeater of 〈Ai−1, hi−1〉 and 〈Ai+1, hi+1〉 exists, then 〈Ai+1, hi+1〉 is a proper



defeater of 〈Ai, hi〉, 3.) Π ∪ A1 ∪ A3 ∪ . . . is non-contradictory (concordance of
supporting arguments), 4.) Π ∪ A2 ∪ A4 ∪ . . . is non-contradictory (concordance
of interfering arguments), and 5.) no argument 〈Ak, hk〉 is a subargument of an
argument 〈Ai, hi〉 with i < k.

Let + denote the concatenation of argumentation lines and arguments, e. g.
[〈A1, h1〉, . . . , 〈An, hn〉] + 〈B, h〉 stands for [〈A1, h1〉, . . . , 〈An, hn〉, 〈B, h〉].

In DeLP a literal h is warranted, if there exists an argument 〈A, h〉 which
is non-defeated in the end. To decide whether 〈A, h〉 is defeated or not, every
acceptable argumentation line starting with 〈A, h〉 has to be considered.

Definition 10 (Dialectical Tree). Let 〈A0, h0〉 be an argument of a de.l.p. P =
(Π,∆). A dialectical tree for 〈A0, h0〉, denoted T〈A0,h0〉, is defined by

1. The root of T is 〈A0, h0〉.
2. Let 〈An, hn〉 be a node in T and let Λ = [〈A0, h0〉, . . . , 〈An, hn〉] be the

sequence of nodes from the root to 〈An, hn〉. Let 〈B1, q1〉, . . . , 〈Bk, qk〉 be
the defeaters of 〈An, hn〉. For every defeater 〈Bi, qi〉 with 1 ≤ i ≤ k,
such that the argumentation line Λ′ = [〈A0, h0〉, . . . , 〈An, hn〉, 〈Bi, qi〉] is
acceptable, the node 〈An, hn〉 has a child 〈Bi, qi〉. If there is no such 〈Bi, qi〉,
the node 〈An, hn〉 is a leaf.

In order to decide whether the argument at the root of a given dialectical tree is
defeated or not, it is necessary to perform a bottom-up-analysis of the tree. There
every leaf of the tree is marked “undefeated” and every inner node is marked
“defeated”, if it has at least one child node marked “undefeated”. Otherwise it is
marked “undefeated”. Let T ∗

〈A,h〉 denote the marked dialectical tree of T〈A,h〉.

Definition 11 (Warrant). A literal h ∈ L is warranted, iff there exists an argument
〈A, h〉 for h, such that the root of the marked dialectical tree T ∗

〈A,h〉 is marked

“undefeated”. Then 〈A, h〉 is a warrant for h.

If a literal h is a fact or has a strict derivation from a de.l.p., then h is also
warranted as there are no counterarguments for 〈∅, h〉. Based on the notion of
warrant, the answer behaviour of a DeLP-interpreter can be defined as follows.

Definition 12 (Answers to queries). The answer of a DeLP-interpreter to a query
h is defined as 1.) YES, iff h is warranted, 2.) NO, iff h is warranted, 3.)
UNDECIDED, iff neither h nor h are warranted and 4.) UNKNOWN, iff h /∈ L.

3. Using Defeasible Logic Programming For a Distributed Environment

In an argumentation-based multi agent system (ArgMAS) several agents argue
with each other about the truth value of a given logical sentence. In contrast
to general DeLP the agents do not have knowledge about the beliefs of other
agents and only react on their arguments. So as an ArgMAS consists of several
components, the belief of an ArgMAS is divided among the components. Some
belief can be seen as strict knowledge, that should be shared among all agents



of the system, e. g. knowledge about the current law or general facts as “every
penguin is a bird”. But every agent possesses also some individual beliefs like
preferences or personal opinions, e. g. “if X is a gardener, then X is rather the
murderer than anyone else”. Thus the belief in an ArgMAS is divided into a global
belief base and several local belief bases. An important constraint on belief bases
is consistency. As the global belief base represents strict knowledge, it should be
consistent in itself. Furthermore every local belief base should be consistent with
the global belief base, as every agent’s belief should not contradict with common
knowledge, e. g. an agent should not argue that john is the murderer, if “john has
an alibi” is strict knowledge. But as the opinions of different agents can differ, the
union of all local belief bases and the global belief base can be inconsistent. The
formal definition of belief bases will be given below.

3.1. Overview

An ArgMAS takes a literal as a query, generates arguments with an internal delib-
eration mechanism and then returns a statement about acceptance or disproval.

In order to make a set of agents interact in a cooperative manner a coordi-
nation mechanism is needed. We use the centralized approach of organisational
structuring [6] to get the external communications of the systems separated from
the internal deliberation and coordination. A special agent, called moderator, will
be used as an interface of the system to the outside world and as contact for
queries. Furthermore the moderator coordinates the argumentation process be-
tween the other agents und finally analyzes the resulting argumentation struc-
tures to come up with an answer to the given query. Figure 1 shows a pattern of
the message transfer in an ArgMAS and the special role of the moderator. The
global belief base consists of the common knowledge of the whole system.

moderator

global

belief base

agent

agent

agent

...
agent

arg
ument

atio
n

query

Figure 1. An argumentation-based multi agent system (ArgMAS)

The moderator of an ArgMAS must accept literals as queries from the outside
world and be able to return answers. Furthermore he must send and receive
internal queries to and from other agents and analyze the resulting dialectical
trees of the actual argumentation process. Figure 2 shows the components of a
moderator.

The actual argumentation process is done by the agents. They generate argu-
ments on the basis of the global and their particular local belief bases and react



e
x
t
e
r
n
a
l
c
o
m

m
u
n
ic

a
t
io

n

in
t
e
r
n
a
l
c
o
m

m
u
n
ic

a
t
io

n

coordination-

module

analysis-

module

query

answer

query

arguments

global

belief base

Figure 2. The internal components of a moderator

on arguments of other agents with counterarguments. An agent must be capable
of inferring new beliefs by using the defeasible rules of his local belief base and
the strict rules of the global belief base. Based on these inferences he generates
suitable counterarguments to arguments from other agents. As the proposed sys-
tem is centralized an agent only has to communicate with the moderator and the
latter arbitrates between the individual agents. Figure 3 shows the components
of an agent capable of argumentation. Notice that every agent has access to the
global belief base and also has a local belief base.

in
t
e
r
n
a
l
c
o
m

m
u
n
ic

a
t
io

n

a
r
g
u
m

e
n
t
a
t
io

n

g
e
n
e
r
a
t
io

n

local

belief base

global

belief base

query

arguments

Figure 3. An argumentation-capable agent

In the next subsection we will formalize this argumentation process, the mod-
erator and the agents.

3.2. Formalization

As stated above the belief of an ArgMAS is divided into global and local belief
bases. While the global belief base contains strict knowledge and therefore is
built of facts and strict rules, the local belief bases are assumed to comprise only
defeasible rules.



Definition 13 (Belief bases). A global belief base Π is a non-contradictory set of
strict rules and facts. A set of defeasible rules ∆ is called a local belief base relative
to Π, if Π is a global belief base and Π ∪∆ is non-contradictory.

Besides the data structures for knowledge representation the components of an
ArgMAS consist of functions to realize argumentation generation and analysis. The
moderator must be capable of checking argumentation sequences for acceptance
and evaluation of dialectical trees. Therefore in this section the necessary functions
will be formally specified.

As in Section 2 the symbol L denotes the set of all literals that may appear
in a belief base. Furthermore let R be the set of all defeasible rules, that can be
constructed with literals from L, Ω the set of all possible arguments that can be
built using rules from R and conclusions from L, Σ the set of all sequences of
arguments from Ω and Υ the set of all dialectical trees of arguments from Ω.

We start with formal description of the functional components of a moderator.

Definition 14 (Analysis function). An analysis function χ is a function χ :
Υ → {0, 1}, such that for every dialectical tree υ ∈ Υ it holds χ(υ) = 1 iff
the root argument of υ is undefeated.

The definition of an analysis function is independent of the definition of dialectical
trees.

Example 5. Let υ ∈ Υ be a dialectical tree according to Definition 10 and let υ∗

be the corresponding marked dialectical tree. Then the analysis function χD is
defined as χD(υ) = 1 iff the root of υ∗ “undefeated” and χD(υ) = 0 otherwise.

An acceptance function tests a given argument sequence for acceptance.

Definition 15 (Acceptance function). An acceptance function η is a function η :
Σ → {0, 1}, such that for every argument sequence Λ ∈ Σ it holds η(Λ) = 1 iff
Λ is accepted.

Example 6. Let ≻ be a preference relation among arguments. Then the acceptance
function ηD,≻ is defined as ηD,≻(Λ) = 1 iff Λ is acceptable with respect to ≻ and
ηD,≻(Λ) = 0 otherwise.

Let P(S) denote the power set of S.

Definition 16 (Decision function). A decision function µ is a function µ : P(Υ)→
{YES,NO,UNDECIDED,UNKNOWN}.

A decision function µ maps a set of dialectical trees to the suitable answer of the
system. It is sufficient to define µ only on sets of dialectical trees with root argu-
ments for or against the same atom as no other dialectical tree can be generated
in an argumentation process for this particular atom.

Example 7. Let the moderator decide the answer to a query p on the basis of
Definition 12. Let Q ⊆ Υ such that all root arguments of dialectical trees in Q
are arguments for p or for p, then the decision function µD is defined as



1. µD(Q) = YES, if there exists a dialectical tree υ ∈ Q s. t. the root of υ is
an argument for p and χD(υ) = 1.

2. µD(Q) = NO, if there exists a dialectical tree υ ∈ Q s. t. the root of υ is
an argument for p and χD(υ) = 1.

3. µD(Q) = UNDECIDED, if χD(υ) = 0 for all υ ∈ Q.
4. µD(Q) = UNKNOWN, if p is not in the language (p /∈ L).

Definition 17 (Moderator). A moderator is a tuple (µ, χ, η) with a decision func-
tion µ, an analysis function χ and an acceptance function η. A moderator (µ, χ, η)
is called a DeLP-moderator, if µ = µD, χ = χD and η = ηD,≻ for a given preference
relation ≻ among arguments.

An agent of an ArgMAS has to provide two functions: On the one hand he must
be capable of generating initial arguments based on given literals and on the other
hand he must be capable of generating counterarguments to arguments given by
other agents.

Definition 18 (Root argument function). Let Π be a global belief base and let ∆
be a local belief base. A root argument function ϕΠ,∆ relative to Π and ∆ is a
function ϕΠ,∆ : L→ P(Ω), such that for every literal h ∈ L the set ϕΠ,∆(h) is a
set of arguments for h or for h from Π and ∆.

To guarantee autonomy in argument generation of an agent, every agent has an
own acceptance function η to test his generated arguments on acceptance in the
current argument sequence. On the basis of η the counterargument function is
defined as follows

Definition 19 (Counterargument function). Let Π be a global belief base, let ∆
be a local belief base, and let η be an acceptance function. A counterargument
function ψΠ,∆ relative to Π and ∆ is a function ψΠ,∆ : Σ→ P(Ω), such that for
every argumentation sequence Λ ∈ Σ the set ψΠ,∆(Λ) is a set of attacks from Π
and ∆ on the last argument of Λ from Ω and for every 〈B, h〉 ∈ ψΠ,∆(Λ) it holds
that η(Λ + 〈B, h〉) = 1.

An agent of an ArgMAS is then defined as:

Definition 20 (Agent). Let Π be a global belief base. An agent relative to Π is a
tuple (∆, ϕΠ,∆, ψΠ,∆, η) with a local belief base ∆ relative to Π, a root argument
function ϕΠ,∆, a counterargument function ψΠ,∆ and an acceptance function η.

In the following we omit the subscripts Π and ∆ for root argument and counter-
argument functions when they are clear from context.

Putting things together, we define an argumentation-based multi agent sys-
tem to consist of one moderator, a global belief base and a set of agents:

Definition 21 (Argumentation-based multi agent system). An argumentation-
based multi agent system (ArgMAS) is a tuple (M,Π, {A1, . . . , An}) with a mod-
erator M , a global belief base Π and agents A1, . . . , An relative to Π.

We now develop a functional description of the actual argumentation process to
determine the answer to a query h ∈ L.



Definition 22 (Argumentation product). Let h ∈ L be a query and T =
(M,Π, {A1, . . . , An}) an ArgMAS with M = (µ, χ, η) and Ai = (∆i, ϕi, ψi, ηi) for
1 ≤ i ≤ n. A dialectical tree υ is called argumentation product of T and h, iff the
following conditions hold: 1.) there exists a j with 1 ≤ j ≤ n, such that the root
of υ is an element of ϕj(h), and 2.) for every path Λ = [〈A1, h1〉, . . . , 〈An, hn〉]
in υ and the set K of child nodes of 〈An, hn〉 it holds K = {〈B, h′〉|〈B, h′〉 ∈
ψ1(Λ)∪ . . .∪ψn(Λ) and η(Λ+ 〈B, h′〉) = 1} (K is the set of all acceptable attacks
on Λ).

The answer behaviour of an ArgMAS is based on the argumentation products and
the decision function of the moderator:

Definition 23 (Answer behaviour). Let h ∈ L be a query, T = (M,∆, {A1, . . . , An})
an ArgMAS with M = (µ, χ, η) and let {υ1, . . . , υn} be the set of all argu-
mentation products of T and h. The answer A(T, h) of T on the query h is
A(T, h) = µ({υ1, . . . , υn}).

The possible answers of an ArgMAS to a query are therefore YES, NO, UNDE-

CIDED and UNKNOWN as it is for general DeLP.

4. Comparison with general Defeasible Logic Programming

In this section we compare the distributed framework for defeasible argumentation
with general DeLP. As the definition of the components of an ArgMAS are based
upon DeLP the comparison is realized via translation of an DeLP-program into
an ArgMAS. We will show, that the answer behaviour of the original system and
its translated counterpart will remain the same in most cases. All proofs of the
following theorems can be found in an extended version of this paper [10].

For this section, the acceptance functions of all agents are identical with
the acceptance function of the moderator, as this is also the situation in ordi-
nary DeLP. Furthermore the root argument and counterargument functions of all
agents are maximal, i. e. these functions always return the maximal set of possible
arguments with respect to their beliefs.

To translate a DeLP-program P into an ArgMAS and maintain consistent
belief bases, the set of defeasible rules of P have to be appropriatly divided among
several agents. To sustain identical answer behaviours a very naive translation
will suffice.

Definition 24 (Argument-based rule-division). Let P be a de.l.p. and Q the set of
all arguments of P . Then the argument-based rule-division AD(P) of P is defined
by AD(P) = {A|〈A, h〉 ∈ Q}.

For every possible argument 〈A, h〉 there will be one agent with a local belief
base A. As arguments are consistent by definition, every agent has a consistent
belief base. Furthermore no argument gets lost by translation of a DeLP into an
ArgMAS.



Definition 25 (P-Induced ArgMAS). Let AD(P) = {∆1, . . . ,∆n} the argument-
based rule-devision of a de.l.p. P = (Π,∆). Let A1, . . . , An be agents with local
belief bases ∆1, . . . ,∆n respectively and let M be a DeLP-moderator. Then T =
(M,Π, {A1, . . . , An}) is the P-induced ArgMAS.

As the local belief bases of the agents A1, . . . , An are consistent by construction,
every P-induced ArgMAS is indeed an ArgMAS according to Definition 21. Fur-
thermore the answer behaviour of the P-induced ArgMAS is identical with the
answer behaviour of P given identical preference relations for arguments.

Theorem 1. Let P = (Π,∆) be a de.l.p. und let T = (M,Π, {A1, . . . , An}) be
the P-induced ArgMAS. Let h be a query to P and A the answer of P, e. g.
A ∈ {YES,NO,UNDECIDED,UNKNOWN}. Then A is also the answer of T
to h.

So every de.l.p. can be transformed into an ArgMAS while preserving its answer
behaviour. The converse naive translation of an ArgMAS into a de.l.p. is not so
easily possible without some restrictions.

Definition 26 (T -induced de.l.p.). Let T = (M,Π, {A1, . . . , An}) be an ArgMAS

with a DeLP-moderator M and let ∆1, . . . ,∆n be the local belief base of agents
A1, . . . , An. Then P = (Π,∆1 ∪ . . . ∪∆n) is called the T -induced de.l.p..

For arbitrary local belief bases ∆1, . . . ,∆n the answer behaviour of T and the
T -induced de.l.p. is not necessarily the same as the following example shows.

Example 8. Let T = (M,Π, {A1, A2}) be an ArgMAS and let ∆1 and ∆2

be the local belief bases of A1 and A2 with ∆1 = {(b−�a), (b−� a, c)} and
∆2 = {(¬b−� a), (c−� d)} and let furthermore Π = {a, d}. Given the query
b, T yields two argumentation products [〈{(b−� a)}, b〉, 〈{(¬b−�a)},¬b〉] and
[〈{(¬b−� a)},¬b〉, 〈{(b−�a)}, b〉]. As the roots of both argumentation products will
be marked “defeated”, the answer of T on b is UNDECIDED.

The T -induced de.l.p. P = (Π′,∆′) is given by Π′ = {a, d} and ∆ =
{(b−�a), (b−� a, c), (¬b−� a), (c−� d)} and yields on the query b among others the
argumentation product [〈{(b−�a)}, b〉, 〈{(¬b−�a)},¬b〉, 〈{(b−� a, c), (c−� d)}, b〉].
As there the root will be marked with “undefeated”, the answer of P on b is YES.

The reason for the different answer behaviour of T and P in Example 8 is the
“misplaced" rule c−� d, which can not be used for any argument on the query b by
A2. By forbidding “misplaced” rules in an ArgMAS, a translation into a de.l.p. with
protection of answer behaviour is possible. This yields the notion of a well-formed
ArgMAS.

Definition 27 (Well-formed ArgMAS). Let T = (M,Π, {A1, . . . , An}) be an
ArgMAS and let ∆1, . . . ,∆n the local belief bases of agents A1, . . . , An. Let fur-
thermore P be the T -induced de.l.p.. T is called a well-formed ArgMAS iff for
every argument 〈A, h〉 in P there exist an i (1 ≤ i ≤ n) with A ⊆ ∆i.

Theorem 2. Let T = (M,Π, {A1, . . . , An}) be a well-formed ArgMAS and let
∆1, . . . ,∆n be the local belief bases of agents A1, . . . , An. Let furthermore P be



the T -induced de.l.p.. If h is a query and A the answer of T to h, then A is also
the answer of P to h.

As every de.l.p. can be translated in an ArgMAS without losing information,
distributed defeasible argumentation as proposed in this paper can be seen as a
generalization of ordinary defeasible argumentation.

5. Remarks and Conclusion

The examination of distributed argumentation leads to new insights into logic-
based argumentation in AI and discloses new application areas. The approach
of distributed argumentation proposed in this paper distinguishes explicitly be-
tween several entities with different opinions on a structural basis. The proposed
framework was implemented for a diploma thesis and a complex legal dispute was
realised to illustrate the concept [9]. In that example two agents took the roles of
accuser and defender, respectively, and argue about a legal claim. Parts of german
law were translated to support the arguments and counterarguments of the two
agents.

As the results in Section 4 show the proposed framework can subsume gen-
eral defeasible logic programming and therefore is compatible with the existing
theory on DeLP. As part of our ongoing work we plan to generalize the proposed
system with the use of abstract argumentation frameworks [4] and investigate
relationships of distributed argumentation using DeLP with game theory [3].

Acknowledgments The authors thank the reviewers for their helpful comments to
improve the original version of this paper.

References

[1] Leila Amgoud, Yannis Dimopolous, and Pavlos Moraitis. A unified and general frame-
work for argumentation-based negotiation. In Proceedings of the 6th International Joint
Conference on Autonomous Agents and Multi-Agents Systems, AAMAS’2007, May 2007.

[2] T.J.M. Bench-Capon. Persuasion in practical argument using value based argumentation
frameworks. Journal of Logic and Computation, 13(3):429–448, 2003.

[3] Laura A. Cecchi, Pablo R. Fillottrani, and Guillermo R. Simari. On the complexity of
DeLP through game semantics. In J. Dix and A. Hunter, editors, Proc. 11th Intl. Workshop
on Nonmonotonic Reasoning (NMR 2006), pages 386–394, Windermere, UK, 2006.

[4] Phan M. Dung. On the acceptability of arguments and its fundamental role in nonmono-
tonic reasoning, logic programming and n-person games. AI Journal, 77(2):321–358, 1995.

[5] A. García and G. Simari. Defeasible logic programming: An argumentative approach.
Theory and Practice of Logic Programming, 4(1-2):95–138, 2002.

[6] H. S. Nwana, L. C. Lee, and N. R. Jennings. Coordination in software agent systems. The
British Telecom Technical Journal, 14(4):79–88, 1996.

[7] Simon Parsons, Carles Sierra, and Nick Jennings. Agents that reason and negotiate by
arguing. Journal of Logic and Computation, 8(3):261–292, 1998.

[8] F. Stolzenburg, A. García, C. Chesñevar, and G. Simari. Computing generalized specificity.
Journal of Non-Classical Logics, 13(1):87–113, 2003.

[9] M. Thimm. Verteilte logikbasierte Argumentation: Konzeption, Implementierung und
Anwendung im Rechtswesen. VDM Verlag Dr. Müller, 2008.

[10] M. Thimm and G. Kern-Isberner. A distributed argumentation framework using defeasible
logic programming (extended version). Technical report, TU Dortmund, 2008.


	Introduction
	Defeasible Argumentation
	Using Defeasible Logic Programming For a Distributed Environment
	Overview
	Formalization

	Comparison with general Defeasible Logic Programming
	Remarks and Conclusion

