Algorithmen und Datenstrukturen

3. LAUFZEITANALYSEN

Komplexität

- Gegeben
 - Ein zu lösendes Problem

- Wünschenswert
 - Algorithmus zur Berechnung der Lösung mit möglichst geringem Aufwand
- Daher
 - Abschätzung des Aufwands von Algorithmen (Komplexität)
 - Mindestaufwand zur Lösung von Problemen einer bestimmten Klasse

Motivierendes Beispiel

Sequentielle Suche in Folgen

- Gegeben:
 - n Zahlen, z. B. Folge mit n Zahlen A[0 ... n-1], mit n > 0 und Zahlen sind verschieden
 - ◆ Zahl b
- Gesucht:
 - ◆ Index: i ∈ {0, ..., n-1} mit b = A[i] falls Index existiert, sonst i = n
- Lösung für das Problem:

```
i = 0;
while (i < n && b != A[i])
i++;</pre>
```

Motivierendes Beispiel (2)

Aufwand der Suche

- Ergebnis hängt von der Eingabe ab, d.h. vom gewählten Wert n, den Zahlen A[0], ..., A[n] und von b
 - 1. Erfolgreiche Suche: wenn b = A[i]: S = i+1 Schritte
 - 2. Erfolglose Suche: S = n+1 Schritte
- Problem mit 1. Aussage: hängt von zu vielen Parametern ab
 - ◆ Ziel: globale Aussage zu finden, die nur von einer einfachen Größe abhängt, z.B. die Länge *n* der Folge
- Fragen zur Komplexität:
 - a) Wie groß ist S für gegebenes n im schlechtesten Fall?
 - b) Wie groß ist S für gegebenes n im Mittel?

Analyse für erfolgreiche Suche - Frage a

- Im schlechtesten Fall
 - ◆ b wird erst im letzten Schritt gefunden: b = A[n-1]
 - S = n im schlechtesten Fall

Analyse für erfolgreiche Suche - Frage b

Im Mittel

- Wiederholte Anwendung mit verschiedenen Eingaben
- Annahme über Häufigkeit:
 - Beobachten, wie oft b an erster, zweiter, ... letzter Stelle gefunden wird.
- Annahme Gleichverteilung:
 - Läuft Algorithmus k mal (k >>1), so wird b gleich oft an erster, zweiter, ..., letzter Stelle gefunden.
 - Also k/n-mal an jeder Stelle

Analyse für erfolgreiche Suche - Frage b (2)

Anzahl Schritte insgesamt (für k Suchvorgänge):

$$M = \frac{k}{n} \cdot 1 + \frac{k}{n} \cdot 2 + \dots + \frac{k}{n} \cdot n$$

$$= \frac{k}{n} \cdot (1 + 2 + \dots + n)$$

$$= \frac{k}{n} \cdot \frac{n \cdot (n+1)}{2} = k \cdot \frac{n+1}{2}$$

■ Für eine Suche: $S = \frac{M}{k}$ Schritte

Also: $S = \frac{n+1}{2}$ im Mittel (bei Gleichverteilung)

Asymptotische Analyse

■ Analyse der Komplexität → Angabe einer Funktion

$$f: \mathbb{N} \to \mathbb{N}$$

als Maß für den Aufwand

- Bedeutung: f(n) = a
 - bei Problemen der Größe n
 - beträgt der Aufwand a
- **Problemgröße:** Umfang der Eingabe, wie z.B. Anzahl der zu sortierenden oder zu durchsuchenden Elemente
- Aufwand:
 - Rechenzeit (Abschätzung als Anzahl der Operationen, wie z.B. Vergleiche)
 - ◆ Speicherplatz

Aufwand für Schleifen

• Wie oft wird die Wertzuweisung x = x + 1 in folgenden Anweisungen ausgeführt?

$$x = x + 1$$

1-mal

n-mal

n²-mal

Aufwandsfunktion

lacksquare Aufwandsfunktion $f:\mathbb{N} \to \mathbb{N}$ meist nicht exakt bestimmbar

- daher
 - Abschätzung des Aufwands im schlechtesten Fall
 - Abschätzung des Aufwands im Mittel

und "ungefähres Rechnen in Größenordnungen"

Algorithmen und Datenstrukturen

3.1 O-NOTATION

O-Notation

- Angabe der asymptotischen oberen Schranke für Aufwandsfunktion → Wachstumsgeschwindigkeit bzw.
 Größenordnung
- Asymptote: Gerade, der sich eine Kurve bei immer größer werdender Entfernung vom Koordinatenursprung unbegrenzt nähert
- Einfache Vergleichsfunktion $f(n) \in O(g(n))$ für Aufwandsfunktion mit $g: \mathbb{N} \to \mathbb{N}$

O-Notation

Definition:

Für eine Funktion $f: \mathbb{N} \to \mathbb{N}$ ist die Menge O(f(n)) wie folgt definiert:

$$O(f(n)) = \{g : \mathbb{N} \to \mathbb{N} \mid \exists c \in \mathbb{R}^{>0}, \exists n_o \in \mathbb{N} \forall n \ge n_0 : g(n) \le c \cdot f(n)\}$$

- Anschaulich: O(f(n)) ist die Menge aller durch f "nach oben" beschränkten Funktionen
 - → Asymptotische obere Schranke

O-Notation (2)

Definition veranschaulicht:

$$g(n) \in O(f(n)) \Leftrightarrow \exists c > 0, \exists n_0 \forall n \ge n_0 : g(n) \le c \cdot f(n)$$

"g wächst nicht schneller als f"

 \blacksquare Dies bedeutet: $\frac{g(n)}{f(n)}$ ist für genügend große n durch eine

Konstante c nach oben beschränkt

Ω - Notation

Definition:

Für eine Funktion $f: \mathbb{N} \to \mathbb{N}$ ist die Menge $\Omega(f(n))$

wie folgt definiert:

$$\Omega(f(n)) = \{g : \mathbb{N} \to \mathbb{N} \mid \exists c \in \mathbb{R}^{>0}, \exists n_o \in N \ \forall n \ge n_0 : g(n) \ge c \cdot f(n) \}$$

- Anschaulich: Ω(f(n)) ist die Menge aller von f "nach unten" beschränkten Funktionen
 - → Asymptotische untere Schranke

Zum Vergleich:

$$O(f(n)) = \{g : \mathbb{N} \to \mathbb{N} \mid \exists c \in \mathbb{R}^{>0}, \exists n_o \in \mathbb{N} \ \forall n \ge n_0 : g(n) \le c \cdot f(n) \}$$

Θ - Notation

Definition:

Die exakte Ordnung Θ von f(n)

ist definiert als:

$$\Theta(f(n)) = \{g : \mathbb{N} \to \mathbb{N} \mid \exists c_1 \in \mathbb{R}^{>0}, \exists c_2 \in \mathbb{R}^{>0}, \exists c_0 \in \mathbb{R}^{>0}, \exists c_0 \in \mathbb{N} \mid \exists c_0 \in \mathbb{N} \mid \exists c_0 \in \mathbb{R}^{>0}, \exists c_0 \in \mathbb$$

- Anschaulich: Menge aller durch f "nach unten und oben" beschränkten Funktionen
 - Asymptotische untere und obere Schranke

Θ-Notation - Charakterisierung

Lemma:

Für jede Funktion f(n) gilt:

$$\Theta(f(n)) = O(f(n)) \cap \Omega(f(n))$$

Beweis

Zu zeigen:

 $\Theta(f(n)) \subseteq O(f(n)) \cap \Omega(f(n)) \text{ und } \Theta(f(n)) \supseteq O(f(n)) \cap \Omega(f(n))$

 $\Theta(f(n)) \subseteq O(f(n)) \cap \Omega(f(n))$:

Zeige $g(n) \subseteq \Theta(f(n)) \Rightarrow g(n) \subseteq O(f(n)) \cap \Omega(f(n))$.

• $g(n) \subseteq \Theta(f(n)) \Rightarrow \exists c_1, c_2, n_0: \forall n \ge n_0: c_1 f(n) \ge g(n) \ge c_2 f(n)$

Θ-Notation - Charakterisierung

- $g(n) \subseteq \Theta(f(n)) \Rightarrow \exists c_1, c_2, n_0: \forall n \ge n_0: c_1 f(n) \ge g(n) \ge c_2 f(n)$
- $\Rightarrow \exists c_1, n_0: \forall n \ge n_0: c_1 f(n) \ge g(n) \text{ und}$ $\exists c_2, n_0: \forall n \ge n_0: g(n) \ge c_2 f(n)$
- \Rightarrow g(n) \in O(f(n)) und g(n) \in Ω (f(n))
- \Rightarrow g(n) \in O(f(n)) \cap Ω (f(n))

$$\Theta(f(n)) \supseteq O(f(n)) \cap \Omega(f(n))$$
: Übung \square

Beispiele

• Frage: ist $n^2 \in O(n^3)$

Bzw: ist n³ eine obere Schranke für n²?

- Antwort: Ja
- Begründung:

$$n_0 = 1, \ c = 1$$

$$\Rightarrow n^2 \le n^3$$

$$\Rightarrow 1 \leq n$$
 für $n \geq 1$

Beispiele

Frage: ist $n^3 \in O(n^2)$

Bzw: ist n² eine obere Schranke für n³?

- Antwort: Nein
- Begründung: durch Widerspruch
 - Annahme:

$$\exists c, n_0 \in \mathbb{N} : n^3 \le c \cdot n^2$$
, für alle $n > n_0$
 $n^3 \le c \cdot n^2$, für alle $n > n_0$
 $\Rightarrow n \le c$, für alle $n > n_0$

Wähle:
$$n = c + n_0$$

$$\Rightarrow c + n_0 \le c$$

Widerspruch!

Eigenschaften

Lemma:

Für beliebige Funktionen f, g gilt:

$$O(f(n) + g(n)) = O(max(f(n), g(n)))$$

Beweis:

(zeige beide Richtungen)

$$t(n) \in O(f(n) + g(n)) \implies t(n) \in O(\max(f(n), g(n)))$$

$$t(n) \in O(f(n) + g(n)) \iff t(n) \in O(max(f(n), g(n)))$$

Eigenschaften (Beweis)

■ Beweis: "⇒"

$$t(n) \in O(f(n) + g(n)) \implies t(n) \in O(max(f(n), g(n)))$$

Es gilt:

$$\exists c, n_o \in \mathbb{N} : t(n) \leq c \cdot (f(n) + g(n)) \quad \forall n > n_o$$

$$\Rightarrow t(n) \leq 2 \cdot c \cdot max(f(n), g(n)) \quad \forall n > n_o$$

$$\Rightarrow t(n) \in O(max(f(n), g(n)))$$

22

Eigenschaften (Beweis)

■ Beweis: "←"

$$t(n) \in O(f(n) + g(n)) \iff t(n) \in O(\max(f(n), g(n)))$$

Es gilt:

$$\exists c, n_o \in \mathbb{N}: \ t(n) \leq c \cdot (max(f(n), g(n))) \ \forall n > n_o$$

$$\Rightarrow t(n) \leq c \cdot (f(n) + g(n)) \quad \forall n > n_o$$

$$\Rightarrow t(n) \in O(f(n) + g(n))$$

Beispiel

$$O(n^4 + n^2) = O(n^4)$$

$$O(n^4 + 4 \cdot n^3) = O(n^4)$$

$$O(n^4 + 2^n) = O(2^n)$$

Eigenschaften

Lemma:

1. $O(f(n)) \subseteq O(g(n))$ genau dann wenn

$$f(n) \in O(g(n))$$

2. O(f(n)) = O(g(n)) genau dann wenn

$$f(n) \in O(g(n)) \land g(n) \in O(f(n))$$

3. $O(f(n)) \subset O(g(n))$ genau dann wenn

$$f(n) \in O(g(n)) \land g(n) \not\in O(f(n))$$

25

Eigenschaften

1. $O(f(n)) \subseteq O(g(n))$ genau dann wenn

$$f(n) \in O(g(n))$$

Beweis:

(zeige beide Richtungen)

$$O(f(n)) \subseteq O(g(n)) \Rightarrow f(n) \in O(g(n))$$

$$f(n) \in O(f(n)) \subseteq O(g(n)) \Rightarrow f(n) \in O(g(n))$$

26

Eigenschaften (Beweis zu 1.)

1. $O(f(n)) \subseteq O(g(n))$ genau dann wenn

$$f(n) \in O(g(n))$$

Beweis:

 $O(f(n)) \subseteq O(g(n)) \iff f(n) \in O(g(n))$

Definition

$$f(n) \in O(g(n) \Rightarrow \exists c_0, n_o \in \mathbb{N} : f(n) \le c_0 \cdot g(n) \forall n > n_o$$

und sei:

$$t(n) \in O(f(n)) \Rightarrow \exists c_1, n_1 \in \mathbb{N} : t(n) \le c_1 \cdot f(n) \ \forall n > n_1$$

t(n) beliebiges Element der Menge O(f(n))

Definition

Eigenschaften (Beweis zu 1.)

$$\Rightarrow t(n) \le c_1 \cdot f(n) \le c_1 \cdot c_0 \cdot g(n) \quad \forall n > \max(n_0, n_1)$$
$$t(n) \in O(f(n)) \Rightarrow t(n) \in O(g(n))$$

$$O(f(n)) \subseteq O(g(n))$$

Definition
Teilmenge,
da t(n) beliebiges
Element

Beispiele

$$O(n^2) = \{n^2, 2n^2 - 6, 3n^2 + 5, \frac{1}{2}n^2 + 8, \ldots\}$$

Damit:
$$(3n^2+5)\in O(n^2)$$
 Wie ist c zu wählen? $O(3n^2+5)\subseteq O(n^2)$

$$O(3n^2 + 5) = \{n^2, 2n^2 - 6, 3n^2 + 5, \frac{1}{2}n^2 + 8, \ldots\}$$

Damit:
$$n^2 \in O(3n^2+5)$$
 Wie ist c zu wählen?

Damit:
$$O(n^2) = O(3n^2 + 5)$$

Weitere Eigenschaften

Lemma:

Falls $f(n) \in O(g(n))$ und $g(n) \in O(h(n))$, dann ist auch $f(n) \in O(h(n))$.

$$f(n) \le c_0 \cdot g(n) \ \forall n > n_0 \ \mathrm{und}$$
 $g(n) \le c_1 \cdot h(n) \ \forall n > n_1 \ \mathrm{und}$ $\Rightarrow f(n) \le c_0 \cdot g(n) \le \underbrace{c_0 \cdot c_1}_{} \cdot h(n) \ \forall n \ge \max(n_0, n_1)$ Konstante

Beispiele

$$O(n^2) = O(3n^2) = O(\frac{1}{2}n^2)$$

$$O(n^2) \subseteq O(n^{2,5}) \subseteq O(n^3)$$

$$O(n^2) \subset O(n^{2,5}) \subset O(n^3)$$

Aufwand und asymptotische Komplexität

Lemma:

Es gilt:

1.
$$\lim_{n\to\infty} (f(n)/g(n)) = c, c > 0 \implies O(f(n)) = O(g(n))$$

2.
$$\lim_{n\to\infty} (f(n)/g(n)) = 0 \Rightarrow O(f(n)) \subset O(g(n))$$

Aufwand und asymptotische Komplexität (2)

Häufiges Problem: Grenzwert der "Art": $\frac{\infty}{\infty}$ oder $\frac{0}{0}$

→ Ansatz: Regel von de l'Hospital

Satz (Regel von de l'Hospital) " $x \rightarrow \infty$ ":

Seien f und g auf dem Intervall $[a, \infty)$ differenzierbar.

Es gelte $\lim_{x\to\infty} f(x) = \lim_{x\to\infty} g(x) = 0 \text{ (bzw.} = \infty)$

und es existiere $\lim_{x\to\infty} \frac{f'(x)}{g'(x)}$.

Dann existiert auch $\lim_{x\to\infty} \frac{f(x)}{g(x)}$ und es gilt:

$$\lim_{x \to \infty} \frac{f'(x)}{g'(x)} = \lim_{x \to \infty} \frac{f(x)}{g(x)}$$

Beispiele

1.
$$f(n) = 3n + 5$$
, $g(n) = n$

$$\lim_{n \to \infty} \frac{3n+5}{n} \qquad \Rightarrow \lim_{n \to \infty} \frac{3}{1} = 3 > 0 \quad \Rightarrow O(3n+5) = O(n)$$

2.
$$f(n) = n^2 + 5$$
, $g(n) = n^3$

$$\lim_{n\to\infty} \frac{n^2+5}{n^3} \implies \lim_{n\to\infty} \frac{2n}{3n^2} \implies \lim_{n\to\infty} \frac{2}{6n} = 0$$

Wiederholte Anwendung von de l'Hospital

$$\Rightarrow O(n^2 + 5) \subset O(n^3)$$

Weitere Eigenschaften

Gibt es immer eine Ordnung zwischen Funktionen?

Es gibt Funktionen f, g:

$$f(n) \not\in O(g(n))$$
 und $g(n) \not\in O(f(n))$

Zum Beispiel: sin(n) und cos(n)

Asymptotische Komplexität

Lemma:

Für alle $m \in \mathbb{N}$ $gilt: O(n^m) \subseteq O(n^{m+1})$

Beweis: (durch Widerspruch)

Annahme: $s(n) \in O(n^k)$,

d.h.
$$\exists c, n_0, \forall n > n_o : s(n) \leq c \cdot n^k$$

aber es muss auch gelten: $s(n) \notin O(n^{k+1})$

d.h.
$$\exists n > n_0 : s(n) > c \cdot n^{k+1}$$

$$\Rightarrow \exists n > n_0 : \text{ und } n < 1$$

Aufwand und asymptotische Komplexität

Aussage 1:

Sei
$$f(n) = a_m \cdot n^m + a_{m-1} \cdot n^{m-1} + \dots + a_1 \cdot n + a_0$$
,
wobei $a_i \in \mathbb{R}^+$ für $0 \le i \le m$. Dann gilt $f(n) \in O(n^m)$.

- Wir sagen, ein Algorithmus mit Komplexität f(n) benötigt höchstens polynomielle Rechenzeit, falls es ein Polynom p(n) gibt, mit $f(n) \in O(p(n))$.
- Aussage 2:

Ein Algorithmus benötigt höchstens exponentielle Rechenzeit, falls es eine Konstante $a \in \mathbb{R}^+$ gibt, mit

$$f(n) \in O(a^n).$$

Komplexitätsklassen

O(1) konstanter Aufwand

(=Aufwand ist nicht abhängig von Eingabe)

O(log n) logarithmischer Aufwand

O(n) linearer Aufwand

 $O(n \cdot log \ n)$

 $O(n^2)$

quadratischer Aufwand

 $O(n^k)$ für $k \ge 0$ polynomialer Aufwand

 $O(2^n)$

exponentieller Aufwand

38

Typische Problemklassen

Aufwand	Problemklasse
<i>O</i> (1)	einige Suchverfahren für Tabellen (Hashing)
$O(\log n)$	allgemeine Suchverfahren für Tabellen
	(Baum-Suchverfahren)
<i>O</i> (<i>n</i>)	sequenzielle Suche, Suche in Texten, syntak-
	tische Analyse von Programmen (bei "guter"
	Grammatik)
$O(n \cdot \log n)$	Sortieren

Aufwand	Problemklasse
$O(n^2)$	einige dynamische Optimierungsverfahren
	(z.B. optimale Suchbäume), Multiplikation
	Matrix-Vektor (einfach)
$O(n^3)$	Matrizen-Multiplikation (einfach)
$O(2^n)$	viele Optimierungsprobleme (z.B. optimale
	Schaltwerke), automatisches Beweisen (im
	Prädikatenkalkül 1. Stufe)

Algorithmen und Datenstrukturen

3.2 AUFWANDSANALYSE VON ITERATIVEN ALGORITHMEN

Aufwand iterativer Algorithmen

- Aufwand ≈ Anzahl durchlaufener Operationen (Zuweisungen, Vergleiche, ...) zur Lösung eines Problems
- Häufig: Aufwand ist abhängig von Eingabeparametern (=> Problemgröße)
- Aufwandsklasse: Wie wächst der Aufwand in Abhängigkeit von der Problemgröße?
- Frage: Gegeben ein beliebiger Java-Code, wie kann ich die Aufwandsklasse bestimmen?

Aufwand von Programmen ablesen

```
void alg1(int n){
     int m = 2;
     int i;
     int k = n;
     while (n > 0){
         i = k;
         while (i > 0) {
               m = m + i;
               i = i / 2;
         n = n - 1;
```

```
\Theta(n \cdot \log n)
```

Äußere Schleife: n-mal Innere Schleife: log n-mal

Aufwand von Programmen ablesen

```
void alg1(int n) {
    int m = 1;
    int i = 0;
    while (m < n) {
        while (i < m)
        i = i + 1;
        m = m + i;
    }
}</pre>
```

```
\Theta(n + \log n)
```

In jedem Durchlauf der äußeren Schleife wird m verdoppelt, d.h. sie läuft log n Mal, die innere Schleife läuft bis n/2, aber nicht jedes Mal, weil i nur ein Mal auf 0 gesetzt wird.

Man könnte auch O(n) sagen, weil der Summand log n nicht ins Gewicht fällt.

Aufwand iterativer Algorithmen (I)

- Bestandteile iterativer Algorithmen:
 - elementare Anweisungen (Zuweisungen, Vergleiche, ...)
 - $\Theta(1)$

 $f_{\alpha_1}(n)$: Aufwand, der bei der Ausführung von α_1 entsteht.

- Sequenz: α_1 ; α_2
 - Obere Grenze: $O(f_{\alpha_1}(n)) + O(f_{\alpha_2}(n))$
 - Untere Grenze: $\Omega(f_{\alpha_1}(n)) + \Omega(f_{\alpha_2}(n))$
- Selektion: if $(B) \{ \alpha_1 \}$ else $\{ \alpha_2 \}$
 - Obere Grenze: $O(f_B(n)) + O(max(f_{\alpha_1}(n), f_{\alpha_2}(n)))$
 - Unter Grenze: $\Omega(f_B(n)) + \Omega(min(f_{\alpha_1}(n), f_{\alpha_2}(n)))$

Aufwand iterativer Algorithmen (II)

- Iteration: while $(B) \{ \alpha \}$
 - Obere Grenze: "# Schleifendurchläufe" $\cdot (O(f_B(n)) + O(f_\alpha(n)))$
 - Untere Grenze: "# Schleifendurchläufe" $\cdot (\Omega(f_B(n)) + \Omega(f_\alpha(n)))$

Frage: Wie ist der Aufwand für for-Schleifen?

- Beispiel: for $(\alpha_1; B; \alpha_2) \{ \alpha_3 \}$
- Antwort: Abbildung auf while-Schleife:

```
\alpha_1;
while (B) {
\alpha_3;
\alpha_2;
}
```

Beispiel: Sequenz

```
public int berechne(int n) {
  int x = 0;
  x = x + 1;
  return x;
}
\Theta(1)
\Theta(1)
\Theta(1)
```

Fragen:

- Wieviele Operationen werden durchlaufen?
- Ist die Anzahl abhängig von einem Eingabeparameter?
- Aufwand: $f(n) = \Theta(1) + \Theta(1) + \Theta(1) = 3 \cdot \Theta(1)$
- Aufwandsklasse: $\Theta(f(n)) = \Theta(1)$

Beispiel: Schleifen (I)

```
public int berechne(int n) {
   int x = 0;
   for (int i=0; i < n; i++) {
      x = x + 1;
   }
   return x;
}</pre>

public int berechne(int n) {
   int x = 0;
   int x =
```

- Aufwand: $f(n) = \Theta(1) + n \cdot \Theta(1) + \Theta(1) = 2 \cdot \Theta(1) + \Theta(n)$
- Aufwandsklasse: $\Theta(f(n)) = \Theta(n)$

47

Beispiel: Schleifen (II)

```
public int berechne(int n) {
   int x = 0;
   for (int i=0; i < n; i++) {
      for (int j=0; j < n; j++) {
            x = x + 1;
      }
   }
   return x;
}</pre>
```

- Aufwand: $f(n) = \Theta(1) + n^2 \cdot \Theta(1) + \Theta(1) = 2 \cdot \Theta(1) + \Theta(n^2)$
- Aufwandsklasse: $\Theta(f(n)) = \Theta(n^2)$

Beispiel: Selektion

```
public int berechne(int n) {
   if (n % 2 == 0) {
      int x = 0;
      for (int i=0; i < n; i++) {
            x = x + 1;
      }
      return x;
   }else{
      return n;
   }
}</pre>
```

- Obere Grenze: $O(f(n)) = \Theta(1) + O(max(\Theta(n), \Theta(1)) = O(n)$
- Untere Grenze: $\Omega(f(n)) = \Theta(1) + \Omega(min(\Theta(n), \Theta(1)) = \Omega(1)$

49

Faustregeln

- Häufig verwendete Faustregeln:
 - Keine Schleife: Konstanter Aufwand
 - Eine Schleife: Linearer Aufwand
 - Zwei geschachtelte Schleifen: Quadratischer Aufwand
- Gelten die Faustregeln ohne Ausnahme? Nein!
 - Aufwandsbestimmung für Schleifen
 - Mehrere Eingabevariablen
 - ◆ Funktionsaufrufe
 - Rekursionen

Aufwandsbestimmung für Schleifen (I)

```
public int berechne(int n) {
  int x = 0;
  for (int i=0; i < 5; i++) {
    x = x + 1;
  }
  return x;
}</pre>
```

- Schleifenabbruch hängt nicht von Eingabeparameter ab!
- Aufwand: $f(n) = \Theta(1) + 5 \cdot \Theta(1) + \Theta(1) = 7 \cdot \Theta(1)$
- Aufwandsklasse: $\Theta(f(n)) = \Theta(1)$

Aufwandsbestimmung für Schleifen (II)

```
public int berechne(int n) {
  int x = 0;
  for (int i=1; i < n; i = 2*i) {
    x = x + 1;
  }
  return x;
}</pre>
```

- Laufvariable wächst nicht linear an!
- Aufwand: $f(n) = \Theta(1) + \log_2 n \cdot \Theta(1) + \Theta(1)$
- Aufwandsklasse: $\Theta(f(n)) = \Theta(\log n)$

52

Aufwandsbestimmung für Schleifen (III)

Frage 1: Wie entwickelt sich die Laufvariable?

- ◆ Startwert: i=1
- ◆ Veränderung: i=2*i

Entwicklung der Laufvariablen:

- Nach 1. Durchlauf: $i = 1 \cdot 2 = 2^1$
- Nach 2. Durchlauf: $i = (1 \cdot 2) \cdot 2 = 2^2$
- Nach 3. Durchlauf: $i = ((1 \cdot 2) \cdot 2) \cdot 2 = 2^3$
- Nach k-tem Durchlauf: $i=2^k$

Aufwandsbestimmung für Schleifen (IV)

```
for (int i=1; i < n; i=2*i) {
  x = x + 1;
}</pre>
```

- Entwicklung der Laufvariablen: $i = 2^k$
- Frage 2: Nach wie vielen Durchläufen wird abgebrochen?
 - ♦ Abbruch, wenn $i \ge n$

$$\begin{array}{ccc} i & \geq n & |i = 2^k \\ \Leftrightarrow & 2^k & \geq n & |\log_2 \\ \Leftrightarrow & k & \geq \log_2 n \end{array}$$

• Antwort: Abbruch nach $k = \lceil \log_2 n \rceil$ Durchläufen

Mehrere Eingabevariablen

```
public int berechne(int[] f1, int[] f2) {
   int result = 0;
   for (int i=0; i < f1.length; i++) {
      for (int j=0; j < f2.length; j++) {
        if (f1[i] == f2[j]) result++;
      }
   }
   return result;
}</pre>
```

- Problemgrößen: n = f1.length und m = f2.length
- Aufwand: $f(n,m) = \Theta(1) + n \cdot (m \cdot (\Theta(1) + O(1))) + \Theta(1)$
- Aufwandsklasse: $\Theta(f(n,m)) = \Theta(n \cdot m)$

Algorithmen und Datenstrukturen

3.3 AUFWANDSANALYSE VON REKURSIVEN ALGORITHMEN

Rekursionen

```
public int fib(int n) {
  if (n == 0 | | n == 1) {
    return 1;
  } else {
    return fib(n-1) + fib(n-2);
  }
}
```

Frage: Welcher Aufwand entsteht für Fibonacci?

• Für Rekursionsabbruch: $f(n) = \Theta(1) + \Theta(1)$

• Für Rekursionsfall: $f(n) = \Theta(1) + ?????$

→ Lösung: Rekursionsgleichungen!

57

Rekursionsgleichungen

- Definition: Eine Rekursionsgleichung ist eine Gleichung oder Ungleichung, die eine Funktion anhand ihrer Anwendung auf kleinere Werte beschreibt.
- Rekursionsgleichung für Fibonacci:

Aufwand für Rekursionsabbruch

$$T(n) = \begin{cases} \Theta(1) & \text{für } (n = 0 \lor n = 1) \\ \Theta(1) + T(n-1) + T(n-2) & \text{sonst} \end{cases}$$

Aufwand für Rekursionsfall

58

Lösung von Rekursionsgleichungen 2/2

Gegeben

$$T(n) = \begin{cases} \Theta(1) & \text{für } (n = 0 \lor n = 1) \\ \Theta(1) + T(n-1) + T(n-2) & \text{sonst} \end{cases}$$

Welche Aufwandsklasse hat T(n)?

- O(1)?
- O(log n)?
- O(n)?
- O(n²)?
- ...

Lösung von Rekursionsgleichungen 2/2

- Frage: Gegeben eine Rekursionsgleichung, welche Aufwandsklasse hat der dazugehörige Algorithmus?
- Lösungsmethoden:
 - Vollständige Induktion
 - Master-Theorem

Algorithmen und Datenstrukturen

3.3.1 VOLLSTÄNDIGE INDUKTION

Vollständige Induktion

Induktion:

- Rekursive Beweistechnik aus der Mathematik
- → Gut geeignet, um Eigenschaften von rekursiv definierten Funktionen zu beweisen!

Generelles Vorgehen:

- Vermutung einer Eigenschaft (z.B. Aufwandsklasse einer Rekursionsgleichung)
- Induktionsanfang: Eigenschaft hält für ein kleines n
- Induktionsschritt:
 - Annahme: Wir haben es bereits für ein kleineres n gezeigt
 - Wenn Eigenschaft für kleinere n hält, dann hält sie auch für das nächstgrößere n!

Beispiel – Obere Grenze beweisen (I)

$$T(n) = \begin{cases} \Theta(1) & \text{für } n \leq 1 \\ 4 \cdot T(\frac{n}{2}) + \Theta(n^3) & \text{sonst} \end{cases}$$

$$T(n) \in O(n^3)$$

Siehe Definition der O-Notation

$$\exists n_0, c : \forall n \ge n_0 : T(n) \le c \cdot n^3$$

$$n=2^k$$

 $n=2^k$ Brauchen keine Spezial-fälle behandeln, und im Induktionsschritt können wir von $\frac{n}{2}$ nach n gehen.

Allgemeines

Beispiel – Obere Grenze beweisen / W

- Induktionsvermutung: $T(\frac{n}{2}) \le c \cdot \left(\frac{n}{2}\right)^3$
- Rekursionsgleichung einsetzen
- Induktions schritt: Wir beweisen von $\frac{1}{2}$ nach n

Zu zeigende obere Grenze

$$\leq c \cdot n^3$$

$$T(n) \le c \cdot n^3 \quad | T(n) = 4 \cdot T(\frac{n}{2}) + n^3$$

$$\Leftrightarrow$$

$$4 \cdot T(\frac{n}{2}) + n^{\frac{5}{2}}$$

$$\leq c \cdot n^3$$

$$\Leftrightarrow 4 \cdot T(\frac{n}{2}) + n^3 \le c \cdot n^3 \quad | T(\frac{n}{2}) \le c \cdot \left(\frac{n}{2}\right)^3$$

$$\Leftarrow$$

$$\Leftarrow 4 \cdot c \cdot \left(\frac{n}{2}\right)^3 + n^3 \le c \cdot n^3$$

$$\leq c \cdot n^3$$

$$\Leftrightarrow 4 \cdot c \cdot \frac{n^3}{8} + n^3 \le c \cdot n^3 \quad | \quad -c \cdot n^3$$

$$\Leftrightarrow -\frac{1}{2} \cdot c \cdot n^3 + n^3 \le 0$$

$$| : n^3$$

$$\Leftrightarrow$$

$$-\frac{1}{2} \cdot c + 1 \leq 0 \qquad | +\frac{1}{2} \cdot c$$

$$| + \frac{1}{2} \cdot c$$

$$\Leftrightarrow$$

$$1 \leq \frac{1}{2} \cdot c \qquad | \cdot 2$$

$$|\cdot 2|$$

$$\Leftrightarrow$$

$$2 \leq c$$

Induktionsschritt ist erfolgreich, wenn $c \ge 2$

Beispiel – Obere Grenze beweisen (III)

- Induktionsanfang:
 - ◆ Zeige Induktionsvermutung für einen Anfangswert.

Zu zeigende obere Grenze

nchsten: Zeige es für den Rekursions d

Rekursionsgleichung einsetzen

$$T(1) \le c \cdot 1^3 \quad | T(1) = 1$$

 \Leftrightarrow 1 $\leq c$

Induktionsanfang ist erfolgreich, wenn $c \geq 1$

- Wann können wir zeigen, dass $T(n) \le c \cdot n^3$?
 - ullet Für $n_0=1$ Wert, für den wir Induktionsanfang gezeigt haben
 - $\bullet \ \ \mathsf{Und\ wenn} \quad (c \geq 2 \wedge c \geq 1) \Rightarrow c \geq 2$

Nötig laut Induktionsschritt

Nötig laut Induktionsanfang

Algorithmen und Datenstrukturen

3.3.2 MASTER-THEOREM

Mastermethode

 Die Mastermethode ist ein "Kochrezept" zur Lösung von Rekursionsgleichungen der Form:

$$T(n) = a T(n/b) + f(n)$$

mit Konstanten $a \ge 1$ und b > 1, f(n) ist eine asymptotisch positive Funktion, d.h. $f(n) > 0 \quad \forall n > n_0$

Bemerkung

- a steht für die Anzahl der Unterprobleme
- n/b ist die Größe eines Unterproblems
- T(n/b) ist der Aufwand zum Lösen eines Unterproblems (der Größe n/b)
- f(n) ist der Aufwand für das Zerlegen und Kombinieren in bzw. von Unterproblemen

67

Mastermethode

- Schnelles Lösungsverfahren zur Bestimmung der Laufzeitklasse einer gegebenen rekursiv definierten Funktion
- 3 gängige Fälle
 - ◆ Fall 1: Obere Abschätzung
 - ◆ Fall 2: Exakte Abschätzung
 - ◆ Fall 3: Untere Abschätzung
- Lässt sich keiner dieser 3 Fälle anwenden, so muss die Komplexität anderweitig bestimmt werden
 - Wir müssen Voraussetzungen für Anwendung des Mastertheorems überprüfen.

Mastermethode - Grundlage

$$T(n) = a T(n/b) + f(n)$$

mit Konstanten $a \ge 1$ und b > 1, f(n) ist eine asymptotisch positive Funktion, d.h. $f(n) > 0 \quad \forall n > n_0$

Allgemein:

- Vergleichen f(n) mit $n^{log_b a}$
- Wir verstehen n/b als $\lfloor n/b \rfloor$ oder $\lceil n/b \rceil$

Hinweis: verkürzte Notation im Folgenden

 $log_2 n$ als ld n (logarithmus dualis)

Fall 1

Wenn $f(n) \in O(n^{\log_b a - \epsilon})$ für ein $\epsilon > 0$

- \rightarrow f(n) wächst polynomiell langsamer als n^{log_ba} um einen Faktor n^{ϵ}
- \rightarrow Lösung: $T(n) \in \Theta(n^{\log_b a})$

Fall 2

Wenn $f(n) \in \Theta(n^{\log_b a} \cdot ld^k n)$ für ein $k \ge 0$

- \rightarrow f(n) und $n^{log_ba} \cdot ld^kn$ wachsen vergleichbar gleich schnell
- ightharpoonup Lösung: $T(n) \in \Theta(n^{\log_b a} \cdot ld^{k+1}n)$

Fall 3

Wenn
$$f(n) \in \Omega(n^{\log_b a + \epsilon})$$
 für ein $\epsilon > 0$

und $a \cdot f(n/b) \le c \cdot f(n)$ für eine Konstante $c \in (0,1)$ und genügend große n

Regularitätsbedingung

- \rightarrow f(n) wächst polynomiell schneller als n^{log_ba} um einen Faktor n^{ϵ}
- → f(n) erfüllt sog. Regularitätsbedingung

ightharpoonup Lösung: $T(n) \in \Theta(f(n))$

Master-Theorem (Überblick)

Ist T(n) eine rekursiv definierte Funktion der Form

$$T(n) = a T(n/b) + f(n)$$
 mit $a \ge 1$, $b > 1$, $\forall n > n_0$: $f(n) > 0$

Dann gilt:

- 1. Fall: Wenn $f(n) \in O(n^{\log_b a \epsilon})$ für $ein \epsilon > 0$ dann $T(n) \in \Theta(n^{\log_b a})$
- 2. Fall: Wenn $f(n) \in \Theta(n^{\log_b a} \cdot ld^k n)$ für ein $k \ge 0$ dann $T(n) \in \Theta(n^{\log_b a} \cdot ld^{k+1} n)$
- 3. Fall: Wenn $f(n) \in \Omega(n^{\log_b a + \epsilon})$ für ein $\epsilon > 0$ und $a \cdot f(n/b) \le c \cdot f(n)$ für eine Konstante $c \in (0, 1)$ und genügend große n dann $T(n) \in \Theta(f(n))$

Illustration als "Rekursionsbaum":

$$f(n/b) f(n/b) \cdots f(n/b)$$

$$f(n/b^2) f(n/b^2) \cdots f(n/b^2)$$

$$\vdots$$

$$T(1)$$

Erinnerung: T(n) = aT(n/b) + f(n)

Aufwand:

$$f(n) = f(n)$$

$$f(n/b) f(n/b) \cdots f(n/b) = af(n/b)$$

$$f(n/b^2) f(n/b^2) \cdots f(n/b^2) = a^2f(n/b^2)$$

$$\vdots$$

$$\vdots$$

$$T(1)$$

$$f(n) = f(n)$$

$$f(n/b) f(n/b) \cdots f(n/b) \cdots af(n/b)$$

$$h = \log_b n$$

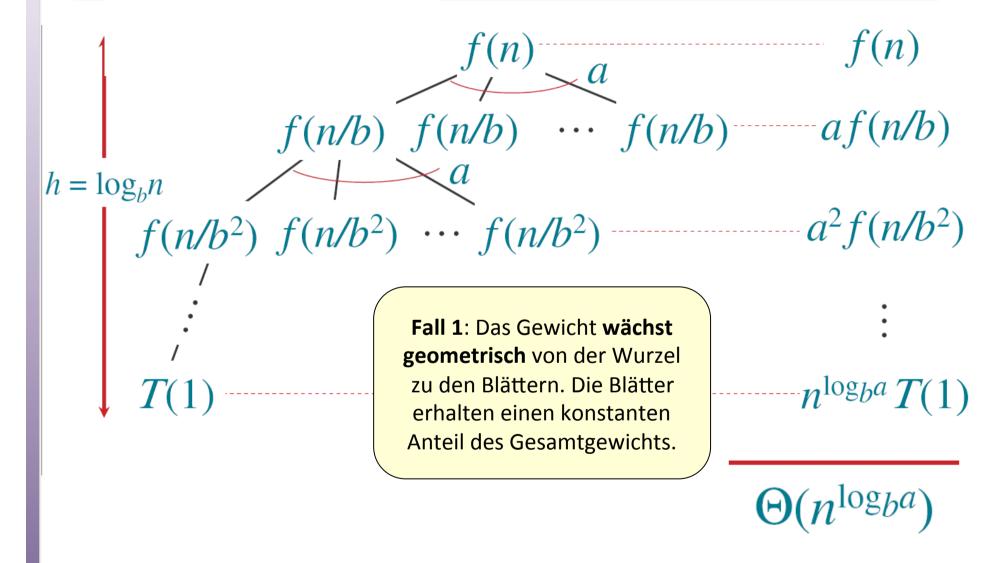
$$f(n/b^2) f(n/b^2) \cdots f(n/b^2) \cdots a^2 f(n/b^2)$$

$$\vdots$$

$$T(1) = a^{\log_b n}$$

$$= a^{\log_b n}$$

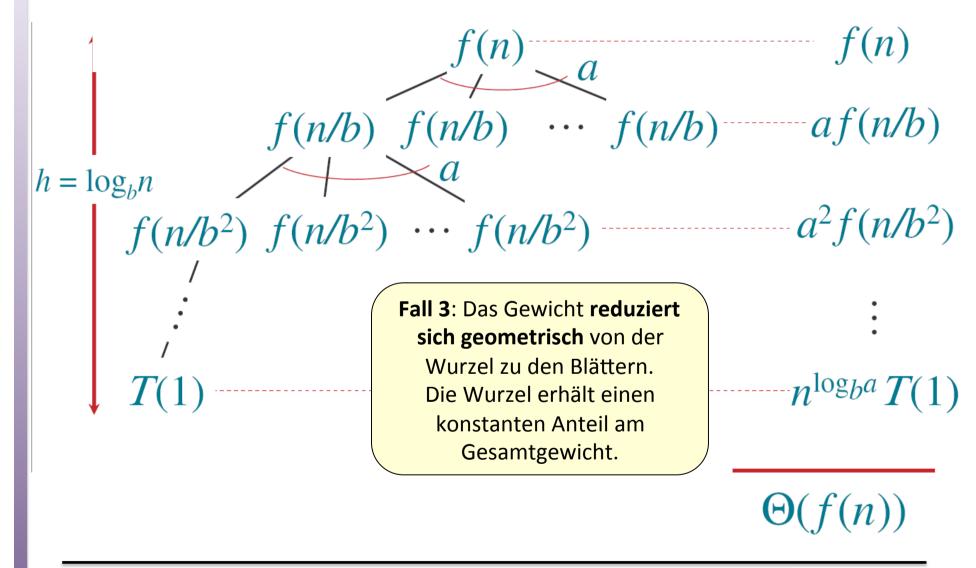
$$= n^{\log_b a} T(1)$$



78

$$f(n) = \int_{-\infty}^{\infty} f(n) \int_{-\infty}^{\infty} f(n) \int_{-\infty}^{\infty} f(n) \int_{-\infty}^{\infty} f(n/b) \int_{-\infty}^{\infty$$

 $\Theta(n^{\log_b a} \operatorname{Id} n)$



Mastertheorem - Bedeutung

- In jedem Fall vergleichen wir f(n) mit $n^{log_b a}$
- Intuitiv: die Lösung wird durch die größere Funktion bestimmt
 - ◆ Im zweiten Fall wachsen sie ungefähr gleich schnell
- Im ersten und dritten Fall muss f(n) nicht nur kleiner oder größer als n^{log_ba} sein, sondern poynomiell kleiner oder größer um einem Faktor n^ϵ
- Der dritte Fall kann nur angewandt werden, wenn die Regularitätsbedingung erfüllt ist

Ergänzung zur Regularitätsbedingung

- Wozu wird im dritten Fall die Regularitätsbedingung benötigt?
 - Erinnerung: im dritten Fall dominiert f(n) das Wachstum von T(n)
- → Wir müssen sicherstellen, dass auch bei rekursivem Anwenden (d.h. wenn Argumente kleiner werden) T(n) von f(n) dominiert wird.

Ergänzung zur Regularitätsbedingung (2)

... veranschaulicht:

$$T(n) = aT(n/b) + f(n)$$

$$= a(aT(n/b^2) + f(n/b)) + f(n)$$

Wachstum dieses Teils muss durch f(n) dominiert werden.

$$= a^2 T(n/b^2) + af(n/b) + f(n)$$

bereits berücksichtigt Problem: darf f(n) nicht dominieren

 $\Rightarrow \text{ für: } af(n/b) \leq cf(n) \ (c \in (0,1))$

Beispiel

$$T(n) = 4T(n/2) + n$$

$$a = 4, \quad b = 2 \implies n^{\log_b a} = n^{\log_2 4} = n^2$$

$$f(n) = n$$

Fall 1:
$$f(n) \in O(n^{2-\epsilon})$$
 für $\epsilon > 0$

z.B.
$$\epsilon = 1$$

$$\Rightarrow T(n) \in \Theta(n^2)$$

Beispiel (2)

$$T(n) = 4T(n/2) + n^{2}$$

$$a = 4, \quad b = 2 \implies n^{\log_b a} = n^{\log_2 4} = n^{2}$$

$$f(n) = n^{2}$$

Fall 2:
$$f(n) \in \Theta(n^2 l d^k n)$$
 $k = 0$

$$\Rightarrow T(n) \in \Theta(n^2 ld \ n)$$

Beispiel (3)

$$T(n) = 4T(n/2) + n^{3}$$

$$a = 4, \quad b = 2 \implies n^{\log_b a} = n^{\log_2 4} = n^{2}$$

$$f(n) = n^{3}$$

Fall 3:
$$f(n) \in \Omega(n^{2+\epsilon})$$
 für $\epsilon > 0$ z.B. $\epsilon = 1$

und
$$4(\frac{n}{2})^3 \le cn^3$$
 (Regularitätsbedingung)

$$f \ddot{u} r \ c = \frac{1}{2}$$

$$\Rightarrow T(n) \in \Theta(n^3)$$

Beispiel (4)

$$T(n) = 4T(n/2) + \frac{n^2}{\log n}$$

$$a = 4, \quad b = 2 \implies n^{\log_b a} = n^{\log_2 4} = n^2$$

$$f(n) = \frac{n^2}{\log n}$$

Fall?

Mastertheorem kann nicht angewandt werden:

- 1. Fall: $f(n) \notin O(n^{2-\epsilon})$
- 2. Fall: $f(n) \notin \Theta(n^2 \cdot ld^k n)$ $(k \ge 0)$
- 3. Fall: $f(n) \notin \Omega(n^{2+\epsilon})$

Nützliche Hinweise

- Basisumrechnung $log_b x = \frac{log_a x}{log_a b} \Rightarrow O(log_b x) = O(log_a x)$
- $lacktriangleq \operatorname{de l'Hospital:} \ \lim_{x o \infty} \frac{f(x)}{g(x)} \ = \lim_{x o \infty} \frac{f'(x)}{g'(x)}$
- Vergleich Logarithmus vs. Polynom

$$\lim_{x\to\infty} log_b x = \infty$$
 $\lim_{x\to\infty} x^{\epsilon} = \infty$ für $\epsilon > 0$

$$\lim_{x \to \infty} \frac{\log_b x}{x^{\epsilon}} = \lim_{x \to \infty} \frac{(\log_b x)'}{(x^{\epsilon})'} = \lim_{x \to \infty} \frac{\frac{1}{x}}{\epsilon x^{\epsilon - 1}}$$

$$= \lim_{x \to \infty} \frac{1}{x \epsilon x^{\epsilon - 1}} = \lim_{x \to \infty} \frac{1}{\epsilon x^{\epsilon}} = 0 \quad \text{für } \epsilon > 0$$

Algorithmen und Datenstrukturen

3. LAUFZEITANALYSEN ZUSAMMENFASSUNG

Zusammenfassung

O-Notation

$$O(f(n)) = \{g : \mathbb{N} \to \mathbb{N} \mid \exists c \in \mathbb{R}^{>0}, \exists n_o \in \mathbb{N} \forall n \geq n_0 : g(n) \leq c \cdot f(n) \}$$

$$\Omega(f(n)) = \{g : \mathbb{N} \to \mathbb{N} \mid \exists c \in \mathbb{R}^{>0}, \exists n_o \in N \forall n \geq n_0 : g(n) \geq c \cdot f(n) \}$$

$$\Theta(f(n)) = \{g : \mathbb{N} \to \mathbb{N} \mid \exists c_1 \in \mathbb{R}^{>0}, \exists c_2 \in \mathbb{R}^{>0}, \exists n_o \in N \forall n \geq n_0 : c_1 \cdot f(n) > g(n) > c_2 \cdot f(n) \}$$

- Aufwandsanalyse von iterativen Algorithmen
 - Schleifenschachtelung maßgebend für Laufzeit
- Aufwandsanalyse von rekursiven Algorithmen
 - Rekursionsgleichungen
 - Vollständige Induktion
 - Master-Theorem