FARGO-LIMITED V2.2.2

Matthias Thimm
Artificial Intelligence Group
University of Hagen
Germany
matthias.thimm @fernuni-hagen.de

Abstract—We present FARGO-LIMITED V2.2.2, a solver for
heuristic reasoning for various tasks in abstract argumentation.
The solver relies on a DPLL-approach to exhaustive search for
extensions, but is constrained in the search space by a bounded
depth or a bounded number of sub-queries.

I. INTRODUCTION

An abstract argumentation framework AF is a tuple AF =
(A, R) where A is a (finite) set of arguments and R is a relation
R C A x A [3|]. For two arguments a,b € A the relation aRb
means that argument a attacks argument b. For a set S C A
we define

St ={aecA|3be S bRa}
ST ={a€A|3e S aRb}

We say that a set S C A is conflict-free if for all a,b € S it
is not the case that aRb. A set S defends an argument b € A
if for all @ with aRb there is ¢ € S with cRa. A conflict-free
set S is called admissible if S defends all a € S.

Different semantics [1]] can be phrased by imposing con-
straints on admissible sets. In particular, a set

o is a complete (C'O) extension iff it is admissible and for
all a € A, if E defends a then a € F,

e is a grounded (GR) extension iff it is complete and
minimal,

e is a stable (ST) extension iff it is conflict-free and £ U
Et =A,

e is a preferred (PR) extension iff it is admissible and
maximal.

e is a semi-stable (SST) extension iff it is complete and
E U ET is maximal.

o is a stage (STG) extension iff it is conflict-free and £ U
E™T is maximal.

e is an ideal (ID) extension iff E C E’ for each preferred
extension E' and E is maximal.

All statements on minimality/maximality are meant to be with
respect to set inclusion.

Given an abstract argumentation framework AF = (A R)
and a semantics o € {CO,GR, ST, PR,SST,STG,ID} we
are interested in the following computational problems [4], [S]:

DC-o : For a given argument a, decide whether a is in at
least one o-extension of AF.

DS-o : For a given argument a, decide whether a is in all
o-extensions of AF.

Note that DC-o and DS-o are equivalent for 0 € {GR,ID}
as those extensions are uniquely defined [1]]. For these, we
will only consider DS-o.

The FARGO-LIMITED V2.2.2 solver supports solving the
above-mentioned computational problems wrt. to all ¢ €
{CO,GR,ST, PR,SST,STG, ID}. In the remainder of this
system description, we give a brief overview on the archi-
tecture of FARGO-LIMITED V2.2.2 (Section [[), highlight the
changes made since the ICCMA’23 version (Section , and
conclude in Section

II. ARCHITECTURE

The core of the solver lies in an algorithm for heurstically
determining whether an argument is contained in an admissible
set[] For 0 € {CO,ST,PR,SST,STG,ID} we estimate
the answer to a DC-o query by a positive answer to such a
test. For DS-o, we additionally check whether any attacker
of the query argument is (likely) in an admissible set. If the
query argument is (likely) contained in an admissible set and
no attacker of the query argument is (likely) contained in an
admissible set, the answer to DS-o is positive.

The general algorithm for checking whether a given ar-
gument a is contained in an admissible set is given in
Algorithm[1] This algorithm is a variant of the standard DPLL-
search algorithm [2]], where the search direction is influenced
by the attack directions. Moreover, the search is bounded
by a given maximum depth n € N U {oo}. More precisely,
Algorithm 1]is initially called via admSuperSet(AF, {a}, n).
If S = {a} is already admissible, we terminate with a positive
answer in line 2. As long as the maximum search depth is
not reached (lines 3—4), we iterate over all arguments b that
attack the current set S and are not defended against (line
6). If there is no possible defender c that can be added to
S without violating conflict-freeness, we terminate with a
negative answer (lines 6—7). Otherwise, we recursively call the
algorithm again with the defender ¢ added to .S and the adapted
maximum search depth (lines 9-10). Note that the algorithm is
complete if the maximum search depth is unbounded, i.e., iff
n = oo. If the search depth n is finite, it may happen that the
answer is FALSE although a is contained in an admissible set
(which could not be found due to the limited search depth).
However, if the algorithm’s answer is TRUE, this is always

'Exceptions are problems DC-GR, DS-GR, DS-CO, which are directly
solved by an algorithm running in polynomial time.

the correct answer, since an admissible set has been found.
In addition to this algorithm, FARGO-LIMITED V2.2.2 also
implements a variant of this algorithm, where the number
of calls to admSuperSet is limited (instead of the search
depth). Experiments have shown that some problems are better
handled by this version of the algorithm.

Algorithm 1 (Heuristically) verifying whether a given subset
can be extended to an admissible set
Input: AF = (A,R), SCA, neNU{cx}
Output: TRUE if there is admissible S’ with S C S’.
admSuperSet(AF,S,n)
: if S is admissible then
return TRUE
if n < 0 then
return FALSE
forbc S™\ ST do
if b=\ (ST UST) =0 then
return FALSE
for ce b=\ (S~ UST) do
if admSuperSet(AF, S U {c},n — 1) then
return TRUE
: return FALSE

R U o

—_
- o

FARGO-LIMITED V2.2.2 is written in C++ and relies on no
specific libraries other than the C++ standard libraries.

III. CHANGES TO FARGO-LIMITED V1.1.1 (ICCMA’23
VERSION)

The most significant change between FARGO-LIMITED
v1.1.1 and FARGO-LIMITED Vv2.2.2 is the addition of the
alternative algorithm for admSuperSet described above.
Problems DS-ST and DS-SST are solved using the original
depth-bounded variant (with maximum search depth set to 1)
while all other problems are solved using the new iteration-
bounded variant (with varying numbers of the maximum
number of iterations, proportional to the number of arguments
in the given argumentation framework). Moreover, FARGO-
LIMITED V2.2.2 also first checks whether the query argument
is contained or attacked by the grounded extension. In the
first case, the solver directly answers positively to the query
(for alle problems), in the latter case, the solvers answers
negatively (for all problems).

IV. SUMMARY

We presented FARGO-LIMITED V2.2.2, a heuristic solver
for various problems in abstract argumentation. The solver
relies on a variant of the DPLL-algorithm for searching
for admissible sets and includes a maximum search depth.
The source code of FARGO-LIMITED V2.2.2 is available at
https://github.com/aig-hagen/taas-fargo.

REFERENCES

[1] Pietro Baroni, Martin Caminada, and Massimiliano Giacomin. An
introduction to argumentation semantics. The Knowledge Engineering
Review, 26(4):365-410, 2011.

(2]

(3]

(4]

(5]

Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors.
Handbook of Satisfiability, volume 185 of Frontiers in Artificial Intelli-
gence and Applications. 10S Press, 2009.

Phan Minh Dung. On the Acceptability of Arguments and its Fundamental
Role in Nonmonotonic Reasoning, Logic Programming and n-Person
Games. Artificial Intelligence, 77(2):321-358, 1995.

Wolfgang Dvotdk and Paul E. Dunne. Computational problems in formal
argumentation and their complexity. In Pietro Baroni, Dov Gabbay,
Massimiliano Giacomin, and Leendert van der Torre, editors, Handbook
of Formal Argumentation, chapter 14. College Publications, February
2018.

Matthias Thimm and Serena Villata. The first international competition on
computational models of argumentation: Results and analysis. Artificial
Intelligence, 252:267-294, August 2017.

https://github.com/aig-hagen/taas-fargo

	Introduction
	Architecture
	Changes to fargo-limited v1.1.1 (ICCMA'23 version)
	Summary
	References

