SMART V1.0

Sandra Hoffmann
Artificial Intelligence Group
University of Hagen
Germany
sandra.hoffmann @fernuni-hagen.de

Abstract—We present SMART V1.0, a backtracking-based
Solver using MAchine learning to complete Reasoning Tasks
in abstract argumentation. Specifically, we use a graph neural
network to predict co-admissible arguments to a given query ar-
gument in order to guide a backtracking-based search algorithm.

I. INTRODUCTION

An abstract argumentation framework (AF) [1] is a tuple
F = (Args, R), with Args being a set of arguments and an
attack relation R C Args x Args. An argument a € Args
attacks another argument b € Args if (a,b) € R. An argument
a € Args is defended by a set of arguments FF C Args if for all
b € Args with (b, a) € R, there exists a ¢ € F with (¢,b) € R.

Let F' = (Args, R) be an argumentation framework. A set
E C Args is

o conflict-free if there are no a,b € E such that (a,b) € R,

o admissible if E is conflict-free and each a € E is

defended by F within F,
o complete if every argument a € Args defended by FE is
also included in F,
o preferred if I/ is a C-maximal complete extension, and
o grounded if FE is a C-minimal complete extension.

Two arguments a and b € Args are called co-admissible if
there exists an admissible set S such that {a,b} C S.

A typical decision problem in the area of abstract argumen-
tation is the problem of deciding whether a given argument
is included in at least one extension (credulous acceptability)
wrt. a given semantics.

Instead of defining argumentation semantics using set the-
ory, we can also use the concept of labelings [2]. A labeling
is a total function L : Args — {in, out, undec} We say that a
labeling is complete if it holds that for every a € Args:

o if a is labeled in then all attackers of a are labeled out

o if all attackers of a are labeled out then a is labeled in

e if a is labeled out then there is an attacker of a that is
labeled in

o if a has an attacker that is labeled in then a is labeled
out

In addition to these three labels the SMART solver also uses
the labels must out as well as must undec to mark arguments
that have to be set to out or undec, respectively, at some
point during the solution process in order to build a maximal
admissible labeling.

Isabelle Kuhlmann
Artificial Intelligence Group
University of Hagen
Germany
isabelle. kuhlmann @fernuni-hagen.de

Matthias Thimm
Artificial Intelligence Group
University of Hagen
Germany
matthias.thimm @fernuni-hagen.de

Computing such a labeling is a computationally hard prob-
lem [3]. Thus, several previous works are concerned with
using machine learning-based approaches in order to reduce
the runtime, even though the results are not guaranteed to
be correct [4]-[7]. Most approaches concentrated on training
a model to directly predict the acceptance status of a given
argument. The author in [8] used a similar approach to the
one presented here, where a GCN was trained on predicting
co-admissible arguments to be used as a heuristic combined
with a SAT solver.

Instead of using a SAT solver, we employ a dedicated
backtracking algorithm and use a prediction, generated by a
graph convolutional network (GCN), to guide the search by
identifying arguments most likely to be jointly admissible with
the query argument.

The SMART V1.0 solver supports solving the credulous
acceptability problem for preferred (DC-PR), complete (DC-
CO) and grounded (DC-GR) semantics. In the remainder of
this description we give an overview on the architecture of
the GCN we use for our predictions (Section II) as well as
on the backtracking algorithm (Section III). We conclude in
Section IV.

II. ARCHITECTURE OF THE GCN

The SMART solver implements a specialized GCN that
predicts which arguments are co-admissible wrt. a given query
argument. We use PyTorch Geometric! to implement the GCN.
The network consists of a 3-layer architecture:

1) An input GCN layer that transforms node features from
the input dimension to 64 features

2) A hidden GCN layer that processes the 64-dimensional
representations to 16 features

3) A final linear layer that reduces the 16 features to
a single output, followed by a sigmoid activation for
binary prediction, where a value of 1 indicates that an
argument is predicted to be co-admissible with the query
node.

Each GCN layer is followed by ReLU activation, and
dropout with a probability of p = 0.2 is applied after the
first convolutional layer to prevent overfitting.

Uhttps://pytorch-geometric.readthedocs.io/en/latest/

For node features, we use each argument’s in-degree and
out-degree. The query node is represented as a one-hot en-
coded vector that is concatenated with these features.

During training, we use a Binary Cross-Entropy loss func-
tion and an Adam optimizer [9] with a learning rate of 0.01.
Ground truth labels for training are provided as a vector where
arguments co-admissible with the query argument are assigned
a value of 1. During inference, we apply a threshold of 0.7,
based on the output of the sigmoid function in the linear layer,
to determine if an argument is co-admissible with the query
argument.

III. BACKTRACKING ALGORITHM

The algorithm for determining credulous acceptance of a
query argument under preferred or complete semantics follows
the approach presented by Nofal et al. in [10]. The authors
propose a backtracking-based approach to justify the accep-
tance status of an argument by employing global look-ahead
pruning strategies, such as terminating the construction of a
labeling early when it becomes evident that it cannot develop
into an admissible labeling. We further implemented several
enhancements described by Nofal et al. in [11], particularly
maintaining separate lists for each argument that track how
many of its attackers are labeled blank or undec, thereby
enabling efficient assessment of whether a current labeling will
yield a maximal admissible labeling.

Initially, we compute the grounded extension using the
algorithmic approach described by the authors in [12]. This
grounded extension is incorporated into the initial labeling,
with all arguments in the grounded extension labeled in and
all arguments attacking or attacked by grounded arguments
labeled out.

In the initial labeling phase, we label the query argument
as in, all arguments attacking the query argument as must out,
and all arguments attacked by the query argument as out. Self-
attacking arguments are assigned the label undec.

We then proceed by propagating the labeling through the
framework, checking whether any blank arguments need to
be set to in (e.g., when all attackers of a blank argument are
labeled out or must out). When such an argument is identified,
all its neighbors are set to out. This propagation continues until
no further blank arguments requiring the in label are found.

Proceeding from this initial labeling, we select an argument
to continue the algorithm. While the authors in [10] accom-
plished this by identifying an argument that attacks a must
out labeled argument and possesses the highest number of
neighbors, the SMART solver utilizes the GCN described in
Section II to guide the search. When the first new argument is
required, the system generates a prediction of arguments co-
admissible with the query argument. Subsequently, we select a
blank argument from these predicted co-admissible arguments
that attacks a must out argument. If no such argument exists—
indicating either limited utility of the prediction or that the
argument is predicted to be inadmissible—we revert to the
argument selection approach outlined in [10].

The algorithm then branches by exploring two possibilities:
setting the selected argument to in or to undec, and propagating
the resulting label changes. This process continues until either
a hopeless labeling is reached (e.g., containing a must out
argument with no remaining blank arguments that could attack
it) or a terminal labeling is found (no blank labeled argu-
ments are attacked by must out labeled arguments). Hopeless
labelings result in backtracking, while terminal labelings are
checked for admissibility (absence of must out arguments),
which would confirm the existence of a preferred labeling
containing the query argument.

IV. SUMMARY

We present SMART V1.0, a backtracking-based Solver
using MAchine learning to complete Reasoning Tasks in
abstract argumentation. Specifically, we use a graph neural
network to predict co-admissible arguments to a given query
argument in order to guide a backtracking-based search algo-
rithm.

REFERENCES

[1] P. M. Dung, “On the Acceptability of Arguments and its Fundamental
Role in Nonmonotonic Reasoning, Logic Programming and n-Person
Games,” Artificial Intelligence, vol. 77, no. 2, pp. 321-358, 1995.

[2] M. W. A. Caminada and D. M. Gabbay, “A logical account of formal
argumentation,” Studia Logica, vol. 93, no. 2, p. 109, 2009. [Online].
Available: https://doi.org/10.1007/s11225-009-9218-x

[3] W. Dvotak and P. E. Dunne, “Computational problems in formal argu-
mentation and their complexity,” in Handbook of Formal Argumentation,
P. Baroni, D. Gabbay, M. Giacomin, and L. van der Torre, Eds. College
Publications, February 2018, ch. 14.

[4] D. Craandijk and F. Bex, “Enforcement heuristics for argumentation with
deep reinforcement learning,” Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 36, no. 5, pp. 5573-5581, Jun. 2022. [Online].
Available: https://ojs.aaai.org/index.php/AAAl/article/view/20497

[5] I. Kuhlmann and M. Thimm, “Using graph convolutional networks
for approximate reasoning with abstract argumentation frameworks: A
feasibility study,” in International Conference on Scalable Uncertainty
Management. Springer, 2019, pp. 24-37.

[6] D. Craandijk and F. Bex, “Deep learning for abstract argumentation
semantics,” in Proceedings of the Twenty-Ninth International Joint
Conference on Artificial Intelligence, 2020, p. 1667-1673.

[7]1 L. Malmgqvist, T. Yuan, P. Nightingale, and S. Manandhar, “Determining
the acceptability of abstract arguments with graph convolutional net-
works.” in SAFA@ COMMA, 2020, pp. 47-56.

[8] L. Malmgqyvist, “Approximate solutions to abstract argumentation prob-
lems using graph neural networks,” Ph.D. dissertation, University of
York, 2022.

[9] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”

arXiv preprint arXiv:1412.6980, 2014.

S. Nofal, K. Atkinson, and P. E. Dunne, “Looking-ahead in backtracking

algorithms for abstract argumentation,” International Journal of Approx-

imate Reasoning, vol. 78, pp. 265-282, 2016.

S. Nofal, K. Atkinson, P. E. Dunne, and I. O. Hababeh, “A new labelling

algorithm for generating preferred extensions of abstract argumentation

frameworks.” in ICEIS (1), 2019, pp. 340-348.

S. Nofal, K. Atkinson, and P. E. Dunne, “Computing grounded

extensions of abstract argumentation frameworks,” The Computer

Journal, vol. 64, no. 1, pp. 54-63, 11 2019. [Online]. Available:

https://doi.org/10.1093/comjnl/bxz138

[10]

(11]

[12]

