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Abstract. This paper investigates the relationship between defeasible
argumentation (DeLP) and answer set programming by transforming a
defeasible logic program into an answer set program. We propose two
types of conversions that differ with respect to the handling of strict
rules. Inference via a dialectical warrant procedure in DeLP turns out
to be stronger than credulous answer set inference in both cases, while
conversions of the second type bring DeLP inference closer to skeptical
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warrant procedure of DeLP which lead to a better understanding of the
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1 Introduction

Defeasible Argumentation [8], as proposed with the language DeLP (Defeasible
Logic Programming) by García and Simari in [6] is an approach for logical argu-
mentative reasoning [1, 9] based on defeasible logic. In DeLP the belief in literals
is supported by arguments and in order to handle conflicting information a war-
rant procedure decides which information has the strongest grounds to believe
in. In this way, the notion of warrant induces a nonmonotonic inference relation
between a defeasible logic program (consisting of facts as well as strict and de-
feasible rules) and literals. The exploration of this inference relation in terms of
answer set semantics is the topic of this paper.

Indeed, the relationships between defeasible argumentation and other default
reasoning systems, especially the relationship of their particular inference mech-
anisms, have been investigated only little so far. While in [5] default logic and
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logic programming are characterized as instantiations of Dung’s abstract argu-
mentation framework we are interested in a direct relation between default logic
and DeLP which can also be characterized as an instantiation of an abstract ar-
gumentation framework. In [4] the relationship of DeLP with Reiters default logic
[10] is investigated by converting a default logic program into a defeasible logic
program and applying the warrant procedure to determine the extensions of the
original default logic program. In that paper, a special case of DeLP programs
is used, so that the warrant of a literal is equivalent to the sceptical inference of
that literal.

In this paper we take the converse point of view by translating a defeasible
logic program into an answer set program (ASP) [7] and applying answer set
techniques to determine the warranted literals of the original defeasible logic
program. First, we investigate some characteristics of the warrant procedure of
DeLP which leads to a better understanding of the notion of warrant. As DeLP
reasoning is paraconsistent, the handling of inconsistencies under the translation
is of major importance. We will propose two approaches to converting a defea-
sible logic program into an answer set program, dealing with inconsistencies in
different ways. The first conversion method respects the substantial difference
between strict and defeasible rules but has to take inconsistencies brought about
by strict rules into account; the resulting warrant semantics is shown to be weaker
than skeptical ASP semantics, but stronger than credulous ASP semantics. The
other type of conversion blurs the distinction between strict and default rules
and yields better results in computing warrant through answer set techniques.
More precisely, we show that all warranted literals are contained in one answer
set of the corresponding logic program. In particular, if the preference relation
between arguments is empty (so that defeating is reduced to attacking), then
inference by a warrant procedure turns out to be even stronger than skeptical
inference.

In contrast to [2] this paper does not aim at fixing DeLP regarding some
observed flaws in its inference mechanism; instead, we will interpret the original
DeLP inference mechanism via answer set semantics.

This paper is structured as follows: in Section 2 and 3 brief overviews over
ASP and defeasible logic programming are given. Section 4 investigates the no-
tion of warrant in detail. Section 5 and 6 propose two alternatives of converting
a DeLP-program into an answer set program and discuss the results. In Section 7
we conclude. All proofs can be found in the appendix.

2 Answer set programming

In this section we give a brief overview over answer set programming and answer
sets as proposed by Gelfond and Lifschitz in [7]. We consider extended logic
programs, which distinguish between classical and default negation.

We use a first-order language without function symbols except constants, so
let L be a set of literals, where a literal h is an atom A or a (classical) negated
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atom ¬A. The symbol will be used to denote the complement of a literal with
respect to classical negation, i. e. it is p = ¬p and ¬p = p for a ground atom p.

Definition 1 (Extended logic program). An extended logic program P is
a finite set of rules of the form r : h ← a1, . . . , an, not b1, . . . , not bm where
h, a1, . . . , an, b1, . . . , bm ∈ L. We denote by head(r) the head h of the rule r and
by body(r) the body {a1, . . . , an, not b1, . . . , not bm} of the rule r.

If the body of a rule r is empty (body(r) = ∅), then r is called a fact, abbreviated
h instead of h←.

Given a set X ⊆ L of literals, then r is applicable in X, iff a1, . . . , an ∈ X and
b1, . . . , bm /∈ X. The rule r is satisfied by X, if h ∈ X or if r is not applicable in
X. X is a model of an extended logic program p iff all rules of P are statisfied by
X. The set X ⊆ L is consistent, iff for every h ∈ X it is not the case that h ∈ X.
An answer set is a minimal consistent set of literals that satisfies all rules. This
can be characterized as follows.

Definition 2 (Reduct). Let P be an extended logic program and X ⊆ L a set of
literals. The X-reduct of P , denoted PX , is the union of all rules h← a1, . . . , an
such that h← a1, . . . , an, not b1, . . . , not bm ∈ P and X ∩ {b1, . . . , bm} = ∅.

For any extended logic program P and a set X of literals, the X-reduct of P is a
logic program P ′ without default-negation and therefore has a minimal model.
If P ′ is inconsistent, then its unique model is defined to be L.

Definition 3 (Answer set). Let P be an extended logic program. A consistent
set of literals S ⊆ L is an answer set of P , iff S is a minimal model of PS.

3 Defeasible Logic Programming

Defeasible Logic Programming (DeLP) [6] is a logic programming language which
is capable of modelling defeasible knowledge. With the use of a defeasible argu-
mentation process it is possible to derive conclusive knowledge.

The basic elements of DeLP are facts and rules. The set of rules is divided
into strict rules, i. e. rules which derive certain knowledge, and defeasible rules,
i. e. rules which derive uncertain or defeasible knowledge. We use the same set
L of literals as in Section 2 to define the elements of a DeLP-program.

Definition 4 (Fact, strict rule, defeasible rule). A fact is a literal h ∈ L.
A strict rule is an ordered pair h ← B, where h ∈ L and B ⊆ L. A defeasible
rule is an ordered pair h−�B, where h ∈ L and B ⊆ L.

Syntactically, the symbol “ −� ” is all that distinguishes a defeasible rule from a
strict rule. Pragmatically, a defeasible rule is used to describe uncertain knowl-
edge as in “birds fly”. As in ASP we use the functions body/1 and head/1 to refer
to the head resp. body of a defeasible or strict rule.
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Definition 5 (Defeasible Logic Program). A Defeasible Logic Program P =
(Π,∆), abbreviated de.l.p., consists of a (possibly infinite) set Π of facts and
strict rules and of a (possibly infinite) set ∆ of defeasible rules.

Example 1 ([6], example 2.1). Let P = (Π,∆) be given by

Π =

 chicken(tina) scared(tina)
penguin(tweety) (bird(X)← chicken(X))
bird(X)← penguin(X)) (¬flies(X)← penguin(X)

 ,

∆ =


flies(X)−� bird(X)
¬flies(X)−� chicken(X)
flies(X)−� chicken(X), scared(X)
nests_in_trees(X)−� flies(X)

 .

The program P contains the facts, that Tina is a scared chicken and that Tweety
is penguin. The strict rules state that all chickens and all penguins are birds
and penguins cannot fly. The defeasible rules express that birds normally fly,
chickens normally do not fly (except when they are scared) and something that
flies normally nests in trees. In the following examples we abbreviate the above
predicates by their first letters, e. g. in the following the predicate c/1 stands for
chicken/1.

A de.l.p. P = (Π,∆) describes the belief base of an agent and therefore contains
not all of its beliefs. With the use of strict and defeasible rules it is possible to
derive other literals, which may be in the agent’s state of belief.

Definition 6 (Defeasible Derivation). Let P = (Π,∆) be a de.l.p. and let
h ∈ L. A (defeasible) derivation of h from P, denoted P |∼h, consists of a finite
sequence h1, . . . , hn = h of literals (hi ∈ L) such that hi is a fact (hi ∈ Π)
or there exists a strict or defeasible rule in P with head hi and body b1, . . . , bk,
where every bl (1 ≤ l ≤ k) is an element hj with j < i. Let F(P) denote the set
of all literals that have a defeasible derivation from P.

Example 2. In the de.l.p. from Example 1 there is c(tina), b(tina), f(tina)
a defeasible derivation of f(tina), where the following rules have been used:
b(tina)← c(tina) and f(tina)−� b(tina).

For a literal h ∈ L there can be more than one defeasible derivation as will
become clear by the examples in this paper, see also [6]. If the derivation of a
literal h only uses strict rules, the derivation is called a strict derivation.

As facts and strict rules describe strict knowledge, it is reasonable to assume
Π to be non-contradictory, i. e. there are no derivations for complementary lit-
erals from Π only. But if Π ∪ ∆ is contradictory (denoted Π ∪ ∆ |∼ ⊥), then
there exist defeasible derivations for complementary literals and in order to de-
cide which of them (or any) should be believed by the agent, a formalism is
needed. DeLP uses defeasible argumentation to determine which literal has the
“strongest” grounds to believe in.
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Definition 7 (Argument, Subargument). Let h ∈ L be a literal and let
P = (Π,∆) be a de.l.p.. 〈A, h〉 is an argument for h, iff A ⊆ ∆, there exists a
defeasible derivation of h from P ′ = (Π,A), the set Π ∪A is non-contradictory
and A is minimal with respect to set inclusion. The literal h will be called con-
clusion and the set A will be called support of the argument 〈A, h〉. An argument
〈B, q〉 is a subargument of an argument 〈A, h〉, iff B ⊆ A.

Example 3. In the de.l.p. P from Example 1 f(tina) has the two arguments
〈{f(tina)−� b(tina)} , f(tina)〉 and 〈{f(tina)−� c(tina), s(tina)} , f(tina)〉.

If h has a strict derivation from a de.l.p. P, then h has the unique argument
〈∅, h〉. because no defeasible rules are needed for the derivation of h and ∅ is min-
imal with respect to set inclusion to any other set. As Π is non-contradictory,
there cannot exist a strict derivation for h and therefore there is no argument for
h, because for every potential argument 〈A, h〉 the set Π∪A would be contradic-
tory [6]. In general, it is possible to have arguments supporting complementary
literals.

Definition 8 (Disagreement). Let P = (Π,∆) be a de.l.p.. Two literals h
and h1 disagree, iff the set Π ∪ {h, h1} is contradictory.

Two complementary literal p und ¬p disagree trivially, because for every de.l.p.
P = (Π,∆) the set Π ∪ {p,¬p} is contradictory. But two literals which are not
contradictory, can disagree either. For Π = {(¬h ← b), (h ← a)} the literals a
and b disagree, because Π ∪ {a, b} is contradictory.

Definition 9 (Counterargument). An argument 〈A1, h1〉 is a counterargu-
ment to an argument 〈A2, h2〉 at a literal h, iff there exists a subargument 〈A, h〉
of 〈A2, h2〉, such that h and h1 disagree.

If 〈A1, h1〉 is a counterargument to 〈A2, h2〉 at a literal h, then the subargument
〈A, h〉 of 〈A2, h2〉 is called the disagreement subargument. If h = h2, then 〈A1, h1〉
is called a direct attack on 〈A2, h2〉 and indirect attack, otherwise.

Example 4. In P from Example 1 there is 〈{¬f(tina)−� c(tina)}, ¬f(tina)〉 a di-
rect attack to 〈{f(tina)−� b(tina)}, f(tina)〉. Furthermore 〈{¬f(tina)−� c(tina)},
¬f(tina)〉 is an indirect attack on 〈{(n(tina)−� f(tina)), (f(tina)−� b(tina))},
n(tina)〉 with the disagreement subargument 〈{(f(tina)−� b(tina))}, f(tina)〉.

A central aspect of defeasible argumentation is a formal comparison criterion
among arguments. For some examples of preference criterions see [6]. For the
rest of this paper we use an abstract preference criterion � defined as follows.

Definition 10 (Preference Criterion �). A preference criterion among ar-
guments is an irreflexive, antisymmetric relation and will be denoted by �. If
〈A1, h1〉 and 〈A2, h2〉 are arguments, 〈A1, h1〉 will be strictly preferred over
〈A2, h2〉, iff 〈A1, h1〉 � 〈A2, h2〉.
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In general the totality of � cannot be guaranteed. So there are three possible
arrangements for an argument 〈A1, h1〉 and a counterargument 〈A2, h2〉.

– 〈A2, h2〉 � 〈A1, h1〉: 〈A2, h2〉 is called a proper defeater of 〈A1, h1〉.
– 〈A2, h2〉 � 〈A1, h1〉 and 〈A2, h2〉 ⊀ 〈A1, h1〉: 〈A2, h2〉 is called a blocking

defeater of 〈A1, h1〉 (and vice versa).
– 〈A2, h2〉 ≺ 〈A1, h1〉: 〈A2, h2〉 is not an acceptable attack on 〈A1, h1〉.

Example 5. A possible preference relation among arguments isGeneralized Speci-
ficty [11]. According to this criterion an argument is preferred to another argu-
ment, iff the former one is more specific than the latter, i. e. (informally) iff the
former one uses more facts or less rules. For example, 〈{c−� a, b}, c〉 is more spe-
cific than 〈{¬c−� a},¬c〉 (suppose that a, b are facts of a given de.l.p.), because
the former uses two facts a, b, while the latter only a. For a formal definition see
[11, 6].

As � is antisymmetric by definition, there is no equipreference among an argu-
ment and its counterargument. So we only have to consider the cases, that one
argument is better than the other or that two arguments are incomparable.

Definition 11 (Defeater). An argument 〈A1, h1〉 is a defeater of an argument
〈A2, h2〉, iff there is a subargument 〈A, h〉 of 〈A2, h2〉, such that 〈A1, h1〉 is a
counterargument of 〈A2, h2〉 at literal h and either 〈A1, h1〉 � 〈A, h〉 (proper
defeat) or 〈A1, h1〉 � 〈A, h〉 and 〈A, h〉 � 〈A1, h1〉 (blocking defeat).

When considering sequences of arguments, then the definition of defeat is not
sufficient to describe a conclusive argumentation line. Defeat only takes an ar-
gument and its counterargument into consideration, but disregards preceeding
arguments. But we expect also properties like non-circularity or concordance
from an argumentation sequence. See [6] for a more detailed description of ac-
ceptable argumentation lines.

Definition 12 (Acceptable Argumentation Line). Let P = (Π,∆) be a
de.l.p. and let Λ = [〈A1, h1〉, . . . ,An, hn〉] be a sequence of arguments. Λ is called
acceptable argumentation line, iff 1.) Λ is a finite sequence, 2.) every argument
〈Ai, hi〉 with i > 1 is a defeater of his predecessor 〈Ai−1, hi−1〉 and if 〈Ai, hi〉 is
a blocking defeater of 〈Ai−1, hi−1〉 and 〈Ai+1, hi+1〉 exists, then 〈Ai+1, hi+1〉 is a
proper defeater of 〈Ai, hi〉, 3.) Π∪A1∪A3∪. . . is non-contradictory ( concordance
of supporting arguments), 4.) Π∪A2∪A4∪. . . is non-contradictory ( concordance
of interfering arguments), and 5.) no argument 〈Ak, hk〉 is a subargument of an
argument 〈Ai, hi〉 with i < k.

Let + denote the concatenation of argumentation lines and arguments, e. g.
[〈A1, h1〉, . . . , 〈An, hn〉] + 〈B, h〉 stands for [〈A1, h1〉, . . . , 〈An, hn〉, 〈B, h〉].

In DeLP a literal h is warranted, if there exists an argument 〈A, h〉 which
is non-defeated in the end. To decide whether 〈A, h〉 is defeated or not, every
acceptable argumentation line starting with 〈A, h〉 has to be considered.
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Definition 13 (Dialectical Tree). Let 〈A0, h0〉 be an argument of a de.l.p.
P = (Π,∆). A dialectical tree for 〈A0, h0〉, denoted T〈A0,h0〉, is defined by

1. The root of T is 〈A0, h0〉.
2. Let 〈An, hn〉 be a node in T and let Λ = [〈A0, h0〉, . . . , 〈An, hn〉] be the

sequence of nodes from the root to 〈An, hn〉. Let 〈B1, q1〉, . . . , 〈Bk, qk〉 be the
defeaters of 〈An, hn〉. For every defeater 〈Bi, qi〉 with 1 ≤ i ≤ k, such that
the argumentation line Λ′ = [〈A0, h0〉, . . . , 〈An, hn〉, 〈Bi, qi〉] is acceptable,
the node 〈An, hn〉 has a child 〈Bi, qi〉. If there is no such 〈Bi, qi〉, the node
〈An, hn〉 is a leaf.

In order to decide whether the argument at the root of a given dialectical tree is
defeated or not, it is necessary to perform a bottom-up-analysis of the tree. There
every leaf of the tree is marked “undefeated” and every inner node is marked
“defeated”, if it has at least one child node marked “undefeated”. Otherwise it is
marked “undefeated”. Let T ∗〈A,h〉 denote the marked dialectical tree of T〈A,h〉.

Definition 14 (Warrant). A literal h ∈ L is warranted, iff there exists an
argument 〈A, h〉 for h, such that the root of the marked dialectical tree T ∗〈A,h〉 is
marked “undefeated”. Then 〈A, h〉 is a warrant for h.

The notion of warrant is the topic of the next section.

4 Some interesting properties of warrant

The warrant procedure of DeLP is a way to compute the strongest beliefs of an
agent. Thus the set of warranted literals (including all facts as they are trivially
warranted using the empty argument) can be characterized as a belief set. One
important property of belief sets is consistency. In this section we investigate the
relationships between warranted literals and especially the consistency of the set
of warranted literals.

If a literal h is warranted and an argument 〈A, h〉 is a warrant for h, then
〈A, h〉 is considered a “good” argument for h. But the quality of 〈A, h〉 depends
on its position in argumentation lines. If 〈A, h〉 is at the beginning of an ar-
gumentation line, then it will be undefeated, as it is a warrant. It is also a
“good” argument for h, if it is at second position in an argumentation line, as
the following proposition shows.

Proposition 1. If an argument 〈A, h〉 is undefeated in the dialectical tree T〈A,h〉,
then it is undefeated in every dialectical tree T〈A′,h′〉, where 〈A, h〉 is a child of
〈A′, h′〉.

But Proposition 1 can not be generalized to “If an argument 〈A, h〉 is undefeated
in the dialectical tree T〈A,h〉, then it is undefeated in every dialectical tree”, as
the following example shows:
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Example 6. Consider the following de.l.p. P = (Π,∆) with Π = {a1, a2, a3} and
∆ = {(c−� b), (¬c−�¬d), (¬d−� a1), (d−� a1, b), (b−� a1, a3), (b−� a2), (¬b−� a3)}.
Let Generalized Specificity [11] be the preference relation among arguments. The
dialectical tree T〈A,d〉 for the argument T〈A,d〉 with A = {(d−� a1, b), (b−� a2)}
consists only of one argumentation line [〈A, d〉, 〈{(¬b−� a3)},¬b〉, 〈{(b−� a1, a3)}, b〉].
Observe that the argument 〈{(¬d−� a1)},¬d〉 is not an attack on 〈A, d〉 in
T〈A,d〉, because 〈A, d〉 is strictly more specific. Thus the argument 〈A, d〉 is un-
defeated in T〈A,d〉. Let T〈B,c〉 be the dialectical tree for the argument 〈B, c〉 with
B = {(c−� b), (b−� a1, a3)}. In T〈B,c〉 there is the (incomplete) argumentation
line Λ′ = [〈B, c〉, 〈{(¬c−�¬d), (¬d−� a1)},¬c〉, 〈A, d〉]. As in T〈A,d〉 the argument
〈A, d〉 has exactly one attack in T〈B,c〉 after Λ′, namely 〈{(¬b−� a3)},¬b〉. But dif-
ferent from the situation in T〈A,d〉 the argumentation line Λ′+ 〈{(¬b−� a3)},¬b〉
cannot be extended by the argument 〈{(b−� a1, a3)}, b〉 as 〈{(b−� a1, a3)}, b〉 is a
subargument of 〈B, c〉 and thus violates the properties of acceptable argumenta-
tion lines. Thus 〈A, d〉 is defeated in T〈B,c〉.

Proposition 1 implies an interesting relationship between warranted literals: if
an argument 〈A, h〉 is a warrant, every argument 〈A′, h′〉 such that 〈A, h〉 is an
attack on 〈A′, h′〉, cannot be a warrant. Furthermore due to the definition of
warrant, no two warranted literals can disagree.

Proposition 2. Let P be a de.l.p.. If h and h′ are warranted literals in P, then
h and h′ cannot disagree.

Although warranted literals cannot pairwise disagree, the set of all warranted
literals might be inconsistent with the strict knowledge as the following example
shows:

Example 7. Consider the de.l.p. P = (Π,∆) withΠ = {a, (h← c, d), (¬h← e, f)}
and ∆ = {(c−� a), (d−� a), (e−� a), (f −� a)}. In P the literals c, d, e, f are war-
ranted, because for every φ ∈ {c, d, e, f} there is the argument 〈{φ−� a}, φ〉,
which has no counterarguments. But Π ∪ {c, d, e, f} is inconsistent, as there are
derivations for h and ¬h. However all pairs and even all triples of {c, d, e, f} are
consistent with Π (e. g. Π ∪ {c, d} |/∼ ⊥), as there cannot be derivations for h
and ¬h from them.

As we want to translate the notion of warrant into the terms of answer set se-
mantics, this property of warranted literals will become a problem, as the literals
in an answer set are (jointly) consistent. Because this form of disagreement is
not captured in the terms of DeLP we formalize it here as joint disagreement.

Definition 15 (Joint disagreement). Let P = (∆,Π) be a de.l.p. and let
h1, . . . , hn be some literals. If {h1, . . . , hn} ∪Π |∼ ⊥, then h1, . . . , hn are said to
be in joint disagreement.

If a set W of literals is given, one might want to determine the literals of W
that are not in joint disagreement. The most primitive construction of a set of
literals, that do not jointly disagree, is set up by an argument.
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Proposition 3. Let P = (Π,∆) be a de.l.p., let 〈A, h〉 be an argument such that
{h, h1, . . . , hn} = {head(δ) | δ ∈ A}. Then h, h1, . . . , hn do not jointly disagree.

Joint disagreement will play a crucial role when converting a de.l.p. into an
answer set program in the next two sections.

When considering the set of all warranted literals, another relationship of
interest between literals (more precisely between arguments warranting literals)
is the subargument relation.

Proposition 4. Let P be a de.l.p. and 〈B, h′〉 an argument. If 〈B, h′〉 is de-
feated in a dialectial process, i. e. 〈B, h′〉 is marked “defeated” in T ∗〈B, h′〉, every
argument 〈A, h〉, such that 〈B, h′〉 is a subargument of 〈A, h〉, is also defeated in
a dialectical process.

Due to contraposition Proposition 4 implies directly the following corollary.

Corollary 1. Let P be a de.l.p.. If h is a warranted literal in P and 〈A, h〉 is a
warrant for h, then h′ is warranted in P for every subargument 〈B, h′〉 of 〈A, h〉.

Current algorithms for computing warrant in DeLP only consider computing
warrants for one literal [6, 3]. If all warranted literals are to be determined, the
above results can prune the set of literals to be considered, when the warrant
status for one literal has been shown.

5 Converting a defeasible logic program into an answer
set program

In this section and the next, we present two different conversion techniques to
transform a de.l.p. into an answer set program. The approach in this section
aims at an intuitively correct way to transform defeasible and strict rules into
answer set programming. Since the set of all warranted literals might be in joint
disagreement, the activation of a transformed defeasible rule must be prohibited
when leading to inconsistency. This leads to the notion of minimal disagreement
sets.

Definition 16 (Minimal disagreement set). Let P = (Π,∆) be a de.l.p..
A minimal disagreement set X ⊆ F(P) is a set of derivable literals such that
X ∪ Π |∼ ⊥ and there is no proper subset X ′ of X with X ′ ∪ Π |∼ ⊥. Let
furthermore X(P) be the set of all minimal disagreement sets of P.

Example 8. Consider the de.l.p. P = (Π,∆) withΠ = {a, b, (h← c, d), (¬h← e)}
and∆ = {(p−� a), (¬p−� b), (c−� b), (d−� b), (e−� a)}. The minimal disagreement
sets are {h,¬h}, {h, e}, {c, d,¬h}, {c, d, e} and {p,¬p}.

Now joint disagreement can be subsumed by minimal disagreement sets: some
literals {h1, . . . , hn} are in joint disagreement, iff there is a minimal disagreement
set X with X ⊆ {h1, . . . , hn}.
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Minimal disagreement sets will constrain the derivation of literals in the
translated answer set program. If all but one literal of a minimal disagreement
set are in the state under consideration, then the derivation of the last literal
should be prohibited, in order to maintain consistency of the resulting answer
set.

Definition 17 (Guard literals, guard rules). Let P be a de.l.p.. The set of
guard literals GuardLit(P) for P is defined as GuardLit(P) = {αh|h ∈ F(P)}
with new symbols αh. The set of guard rules GuardRules(P) of P is defined as
GuardRules = {αh ← h1, . . . , hn|{h, h1, . . . , hn} ∈ X(P)}.

Example 9. We continue Example 8. Here we have {(αh ← ¬h), (α¬h ← c, d), (αc ←
d,¬h), (αc ← d, e), (αd ← c, e)} ⊆ GuardRules(P)

We are now in the situation to propose our first translation of a de.l.p. into an
answer set program.

Definition 18 (de.lp-induced answer set program). Let P = (Π,∆) be a
de.l.p.. The P-induced answer set program ASP(P) is defined as the minimal
extended logic program satisfying 1.) for every a ∈ Π, a ∈ ASP(P), 2.) for
every r : h ← b1, . . . , bn ∈ Π, r ∈ ASP(P), 3.) for every h−� b1, . . . , bn ∈ ∆,
h← b1, . . . , bn, not αh ∈ ASP(P) and 4.) GuardRules(P) ⊆ ASP(P).

This translation converts strict and defeasible rules in an intuitively correct
manner in ASP-rules. Strict rules are applied whenever possible and defeasible
rules are applied whenever consistency is preserved.

Example 10. From the de.l.p. of Example 8, the complete P-induced answer
set program ASP(P) arises as ASP(P) = {a, b, (h ← c, d), (¬h ← e), (p ←
a, not αp), (¬p ← b, not α¬p), (c ← b, not αc), (d ← b, not αd), (e ← a, not αe)}
∪GuardRules(P) where some guard rules of P are as in Example 9.

We now investigate the relationship between arguments in a de.l.p. P and the an-
swer sets of the P-induced answer set program. Let Fα(P) = F(P)∪GuardLit(P)
denote the set of all derivable literals and their guard literals.

Proposition 5. Let P = (Π,∆) be a de.l.p., let 〈A, h〉 be an argument such
that {h, h1, . . . , hn} = {head(δ) | δ ∈ A}. Let S ⊆ Fα(P) be a maximal subset
such that 1.) {h, h1, . . . , hn} ⊆ S, 2.) for all l ∈ S ∩F(P), there is an argument
〈B, l〉 such that {head(δ) | δ ∈ B} ⊆ S, 3.) S is consistent, i.e. no subset of S is
an element of X(P) and 4.) αl ∈ S iff there is X ∈ X(P) such that X\{l} ⊆ S.
Then S is an answer set of ASP(P).

Theorem 1. Let P = (Π,∆) be a de.l.p. and ASP(P) the P-induced answer
set program. If h warranted in P then there exists at least one answer set M of
ASP(P) with h ∈M .

But as the set of all warranted literals might be in joint disagreement, there can
be in general no answer set S such that all warranted literals are in S.
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Example 11. Consider the de.l.p. P = (Π,∆) with Π = {a, (h ← c, d), (¬h ←
e, f)} and ∆ = {(c−� a), (d−� a), (e−� a), (f −� a)}. The literals c, d, e, f are war-
ranted in P, see Example 7. The P-induced answer set program is given by

ASP(P) =



a.
h← c, d ¬h← e, f c← a, not αc
d← a, not αd e← a, not αe f −� a, not αf
αh ← ¬h αh ← c, d α¬h ← h
α¬h ← c, d αc ← d, e, f αc ← d,¬h
αd ← c, e, f αd ← c,¬h αe ← c, d, f
αe ← f, h αf ← c, d, e αf ← e, h


.

The answer sets of ASP(P) (without guard literals) are

{c, d, e, h}, {c, d, f, h}, {f, e, f,¬h} and {c, e, f,¬h}.

Hence, there is no projected answer set S with c, d, e, f ∈ S.

As strict rules are the cause for minimal disagreement sets with cardinality
greater than two, we can sharpen the above results for the special case that
there are no strict rules.

Corollary 2. Let P = (Π,∆) be a de.l.p. and ASP(P) the P-induced answer set
program. If Π does not contain any strict rule and M is the set of all warranted
literals of P then there exists an answer set M ′ of ASP(P) with M ⊆M ′.

The above results show the advantages and disadavantages of the P-induced
answer set program:

– Theorem 1 shows that every warranted literal is a credulous inference from
ASP (P) and more precisely: every answer set contains a subset of warranted
literals. But as Example 11 shows, there does not necessarily exist an answer
set, which contains all warranted literals.

– We can not determine the whole set of warranted literals by just computing
the answer sets of ASP (P) without doing any argumentation. A sceptical
inference, i e. the intersection of all answer sets, is empty in most cases. On
the other hand, if a literal can be inferred sceptically from ASP (P), then it
is warranted. But the conversion is not always true, as Example 11 shows,
where the intersection of all answer sets is empty.

If we want to model warrant in general DeLP as a credulous inference from the
induced answer set program, then it would be convenient, if we can determine
one specific answer set to infer from (as in Corollary 2). This is the topic of the
next section.
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6 A simplified conversion

In this section we present an alternative conversion method to translate a de.l.p.
into an answer set program. The method presented here is very trivial, but leads
to quite stronger results than the above for a special case of preference relation
among arguments and also solves the discrepancy described at the end of the
last section for arbitrary preference relations.

In [4] the empty preference relation is used to translate a default logic pro-
gram into a de.l.p.. Then the warrant of a literal is equivalent to the sceptical
inference of that literal in the original default logic program. By translating a
de.l.p. into an answer set program, we present here the other direction of this
translation.

Definition 19 (de.l.p∗-induced answer set program). Let P = (Π,∆) be
a de.l.p.. The P∗-induced answer set program ASP∗(P) is defined as the min-
imal extended logic program satisfying 1.) for every a ∈ Π it is a ∈ ASP∗(P)
and 2.) for every (strict or defeasible) rule h L99 b1, . . . , bn ∈ Π ∪∆ it is h ←
b1, . . . , bn, not b′1, . . . , not b′m ∈ ASP∗(P) where {b′1, . . . , b′m} = {b|b and h disagree}.

Note that for this conversion into answer set semantics, only pairwise disagree-
ment relations are taken into account. Moreover, strict and defeasible rules are
treated likewise. This seems reasonable as Example 11 shows, that strict rules
turn out to be the culprits for undercutting a general correspondence between
warrant and sceptical inference.

Example 12. From the de.l.p. of Example 8, the complete P∗-induced answer set
program ASP∗(P) arises as ASP∗(P) = {a, b, (h ← c, d, not ¬h, not e), (¬h ←
e, not h, ), (p← a, not ¬p), (¬p← b, not p), (c← b), (d← b), (e← a, not h)}. The
resulting answer sets of ASP∗(P) are {a, b, c, d, e,¬h, p}, {a, b, c, d, e,¬h,¬p},
{a, b, c, d, h, p} and {a, b, c, d, h,¬p}. If the preference relation is Generalized
Specificity [11], then the set of warranted literals of P is {a, b, c, d}.

As one can see for the special case of a de.l.p. P with no strict rules, the P∗-
and the P-induced translations collapse (in the sense of semantic equivalence).
For general DeLP applying the de.l.p.∗-induced translation yields the following
result for warranted literals:

Theorem 2. Let P = (Π,∆) be a de.l.p.. Let furthermore ASP∗(P) be the P∗-
induced answer set program. If M is the set of all warranted literals of P, then
there exists an answer set M ′ of ASP∗(P) with M ⊆M ′.

This theorem states, that every warranted literal can be inferred credulously
from its ∗-induced answer set program and even more, that the set of all war-
ranted literals can be inferred credulously using one common answer set. But
the inverted statement “If a literal can be inferred credulously, then it is war-
ranted in the original de.l.p.” is not always true as Example 12 shows, where e
can be inferred credulously, but is not warranted. More precisely, the answer set
containing all warranted literals can also contain literals, that are not warranted.
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We investigate now the implications of the above results for the special case
DeLP∅ of defeasible logic programs with empty preference relation. This yields
a very specific characterization of warranted literals.

Proposition 6 (Remark 3.4 in [4]). In DeLP∅, a literal l is warranted iff
there exists an argument for l that is not attacked.

When the preference relation under consideration is empty, then warranted lit-
erals can be inferred sceptically from the resulting answer set program.

Theorem 3. Let P = (Π,∆) be a de.l.p. with the empty preference relation. Let
ASP∗(P) the P∗-induced answer set program and M1, . . . ,Mn be the answer sets
of ASP∗(P). IfM is the set of all warranted literals of P thenM ⊆M1∩. . .∩Mn.

Equality of M with the intersection of all answer sets does not always hold.
Consider a de.l.p. P = (Π,∆) is given by Π = {q, r, h ← p, h ← ¬p} and
∆ = {p−� q,¬p−� r}. The P-induced answer set program has two answer sets,
each of which contains the literal h. But h is not warranted as every argument
for h has a defeater attacking either the subargument for p or ¬p.

Theorem 3 can also easily give a result for arbitrary preference relations.

Corollary 3. Let P = (Π,∆) be a de.l.p. with an arbitrary preference relation.
Let furthermore ASP∗(P) be the P∗-induced answer set program andM1, . . . ,Mn

be the answer sets of ASP∗(P). If M ′ ⊆ F(P) is the set of all literals that have
an argument which is not attacked at all then M ′ ⊆M1 ∩ . . . ∩Mn.

Sceptical ASP-inference does not cover all warranted literals for a de.l.p. with
an arbitrary preference relation, but so does credulous inference as was shown
with Theorem 2.

7 Conclusion and future work

Defeasible logic programming provides a framework for paraconsistent reasoning
on the basis of dialectical argumentation. Answer set programming is one of the
most popular approaches to default reasoning, which is similar to defeasible
reasoning in that both methodologies aim at realizing nonmonotonic inferences.
There is, however, a substantial difference between defeasible and default rules:
While Reiter-style default rules have to be blocked specifically in order not to
make their consequents believed, the validity of the consequents of defeasible
rules must be evaluated in a complex process, taking the global interactions of
all rules into account.

In this paper, we studied transformations of defeasible logic programs into
answer set programs in order to make relationships between inference via a di-
alectical warrant procedure, on the one side, and answer set semantics, on the
other side, explicit. We presented two types of conversions that differ with respect
to the treatment of strict rules. While conversions of the first type maintain the
distinction between strict and defeasible rules, conversions of the second type
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transform all rules into default rules. We proved that for conversions of both
types, warrant implies credulous inference. For conversions of the second type,
we obtained the stronger result that all warranted literals of the defeasible logic
program are contained in one and the same answer set of the transformed logic
program. Moreover, in some cases, we were able to show that warranted literals
can be inferred skeptically in the answer set environment. In general, however,
conversions of the first type establish a much weaker relationship between defea-
sible logic programming and answer set programming, as strict rules may lead
to conflicting defeasible derivations. Of course, in the case that the defeasible
logic program does not contain any strict rules, both conversions coincide.

As part of our ongoing work, we will combine our approach with ideas from
[4] to obtain a complete picture of the links between defeasible argumentative
reasoning in DeLP and answer set semantics. Furthermore it would be interesting
to investigate these links when considering an altered version of DeLP using the
techniques described in [2].
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A Proofs

Proposition 1. If an argument 〈A, h〉 is undefeated in the dialectical tree T〈A,h〉,
then it is undefeated in every dialectical tree T〈A′,h′〉, where 〈A, h〉 is a child of
〈A′, h′〉.

Proof. Let 〈A, h〉 be undefeated in the dialectical tree T〈A,h〉. It is clear, that
the subtree rooted at 〈A, h〉 after 〈A′, h′〉 in T〈A′,h′〉 is a subtree of T〈A,h〉, be-
cause if any argumentation line Λ = [〈B1, h1〉, . . . , 〈Bn, hn〉] is acceptable, then
the argumentation line Λ′ = [〈B2, h2〉, . . . , 〈Bn, hn〉] is also acceptable, because
the constraints on acceptance are harder in Λ than in Λ′. We show now that
if Λ = [〈A′, h′〉, 〈A, h〉, 〈C1, h1〉, . . . , 〈Cn, hn〉] is an acceptable argumentation line
in T〈A′,h′〉 and 〈Cn, hn〉 is a supporting argument in T〈A′,h′〉, then all attacks on
〈Cn, hn〉 in the argumentation line Λ′ = [〈A, h〉, 〈C1, h1〉, . . . , 〈Cn, hn〉] in T〈A,h〉
are valid attacks on 〈Cn, hn〉 in T〈A′,h′〉. So let Λ = [〈A′, h′〉, 〈A, h〉, 〈C1, h1〉, . . . , 〈Cn, hn〉]
be an acceptable argumentation line in T〈A′,h′〉 and 〈Cn, hn〉 be a supporting argu-
ment in T〈A′,h′〉. Then the argumentation line Λ′ = [〈A, h〉, 〈C1, h1〉, . . . , 〈Cn, hn〉]
is also acceptable in T〈A,h〉. Let 〈D, g〉 be an attack on 〈Cn, hn〉 in T〈A,h〉 after
Λ′. Then the argumentation line Λ+ 〈D, g〉 is acceptable:

1. Λ+ 〈D, g〉 is a finite sequence as Λ is an acceptable argumentation line.
2. As 〈D, g〉 is a valid defeater for 〈Cn, hn〉 in Λ′, the same is true in Λ+〈D, g〉.
3. The set of supporting arguments of Λ + 〈D, g〉 is the same as in Λ, because
〈D, g〉 is an interfering argument in Λ+ 〈D, g〉.

4. The set of interfering arguments in Λ + 〈D, g〉 is the same as the set of
supporting arguments in Λ′ and as Λ′ is an acceptable argumentation line,
the union of these arguments is non-contradictory.

5. The argument 〈D, g〉 is not a subargument of 〈A, h〉, 〈C1, h1〉, . . . , 〈Cn, hn〉,
because Λ′ is an acceptable argumentation line. Furthermore 〈D, g〉 is not a
subargument of 〈A′, h′〉, because then the supporting arguments 〈A′, h′〉 and
〈Cn, hn〉 would contradict, as 〈D, g〉 is a counterargument of 〈Cn, hn〉.

As 〈A, h〉 is undefeated in T〈A,h〉 and no needed supporting argument of 〈A, h〉
in T〈A,h〉 gets lost in T〈A′,h′〉, the argument 〈A, h〉 is also undefeated in T〈A′,h′〉

Proposition 2. Let P be a de.l.p.. If h and h′ are warranted literals in P, then
h and h′ cannot disagree.

Proof. As h is warranted, there exists an argument 〈A, h〉 for h which is un-
defeated in a dialectial process. Suppose h′ is a warranted literal and h and h′
disagree. As h′ is warranted there exists an argument 〈A′, h′〉 for h which is un-
defeated in a dialectial process. As h and h′ disagree 〈A, h〉 is a counterargument
for 〈A′, h′〉 and vice versa. Either one of them is an attack on the other regarding
a given preference relation. Without loss of generality let 〈A′, h′〉 be an attack
on 〈A, h〉. As 〈A′, h′〉 is a warrant for h′ it is undefeated in a dialectical process,
and according to Proposition 1 is marked undefeated in the dialectical tree of
〈A, h〉 and so 〈A, h〉 is defeated. So h is not warranted in P in contradiction to
the assumption.

Technical Report, TU Dortmund 15



Matthias Thimm, Gabriele Kern-Isberner FI, LS6, IE

Proposition 3. Let P = (Π,∆) be a de.l.p., let 〈A, h〉 be an argument such that
{h, h1, . . . , hn} = {head(δ) | δ ∈ A}. Then h, h1, . . . , hn do not jointly disagree.

Proof. As 〈A, h〉 is an argument, Π ∪ A is non-contradictory and thus does
not cause the derivation of complementary literals. As Π ∪ A |∼h, h1, . . . hn the
literals h, h1, . . . , hn do not jointly disagree.

Proposition 4. Let P be a de.l.p. and 〈B, h′〉 an argument. If 〈B, h′〉 is defeated
in a dialectial process, every argument 〈A, h〉, such that 〈B, h′〉 is a subargument
of 〈A, h〉, is also defeated in a dialectical process.

Proof. Let 〈B, h′〉 be defeated in a dialectical process and let 〈A, h〉 be an ar-
gument such that 〈B, h′〉 is a subargument of 〈A, h〉. Let furthermore υ be the
dialectical tree with root 〈A, h〉 and υ′ be the dialectical tree with root 〈B, h′〉.
Suppose 〈A, h〉 is undefeated in υ, then all attacks on 〈A, h〉 in υ are defeated
in υ. As 〈B, h′〉 is defeated in υ′ there exists an argument 〈C, h′′〉 which is an
undefeated attack on 〈B, h′〉 in υ′. 〈C, h′′〉 is also an attack on 〈A, h〉, because
〈B, h′〉 is a subargument of 〈A, h〉. It is clear due to the additional rules of A in
comparison to B that the tree rooted at 〈C, h′′〉 under 〈A, h〉 is a subtree of the
tree rooted at 〈C, h′′〉 under 〈B, h′〉. As 〈C, h′′〉 is undefeated in υ′ but defeated
in υ, there must exist at least one node 〈D, g〉 in the tree rooted at 〈C, h′′〉 and
interfering with 〈B, h′〉 in υ′ that is not in υ, provided its parentnode exists in
υ. But if

Λ′ = [〈B, h′〉, 〈C, h′′〉, 〈B1, k1〉, . . . , 〈Bn, bn〉, 〈D, g〉]

is acceptable in υ′ and Λ = [〈A, h〉, 〈C, h′′〉, 〈B1, k1〉, . . . , 〈Bn, bn〉] is acceptable in
υ, then Λ+ 〈D, g〉 is also accetable in υ:

– 〈D, g〉 is concordant with all interfering arguments in Λ′ and therefore 〈D, b〉
is concordant with all interfering arguments in Λ as these two are the same.

– 〈D, g〉 is not a subargument of any of the 〈C, h′′〉, 〈B1, k1〉, . . . , 〈Bn, bn〉 and
also not of 〈A, h〉 (because then 〈Bn, bn〉 would be non-concordant with the
supporting arguments as 〈D, g〉 attacks 〈Bn, bn〉).

So there is no node 〈D, g〉 in the tree rooted at 〈C, h′′〉 and interfering with
〈B, h′〉 in υ′ that is not in υ, provided its parentnode exists in υ. Hence 〈C, h′′〉
is undefeated in υ in contradiction to the assumption and so 〈A, h〉 is defeated
in υ.

Corollary 1. Let P be a de.l.p.. If h is a warranted literal in P and 〈A, h〉 is a
warrant for h, then h′ is warranted in P for every subargument 〈B, h′〉 of 〈A, h〉.

Proof. Suppose 〈B, h′〉 is a subargument of 〈A, h〉 and h′ is not warranted. Then
〈B, h′〉 is defeated in a dialectical process and according to Proposition 4 〈A, h〉 is
also defeated in a dialectial process and cannot be a warrant for h in contradiction
to the assumption.

Proposition 5. Let P = (Π,∆) be a de.l.p., let 〈A, h〉 be an argument such
that {h, h1, . . . , hn} = {head(δ) | δ ∈ A}. Let S ⊆ Fα(P) be a maximal subset
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such that 1.) {h, h1, . . . , hn} ⊆ S, 2.) for all l ∈ S ∩F(P), there is an argument
〈B, l〉 such that {head(δ) | δ ∈ B} ⊆ S, 3.) S is consistent, i.e. no subset of S is
an element of X(P) and 4.) αl ∈ S iff there is X ∈ X(P) such that X\{l} ⊆ S.
Then S is an answer set of ASP(P).

Proof. Let S1 be the answer set of ASP(P)S. We have to show that S = S1.
We start with proving that S ⊆ S1. First, let l ∈ S ∩ F(P). By presupposition,
there is an argument 〈B, l〉 with {head(δ) | δ ∈ B} ⊆ S. Let k−� b1, . . . , bn ∈ B
a defeasible rule which translates into k ← b1, . . . , bn,not αk ∈ ASP(P). Since
k ∈ S and S consistent, for no X ∈ X(P) it holds that X \ {k} ⊆ S. Hence
αk /∈ S, which implies k ← b1, . . . , bn ∈ ASP(P)S. Because l is derivable from
Π∪B, it is also derivable via ASP(P)S, hence l ∈ S1. Now, let αl ∈ S. Then there
is X ∈ X(P) such that X\{l} ⊆ S. As a strict rule, αl ← X\{l} ∈ ASP(P)S,
and by what has just been shown, X\{l} ⊆ S ∩ F(P) ⊆ S1. As S1 is closed
under application of rules from ASP(P)S, αl ∈ S1. To show the converse subset
relation to hold, assume l ∈ S1 ∩ F(P). Then there is a rule r ∈ ASP(P) such
that pos(r) ⊆ S1,neg(r) ∩ S1 = ∅ and head(r) = l. We prove l ∈ S by (informal)
induction on the length of the derivation of l via ASP(P)S. Assume first l to
be a fact. Since all arguments of P must be consistent with all facts, and facts
can be derived by an empty argument, and S is assumed to be maximal, l ∈ S.
By induction hypothesis, assume l ← b1, . . . , bn to be a rule in ASP(P)S with
{b1, . . . , bn} ⊆ S which is induced either by a strict or by a defeasible rule of P.
Case 1: l ← b1, . . . , bn is a strict rule of P. By presupposition on S, each bi is

derivable via an argument Bi of P such that {head(δ) | δ ∈ Bi} ⊆ S, hence
{head(δ) | δ ∈

⋃
Bi} ⊆ S. As S is consistent, l can therefore be consistently

derived by an argument 〈B, l〉 of P such that B ⊆ S. To make use of the
maximality of S, we also have to show that S ∪ {l} ∪ Πnot ` ⊥. However,
whenever S ∪ {l} ∪Π ` ⊥, then already S ∪Π ` ⊥, because l is the head of
a strict rule all body literals of which are in S.

Case 2: l−� b1, . . . , bn is a defeasible rule of P. Then l ← b1, . . . , bn,not αl ∈
ASP(P) and l ← b1, . . . , bn ∈ ASP(P)S, hence αl /∈ S. That means there is
no X ∈ X(P) such that X\{l} ⊆ S. Since b1, . . . , bn ∈ S, just as in Case 1,
an argument for l can be constructed all rule heads of which – except possibly
l – are in S. If l were not in S, by the maximality of S, this can only be if
there were S′ ⊆ S such that X = S′ ∪ {l} ∈ X(P); but then X\{l} ⊆ S, a
contradiction. Therefore, l ∈ S.

Finally, let αl ∈ S1. Then αl must be derivable via ASP(P)S, which means that
there is X ∈ X(P) such that X\{l} ⊆ S1 and αl ← X\{l} ∈ ASP(P)S. As
X\{l} ⊆ S1 ∩ F(P), in particular, X\{l} ⊆ S, therefore αl ∈ S by definition of
S. This finishes the proof of the proposition.

Theorem 1. Let P = (Π,∆) be a de.l.p. and ASP(P) the P-induced answer
set program. If h warranted in P then there exists at least one answer set M of
ASP(P) with h ∈M .

Proof. As h is warranted there exists at least one warrant 〈A, h〉 for h with
{h, h1, . . . , hn} = {head(δ) | δ ∈ A} ∪ {h}. We have to show that a set S
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with {h, h1, . . . , hn} ⊆ S as described in Proposition 5 exists. By Proposition 3,
h, h1, . . . , hn do not jointly disagree, and set S0 = {h, h1, . . . , hn}. Assume Si, i ≥
0, to be constructed, and choose l ∈ F(P)\Si such that there is an argument 〈B, l〉
with {head(δ) | δ ∈ B} ∪ Si consistent. Set Si+1 = {head(δ) | δ ∈ B} ∪ Si. Con-
tinue this construction until no such further literal l ∈ F\Si can be found; set
S′ = Si. Finally, let S = S′ ∪ {αl | ∃ X ∈ X(P) such that X\{l} ⊆ S′}. Then S
satisfies all required properties, and it is clear that it is maximal among all such
subsets of F(P).

Corollary 2. Let P = (Π,∆) be a de.l.p. and ASP(P) the P-induced answer set
program. If Π does not contain any strict rule and M is the set of all warranted
literals of P then there exists an answer set M ′ of ASP(P) with M ⊆M ′.

Proof. The answer set M ′ can be constructed using Proposition 5. As no two
warranted literals disagree, there can be no minimal disagreement set completly in
M ′. Furthermore as every warranted literal has at least one argument supporting
it, the set S = M ′ in Proposition 5 can be derived straightforward.

Theorem 2. Let P = (Π,∆) be a de.l.p.. Let furthermore ASP∗(P) be the P∗-
induced answer set program. If M is the set of all warranted literals of P, then
there exists an answer set M ′ of ASP∗(P) with M ⊆M ′.

Proof. Suppose a maximal subset S ⊆ F(P) with 1.) M ⊆ S and 2.) no two
literals b, b′ ∈ S disagree. According to Proposition 2 no two warranted literals
can disagree with each other, so the constraints on S in 2. are well defined. We
show now, that S is an answer set of ASP∗(P). So let S1 be the answer set of
ASP∗(P)S and prove S = S1.

S ⊆ S1 Let h ∈ S. As S ⊆ F(P), the literal h has a defeasible derivation from
rules r1, . . . , rm of P. As no literal disagreeing with h is in S, the positive
forms of the translated rules r1, . . . , rm in ASP∗(P) are in ASP∗(P)S and
applicable. Thus it follows, that h can be derived in ASP∗(P)S and so h ∈ S1.

S ⊇ S1 Suppose S1 \ S = S′ 6= ∅ and h ∈ S′. Then h cannot disagree with
any h′ ∈ S, because then at least one rule used in the derivation of h in
ASP∗(P)S would be ommitted when constructing the reduct ASP∗(P)S. This
contradicts the maximality of S, as S ∪{h} also fulfills the constraints given
by 1. and 2.; so it follows S′ = ∅.

Proposition 6 (Remark 3.4 in [4]). In DeLP∅, a literal l is warranted iff
there exists an argument for l that is not attacked.

Proof. The proof can be found in [4].

Theorem 3. Let P = (Π,∆) be a de.l.p. with the empty preference relation. Let
ASP∗(P) the P∗-induced answer set program and M1, . . . ,Mn be the answer sets
of ASP∗(P). IfM is the set of all warranted literals of P thenM ⊆M1∩. . .∩Mn.

Proof. Let h ∈M be a warranted literal of P. According Proposition 6, a literal
h is warranted, if and only if there exists an argument 〈A, h〉 of h that is not
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attacked. Let {b′1, . . . , b′m} be the set of literals disagreeing with h or disagreeing
with the conclusion of any subargument of 〈A, h〉. If one b ∈ {b′1, . . . , b′m} could
be derived in ASP∗(P) using rules r1, . . . , rm then 〈{r1, . . . , rm}, b〉 would be an
attack on 〈A, h〉 in P. As 〈A, h〉 cannot be attacked, there is no derivation of
a literal b ∈ {b′1, . . . , b′n}. So h can be derived in every answer set of ASP∗(P).
Thus it follows h ∈M1 ∩ . . . ∩Mn.

Corollary 3. Let P = (Π,∆) be a de.l.p. with an arbitrary preference relation.
Let furthermore ASP∗(P) be the P∗-induced answer set program andM1, . . . ,Mn

be the answer sets of ASP∗(P). If M ′ ⊆ F(P) is the set of all literals, that have
an argument, which is not attacked then M ′ ⊆M1 ∩ . . . ∩Mn.

Proof. Follows directly from Theorem 3.
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