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Abstract

We propose a framework for reasoning from inconsistent
knowledge bases using minimal hitting sets, i. e., sets of in-
terpretations such that each formula of the knowledge base
is satisfied by at least one those interpretations. By addition-
ally considering preference orders over minimal hitting sets,
we can define a wide variety of non-monotonic inference re-
lations. We consider concrete preference orders based on
set inclusion, cardinality, the number of conflicting atoms
within the hitting set, and using the Hamming distance be-
tween pairs of interpretations. We compare the resulting in-
ference relations, characterize their logical properties, and
position them relative to classical inference from maximal
consistent subsets. Finally, we show that inference based
on minimal conflicting atoms coincides with reasoning in
Priest’s 3-valued logic.

1 Introduction

A core objective in knowledge representation and reasoning
(KRR) is to support sound and meaningful inference from
knowledge bases (Harmelen, Lifschitz, and Porter 2007). In-
consistencies are an unavoidable reality in large-scale, het-
erogeneous, or evolving knowledge bases. Whether aris-
ing from data integration, imperfect information, or con-
flicting sources, such inconsistencies pose a significant chal-
lenge for KRR systems. Considerable research has ad-
dressed methods for identifying and resolving them, includ-
ing approaches from inconsistency measurement (Thimm
2018), belief revision (Fermé and Wassermann 2018), or
ontology engineering (Kalyanpur et al. 2006; Baader et al.
2018). However, resolving inconsistencies may be difficult
or undesirable—either due to the cost of modification or the
need to preserve original information. In such cases, reason-
ing directly under inconsistency becomes essential (Rescher
and Manor 1970; Benferhat, Dubois, and Prade 1997; Lang
and Marquis 2010).

Traditional approaches to inconsistency-tolerant reason-
ing often rely on syntactic repairs, such as extracting max-
imal consistent subsets or applying belief revision operators.
While these methods have proven effective in many contexts,
they frequently ignore the semantic structure of the underly-
ing models and treat all formulas uniformly, irrespective of
their role in the inconsistency. Moreover, existing semantic

approaches typically lack mechanisms for flexible inference
or fine-grained preference among models.

In this paper, we propose a new framework for
inconsistency-tolerant reasoning based on sets of models—
specifically, minimal hitting sets of interpretations guided
by preference relations. This semantic perspective enables
reasoning directly over interpretations, allowing for a wide
spectrum of inference relations that range from cautious to
permissive, depending on how preferred hitting sets are se-
lected. This establishes a unified perspective that not only
captures existing approaches as special cases but also sup-
ports the principled design of new inference strategies.

Our contribution lays the semantic foundation for a gen-
eral framework of inconsistency-tolerant reasoning with sets
of models. Rather than committing to a single inference re-
lation, the framework is parameterized by a preference rela-
tion over hitting sets. We formally identify the basic prop-
erties that preference relations must satisfy to ensure well-
behaved inference.

Our main contributions are as follows:

* We introduce a general framework for non-monotonic in-
ference from inconsistent knowledge bases using mini-
mal hitting sets of interpretations.

* We instantiate the framework using preference orders
based on set inclusion, cardinality, conflicting atoms, and
Hamming distance.

* We relate our framework to established approaches, in-
cluding inference from maximal consistent subsets and
reasoning in 3-valued logic.

* We define semantic conditions on preference relations
that guarantee classical behavior for consistent knowl-
edge and support principled non-monotonic inference un-
der inconsistency.

Detailed proofs of all propositions and theorems are pro-
vided in the full paper.!

The remainder of this paper is structured as follows. Sec-
tion 2 provides the necessary background on propositional
logic and classical inference. In Section 3, we introduce our
general framework for reasoning with minimal hitting sets.
Section 4 presents various instantiations of preference or-
ders and defines the resulting inference relations. Section 5
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analyzes their relationships to inference from maximal con-
sistent subsets and 3-valued logic. Section 6 shows the sat-
isfaction of the non-monotonic properties of these inference
modes. We conclude in Section 7 with a summary and direc-
tions for future research.

2 Background

Let At be some fixed propositional signature, i.e., a (pos-
sibly infinite) set of propositional variables (also called
atoms), and let Z(At) be the corresponding proposi-
tional language constructed using the usual connectives
A (conjunction), V (disjunction), — (implication), <> (bi-
implication) and — (negation). Furthermore, T denotes an
arbitrary tautology and L denotes an arbitrary contradiction.

If ¢ is a formula, we write At(¢) to denote the set
of propositions appearing in ¢. Similarly, for a set & =
{01,...,0,}, we write At(P) for the propositions appearing
in ®. Furthermore, let A® = @; A... A @, and ~® = {—¢ |
¢ € D}

Semantics to a propositional language are given by in-
terpretations where an interpretation @ on At is a func-
tion @ : At — {true,false}. Let Q(At) denote the set of
all interpretations for At. An interpretation @ satisfies (or
is a model of) an atom a € At, denoted by @ = a, if and
only if @(a) = true. The relation = is extended to formu-
las in the usual way. For a set of formulas ® C Z(At)
we write @ = @ if 0 = ¢ for every ¢ € &. As an ab-
breviation we sometimes identify an interpretation @ with
its complete conjunction i.e., if ay,...a, € At are those
propositional variables that are assigned true by @ and
ap+t1,---,ay € At are those variables that are assigned false
by o we identify w by a;...a,a,+1 . ..a, (or any permuta-
tion of this). For example, the interpretation ®; on {a,b,c}
with @(a) = o(c) = true and w(b) = false is abbreviated
by abc. As usual, we use = to denote classical entail-
ment. That is, = C Z(Z(At)) x £(At), which is a bi-
nary relation, where ® |= ¢ if and only if every interpreta-
tion that satisfies @ must also satisfy ¢. In the following,
let ®,P;,P, be sets of formulas. Define the set of mod-
els Mod(®) = {w € Q(At) | o = P}. We write | = P,
if Mod(®;) C Mod(d,). We say that ®;,D, are equiv-
alent, denoted by ®; = ®,, if Mod(P;) = Mod(®,). If
Mod(®) = 0 holds, we say that P is inconsistent.

In this work, we are only considering knowledge bases
that are non-empty and do not contain formulas that contra-
dict themselves.

Definition 1. A knowledge base K is a non-empty finite set
of formulas K C .Z(At), such that K # 0 and, every formula
¢ € K is consistent. Let K be the set of all knowledge bases.

Note that while every formula in the knowledge base K is
consistent, the knowledge base itself can be inconsistent, for
example K= {p7 q,7pV _'Q}

An important concept for reasoning under inconsistency
is reasoning based on maximal consistent sets.

Definition 2. Let K be a knowledge base. A set M C K
is a maximal consistent subset of K if M |~ L and for all

M’ C M holds M’ |= L. With MCS(K) we denote the set of
all maximally consistent subsets of K.

Maximal consistent subsets provide a foundation for
defining inference relations in the presence of inconsistency.
We now recall two such classical inference relations intro-
duced by Rescher and Manor 1970

Definition 3 (Rescher and Manor 1970). Let K be a knowl-
edge base.

* A formula ¢ is said to be an inevitable consequence of K,
shortly K~“¢, if M |= ¢ for all M € MCS(K).

* A formula ¢ is said to be an weak consequence of K,
shortly K¢, if M |= ¢ for some M € MCS(K).

The following example clarifies Definition 2 and shows
inference is possible from maximally consistent subsets.

Example 1. Consider the knowledge base K = {p,q,r A
—p}. First, observe that K is inconsistent. Note that
MCS(K) = {{p,q},{q,r N—p}} are the maximally consis-
tent subsets of K. Hence, inevitable inference are some infer-
ences are K|~"q, and some weak consequence are K~ p,
Kb a, by op, Ko

While inference based on maximal consistent subsets is a
classical approach to reasoning under inconsistency, it does
not take into account the semantic roles of individual for-
mulas. For example, consider a formula such as r that is
not directly involved in any contradiction. Despite this, it
may be inferred with the same inference operator as p or —p
which are explicitly in conflict. This uniform treatment can
obscure the distinction between formulas that merely coexist
with inconsistency and those that contribute to it.

We now turn to Priest’s 3-valued logic (Priest 1979),
which extends classical truth values with a third option: both.
This value represents cases where a formula is considered
simultaneously true and false, capturing contradictions di-
rectly within the semantic evaluation.

Definition 4. A 3-valued interpretation v on At is a function
v : At — {true, false,both}.

The additional truth value both refers to the conflicting
state when an atom is both true and false at the same time.
The function v is extended to formulas as shown in Table 1.

Definition 5. For a 3-valued interpretation v and a formula
¢, we write v =3 ¢ iff v(9) € {true,both}. Let Mod*(K)
be the set of all 3-valued models of the knowledge base K.

The relation =3is extended naturally to sets of formulas:
a 3-valued interpretation satisfies a set if it satisfies each in-
dividual formula in the set. For clarity, we use the symbol v
for 3-valued interpretations and the symbol w for classical
two-valued interpretations.

A 3-valued interpretation that assigns many atoms to both
is not informative , as it often fails to yield a definitive truth
value for many formulas. An illustrative extreme case is the
interpretation vy such that vy(a) = both for all a € At, which
is a model of every formula. Thus, we define a notion of
minimal models for a knowledge base that minimizes the
set of atoms assigned both.



v(9) V() [ v@AY) [ v(OVY) | v(=9)
false  false false false true
false  both false both true
false  true false true true
both  false false both both
both  both both both both
both  true both true both
true  false false true false
true  both both true false
true true true true false

Table 1: 3-valued interpretation truth tables.

Definition 6. A model v of a knowledge base K is a minimal
model of K if there is no other v’ =2 K with (v') ! (both) C
(v)~!(both). Let MinMod*(K) denote the set of minimal
models of K.

Based on Definition 6, we define an inference relation that
considers only such minimal models.

Definition 7. Define the 3-valued inference relation P\} via
KR ¢ iff v |=3 ¢ for every v € MinMod® (K).

Having reviewed both classical and 3-valued approaches
to reasoning under inconsistency, we now turn to our hitting
set-based framework, which builds on sets of interpretations
to support a flexible and semantically grounded inference
mechanism.

3 A General framework for Reasoning with
Hitting Sets

In this section, we introduce a framework for inconsistency-
tolerant reasoning built upon the concept of hitting sets of
interpretations. This approach allows us to define inference
relations that operate directly on sets of models, providing a
more fine-grained and adaptable foundation for drawing con-
clusions from potentially conflicting information. We con-
sider the following definition of a hitting set (Thimm 2016;
Thimm 2014).

Definition 8. Let K be a knowledge base. A set H C Q(At)
is a hitting set of K, if for all ¢ € K there is @ € H with
® = ¢. Let 77 (K) be the set of all hitting sets of K.?

Hitting sets were originally introduced as a tool for mea-
suring inconsistency in knowledge bases (Thimm 2016;
Thimm 2014).

Consider the following example.

Example 2. Given the knowledge base K1 = {p,~pAg}. It
has the following hitting sets:

H (K1) = {{prq, pa},{rd, pa},{ra, pa, pa},
{ra,prd, pa}.{pra.pa, pa}.{rq, pa, pq,. ra}}

ZNote that in a more general sense, a set H is a hitting set of a
set of sets Sif MNT # @ for all T € S. In our context, S is a set of
formulas and each formula is represented by its set of models. So
a hitting set H of a knowledge base K is the same as a hitting set of

{Mod(¢) | ¢ € K}

Although any set of interpretations that satisfies every for-
mula in the knowledge base qualifies as a hitting set, many
such sets may contain redundant or unnecessary elements.
For instance, in Example 2, the set pg, pq is sufficient to sat-
isfy the knowledge base, but larger sets are still technically
valid hitting sets. To refine this notion for inference, we in-
troduce preference relations over hitting sets to isolate those
that are minimal in a well-defined sense.

We generalize the notion of minimality by considering
minimality with respect to an arbitrary relation < over hit-
ting sets.

Definition 9. Given a knowledge base K. A hitting set
H € #(K) is minimal wrt. < C 2% x 22 if there is no
H' € #(K) with H' < H. Let 5#%(K) denote the set of
all minimal hitting sets of K wrt. <.

The idea of minimality depends on the specific preference
relation < applied. This flexibility allows us to tailor in-
ference to different intuitions about what constitutes a bet-
ter* or “more informative* set of interpretations. In the next
definition, we formalize four distinct modes of inference by
quantifying over both preferred hitting sets and the interpre-
tations they contain.

Definition 10. For < C 22 x 22 define inference relations
}'VI'IS’ ){VHC’ |’qu and I’VPC Vla
K}v[_‘:q) ifVHe HL(K):VoeH 0 ¢
Kkvrfq) ifVvHe #L(K):JoeH: 0= ¢
K}quﬁ if3dH e L (K):VoeH 0= ¢
Ko if3He AL (K):JocH: 0= ¢

for every knowledge base K and formula ¢.

ns

* If K~T¢ holds, we say that ¢ is a necessary skeptical
inference of K (wrt. <).

o If K" ¢ holds, we say that ¢ is a necessary credulous
inference of K (wrt. <).

* If K2 ¢ holds, we say that ¢ is a possible skeptical in-
ference of K (wrt. <).

* If K~P7¢ holds, we say that ¢ is a possible credulous
inference of K (wrt. <).

These four inference relations offer different perspectives
on reasoning from sets of models. Necessary inferences
(both skeptical and credulous) require that a formula holds
across all minimal hitting sets, differing on whether every
interpretation (skeptical) or some interpretation (credulous)
within the hitting set must satisfy the formula. Possible in-
ferences, in contrast, require only the existence of a minimal
hitting set where the formula holds universally (skeptical)
or partially (credulous). This distinction allows flexible rea-
soning patterns, depending on how cautious or permissive
one wishes to be when accepting conclusions from possibly
inconsistent knowledge bases.

Not every preference relation yields meaningful inference.
In particular, we want to ensure that minimal hitting sets ex-
ist and that the framework aligns with classical logic when



the knowledge base is consistent. To that end, we iden-
tify two critical properties for preference relations—well-
foundedness and compatibility with classical consistency—
and define proper relations as those that satisfy both. These
ensure that our inference is well-behaved in both consistent
and inconsistent cases.

Definition 11. Let < C 29 x 2% be a relation. We say that
S C 292 is well-founded by T if T € S and there isno T’ € §
such that T/ < T. We say that < is well-founded for S if S
is well-founded by some 7' € S. If < is well-founded for all
S C 29, then we say that < is well-founded.

In order to ensure that inference from inconsistent knowl-
edge bases behaves in accordance with classical logic, it is
essential to impose additional constraints on preference re-
lations. One such constraint is compatibility with classical
consistency, which requires that, in the absence of inconsis-
tency, the framework reproduce the standard semantics of
classical entailment. Intuitively, this means that when the
knowledge base is consistent, every model of the knowl-
edge base should be represented by a singleton minimal
hitting set. This condition provides a bridge between non-
monotonic reasoning in the presence of inconsistency and
classical reasoning when no inconsistency is present.

Definition 12. Let < C 2 x 2% be a relation. We say < is
compatible with classical consistency if for every consistent
knowledge base K the following holds:

e every H € 77, (K) is a singleton, and
* Unes. (k) H = Mod(K).

We define a preference relation < C 2 x 2 as proper if
it is well-founded and compatible with classical consistency.

Definition 13. A relation < C 29 x 22 is called proper if it
is well-founded and compatible with classical consistency.

The next proposition shows that for a well-founded rela-
tion, the set of minimal hitting sets is non-empty for every
knowledge base.

Proposition 1. Ler < C 22 % 22 pe q relation and let K be
a knowledge base. The following statements hold:

* If < is well-founded, then 7 (K) is non-empty.
* Each H € 7#,(K) is non-empty.

When the preference relation is proper, we can ensure that
our inference relations agree with classical entailment when-
ever the knowledge base is consistent. The next result con-
firms that both necessary skeptical and necessary credulous
inference collapse to classical inference in such cases.

Corollary 1. Let < C 22 % 22 be a relation, let K be a con-
sistent knowledge base, and let ¢ be a formula. If < is com-
patible with classical consistency, then K2 ¢ iff K" ¢ iff
K[ ¢.

For consistent knowledge bases, the possible inference re-
lations align with classical reasoning in a weaker manner.
More precisely, they ensure that any inferred formula re-
mains consistent with the original knowledge base.

Corollary 2. Let < C 22 % 22 pe a relation, K be a con-
sistent knowledge base, and ¢ a formula. If < is compat-
ible with classical consistency, then K2 ¢ iff K2 iff
KUu{o} ~£L.

Together, these results establish proper preference rela-
tions as a foundation for well-behaved inference. They guar-
antee the existence of minimal hitting sets and ensure that,
in the absence of inconsistency, the framework faithfully re-
produces classical reasoning.

In the following, we instantiate different minimality crite-
ria, highlighting their ability in prioritizing relevant interpre-
tations and hitting sets for effective inference.

4 Instantiation of Minimality in Inference
Relations

In the following subsections, we will instantiate the general
framework from Definition 10 with 4 different approaches
for < and analyse the properties of the resulting inference
relations.

4.1 Inference from Minimal Set Inclusion Hitting
Sets

As a starting point, we consider minimizing hitting sets with
respect to set inclusion.’

Definition 14. Define <, C 2% x 2 via H <, H' iff H C
H', forall H . H' C 2.

We illustrate in the following example how set-inclusion
minimality can lead to questionable inferences.

Example 3. The knowledge base K, = {p,q} will have the
minimal hitting sets 2%, (K2) = {{pq},{pd,pq}} Hence,
we obtain the inferences K AP —p, Ky PC—q.

Although intuitive and widely adopted, set-inclusion min-
imality does not preserve desirable logical behavior. In par-
ticular, it fails to ensure compatibility with classical infer-
ence, even when the knowledge base is consistent. Conse-
quently, the relation <, is not proper.

Proposition 2. The relation <, does not satisfy compatibil-
ity with classical consistency.

This example demonstrates the failure of compatibility
with classical consistency under set-inclusion minimality.
As a result, the guarantees provided by Corollaries 1, 2 no
longer apply. Notably, the inference mechanism permits the
derivation of formulas such as —p which, when added back
to the knowledge base, would reintroduce inconsistency. Be-
cause of this, we will not further consider inference relations
based on <.

4.2 Inference from Cardinality Minimal Hitting
Sets

Next, we consider cardinality-based minimality, where pref-

erence is given to hitting sets containing the smallest number

of interpretations. This approach aims to capture a form of

parsimony in model selection. From this point forward, all

3The subscript “se” stands for set inclusion.



minimality criteria we consider will be compatible with clas-
sical consistency.

Definition 15. Define <4 C 2 x 22 via H <4 H' iff |H| <
|H'|, for all H,H' C 29.

For convenience, we use .7%(K) as an abbreviation for
., (K). Similarly, we abbreviate the corresponding rela-
tions T TP and M as T RS L, and P&,
respectively.

To ensure that cardinality-based inference is well-defined
and logically aligned with classical reasoning, we verify
that this preference relation satisfies the conditions for be-
ing proper.

Proposition 3. The relation <y is proper.

This implies that all minimal hitting sets under cardinality
have the same size, which reinforces the regularity of the
selection criterion.

Observation 1. Let K be a consistent knowledge base. For
all H,H' € 74(K), it holds |H| = |H'|.

Although cardinality-based minimality respects classical
consistency, it does not control the internal diversity of in-
terpretations within a hitting set. As a result, the inferred
conclusions may still be counterintuitive or misleading, as
illustrated next.

Example 4. Consider the knowledge base K3 = {p,—p A
r,q}. Tt contains the following cardinality minimal hitting
sets:

Hy = {pqr, pqr},H> = {pqr, pgr}, Hz = {pqF, pqr},
Hy = {pqF, pgr},Hs = {pgr, pqr}, and He = {pgr, pqr}
H4(K3) = {Hy,Ha, H3,Hy, Hs, He }
Now consider the formulas pVr, -p,gAr, ~gand p Ar.
One can observe the following:

1. K3p’p Vr, since all interpretation in each minimal hit-
ting set in % (K3) satisfy pV r

2. K3~y —p, since in every minimal hitting set in % (K3)
there is an @ that models —p.

3. K35 g Ar, since both interpretations of H; model g Ar.

4. K3h g, since there exist an interpretation in a hitting
set that model —gq, like the first interpretation in Hs.

5. K3 f~3° —p, because there is some interpretation (like pgr
in Hd) that does not model —p

6. K3 J~4°q Ar, because there is some hitting set Hs where
all interpretations does not model g A r

7. K3 )(vgsﬂp because for every minimal hitting set there
will always be some interpretation that satisfies p since it
exists as formula in the knowledge base.

8. K3 J~5 p Ar since no interpretation satisfies p A r

Figure 1 summarizes the entailment of p3°, Vi, PR, RA°.

Note that the inference K|~} g is obtained. This out-
come is arguably problematic because g is explicitly con-
tained in the knowledge base, yet the cardinality inference
framework allows deriving its negation. Furthermore, the
formula g is not entailed under necessary skeptical inference,
despite being unrelated to the inconsistency.

Formula | K3y | Ky | Kaph | Kapoh
pVr v v v v
-p X v X v
gnAr X X v v
—q X X X v
NG X X X X

Figure 1: Entailment of ~}°, 3, zs, and }vgc for the knowledge
base K3 = {p,—p Ar,q} and the formulas from Example 4.

4.3 Inference from Minimal Conflicting Atoms
Hitting Sets

Cardinality-based minimality minimizes the number of in-
terpretations but not the differences between them. As a
result, interpretations within a minimal hitting set may dis-
agree on many atoms, which can lead to problematic infer-
ences. To mitigate this, we introduce a new minimality cri-
terion that penalizes such internal disagreement by minimiz-
ing the number of conflicting truth assignments across inter-
pretations.

Definition 16. Let H C Q be a set of interpretations. Define
the set of conflicting atoms CA(H) of H as

CA(H) = {a|Jo,®" € H such that ®(a) # o' (a)}

In other words a € CA(H) iff there are two interpretations
in A that differ on their truth values of a. Using CA(H ) leads
to a preference relation that ranks hitting sets by the set of
atoms on which interpretations disagree.

Definition 17. Define* <., C 22 x 22 via H <., H' iff
CA(H) C CA(H'), for any H,H' € 2%

To illustrate the difference between cardinality and
conflicting-atoms minimality, we revisit the earlier knowl-
edge base K3 from Example 4. This comparison highlights
how conflicting-atoms minimization avoids some of the un-
intuitive conclusions permitted by the cardinality criterion.

Example 5. In comparison to minimal cardinality hitting
sets, the variation between interpretations in hitting sets de-
creases drastically. The minimal conflicting atoms hitting
sets for K3 are:

Hea(K3) = {{pgr,pqr}}

and therefore —¢ is not entailed by any of the inference rela-
tions, while ¢ is inferred by all of them.

As with previous criteria, we check whether the
conflicting-atoms preference relation satisfies the require-
ments of being proper — namely, whether it guarantees min-
imal hitting sets and aligns with classical inference in the
consistent case.

Proposition 4. The relation <., is proper.

The property established above guarantees that for consis-
tent knowledge bases, minimal hitting sets under conflicting
atoms minimality criterion are singletons and therefore be-
have consistently with classical inference.

4The subscript “ca” stands for conflicting atoms.



4.4 Inference from Minimal Hamming Distance
Hitting sets

We now consider another way to measure variation among
interpretations in a hitting set, the Hamming distance (Also
known as Dalal distance). Unlike <.,, which considers the
set of atoms where interpretations differ, Hamming distance
quantifies the degree of such differences by summing pair-
wise discrepancies.

Definition 18. Define the Hamming distance d : Q x Q@ — N
as

d(0,0") =[{a € Atlo(a) # 0'(a)}|

for all w, 0" € Q(At). For a set X C Q we write

DX)= Y dono)
1,0 X

We extend the Hamming distance to sets of interpretations
by summing all pairwise distances. This aggregate measure
reflects the overall dissimilarity within a hitting set and un-
derpins a preference for sets with greater internal coherence.

Definition 19. Define® <, C 22 x 22 via H <, H' iff
D(H) < D(H'"), for any H,H' C 2.

This ordering selects hitting sets with minimal total pair-
wise disagreement across interpretations. Unlike <4, the
Hamming distance takes into account the degree of disagree-
ment, not just its presence. As the next example shows, the
two criteria are incomparable, i. e., neither strictly subsumes
the other.

Example 6. Let K = {pAgAr,p— gA—-r,~gA—-r}. Con-
sider the following hitting sets:

Hy = {pqr, pGr, pqr}
D(H;) =6 D(H,) =8
CA(H])Z{p,q,F} CA(Hz):{q,F}

Notice in Example 6 that H) € .5#;(K) and H| ¢ 5#4(K).
Hence, 5%;(K) ¢ 5#.,(K). Similarly for the other direction,
H, € 74(K) and H, ¢ .7;(K)

As with earlier criteria, we confirm that the Hamming dis-
tance ordering is proper.

Hy = {pqr, pgr}

Proposition 5. The relation < is proper.

To conclude, Hamming-distance minimality provides an-
other perspective on disagreements between interpretations
by quantifying the total number of differing atomic as-
signments. Like the cardinality and conflicting-atoms
approaches, it satisfies the basic properties of well-
foundedness and compatibility with classical consistency.
This ensures that the resulting inference relations are proper
and maintain classical behavior for consistent knowledge
bases, while enabling a refined form of inference under in-
consistency.

3The subscript “d” stands for Dalal.
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Figure 2: Relationship among NN N8 ILS., [N for an arbitrary
=<, given that < is well-founded. Arrow directions indicate the
antecedent to consequent relation.

5 Relationships Among Inference Relations

In this section, we analyze how the four hitting-based in-
ference relations—p", %, P, and M —relate to each
other and to existing approaches, including inference from
maximal consistent subsets and Priest’s 3-valued logic. Un-
derstanding these relationships helps position our frame-
work within the broader landscape of nonmonotonic reason-
ing and highlights the inferential strengths and limitations of
each mode.

5.1 Relationships Among Hitting Sets Inference
Relations

We begin by examining the relationships among the four in-
ference types within our framework. Specifically, we iden-
tify which inference relations are strictly stronger than oth-
ers and where no such containment holds. This comparative
analysis clarifies how each inference mode varies in strength
and independence.

We start with establishing general inclusion relationships
among the four inference relations, abstracting away from
any specific choice of ordering <.

Proposition 6. Let K be a knowledge base, and let < C
22 % 22 be a well-founded relation. The following relation-
ships among ", N5, B2, and P hold:
1. If KPS ¢, then KNS ¢
2. IfFKR" ¢, then K" ¢
3. IFKNY 9, then KR ¢
4. IFKP2 ¢, then K5 ¢
The next lemma captures the duality between necessary

and possible inference, showing how negation interrelates
the two modes.

Lemma 1. Let K be a knowledge base, ¢ a formula, and
< C22 %22 Then

* KpZoiff K P29
o KRO iff K 9.
We now present an example that illustrates how different

inference relations can yield distinct conclusions, emphasiz-
ing their incomparability.



Example 7. Let K = {pAgArAsAt,=(pVgVrVsVit)V
(=pAgAFrAsAL),=(pV gV rVsVE)V(pA—gArAsAt)}
be a knowledge base. It will have the following hitting sets:

Hy = {pqrst, pgrst}
H4(K) = {Hy }

H\ = {pqrst, pqrst, pgrst}
Ha(K) = #5(K) = {H\}

We say that two inference relations f~, and |~ are incom-
parable if there are K, K’ and ¢, ¢’ such that

K Ko K 9" K9

The following proposition shows that inference relations
considered in this paper, which are not covered by Propo-
sition 6 are incomparable. That is, for distinct minimality re-
lations, neither inference relation uniformly entails the other.

Proposition 7. For all I € {ns,nc,ps,pc}, and all (x,y) €
{(#,ca), (#,d),(d,ca)}, the relations p. and }wi are incom-
parable.

5.2 Relationship with Maximal Consistent
Subsets Inference

We now compare our framework to inference based on max-
imal consistent subsets (|~ and |~°), as introduced by
Rescher and Manor (Rescher and Manor 1970). In partic-
ular, we focus on how cardinality-minimal hitting sets re-
late to the maximally consistent subsets of a knowledge base.
The intuition is that every maximally consistent subset corre-
sponds to at least one interpretation in a cardinality-minimal
hitting set. This correspondence is made precise in the fol-
lowing result.

Proposition 8. Let K be a knowledge base. Then
VM eMCS(K):3H € #4(K): 3o cH: 0 =M

Thus, for each maximally consistent subset of the knowl-
edge base, some interpretation in a cardinality-minimal hit-
ting set satisfies it. This leads to the following theorem relat-
ing the respective inference notions.

Theorem 1. It holds:
NN
A S A

This result situates our inference framework between the
classical extremes. Necessary skeptical inference based on
cardinality is more selective than Rescher and Manor’s in-
evitable consequence, while possible credulous inference is
more permissive than their weak consequence.

5.3 Relationship with 3-valued Inference

In this section, we consider a variant of 3-valued inference
that selects models which minimize the use of the indetermi-
nate truth value (both), as showed in Definition 6. We then
examine how this semantics corresponds to inference in our
framework based on hitting sets that minimize conflicting
atoms.

To connect our framework with 3-valued reasoning, we
define a transformation from a hitting set of classical inter-
pretations to a single 3-valued interpretation. This construc-
tion captures the agreement across interpretations directly,
while encoding any disagreement as the value both.

Definition 20. Let K be a knowledge base and H € 57 (K) a
hitting set of K. The H-induced 3-valued interpretation Ly
is the 3-valued interpretation vy defined as

true  ifVo € H: o(a) = true
vy(a) =< false ifVweH: w(a)="false
both  otherwise

for all a € At.

By definition, any atom assigned both in the resulting 3-
valued interpretation corresponds exactly to an atom with
conflicting truth values across the hitting set.

Observation 2. For any knowledge base K, and an H-
induced 3-valued interpretation vy from some H € 77 (K):
it holds CA(H) = vy (both).

Different 3-valued interpretations may provide varying
levels of information, depending on how many atoms they
assign determinately (as true or false) versus ambiguously
(as both). To formalize this, we introduce an information
ordering that compares interpretations based on their deter-
minacy.

Definition 21. Let v, v’ be a 3-valued interpretation. De-
fine the information order C via v’ C v iff v'(true)™! C
v(true)~" and v'(false) ™' C v(false)™!

Note that classical (two-valued) interpretations are max-
imal elements in this ordering, since they assign a definite
truth value to every atom. Conversely, the interpretation
mapping every atom to both is the least informative element.

Proposition 9. Ler ¢ be a formula, and v, V' be 3-valued
interpretations. For every V' T v it holds that

1. If v(¢) =true, then V'(¢) € {true,both}
2. If (@) = both, then V'(¢) = both
3. If v(9) = false, then V'(¢) € {false,both}

The next result lifts the Proposition 9 from individual
formulas to entire knowledge bases, showing that every H-
induced 3-valued interpretation satisfies the original knowl-
edge base.

Proposition 10. Let K be a knowledge base. Then for all
He #(K), vg = K.

Conversely, to complete the correspondence, we show the
opposite direction of having a hitting set that can satisfy ev-
ery formula in knowledge base K given that there exists a
3-valued interpretation v =3 K. We define next we intro-
duce a construction that maps a 3-valued interpretation to
a set of two-valued interpretations. This mapping reflects
the idea that a 3-valued interpretation can be viewed as an
abstraction over multiple classical interpretations. Specifi-
cally, we define the notion of v-induced hitting sets, which
extract from a 3-valued interpretation those two-valued inter-
pretations that agree with it on all determinate (non-’both’)
assignments.



Definition 22. Let v be a 3-valued interpretation. Define
the v-induced hitting set Hy via

Hy={wcQ(At) |vC o}

3-valued induced hitting set Hy, corresponding to a 3-
valued interpretation v preserves all deterministic truth as-
signments while introducing variation only for atoms as-
signed both. Specifically, for every atom a where v(a) =
both, the hitting set must include at least two interpretations
), € H, such that @ (a) = true and @, (a) = false. As a
result, the following is observed:

Observation 3. For any knowledge base K, and an v-
induced hitting set Hy from some v |= K. It holds that

CA(H) = v;;' (both).

Note that the relation = is invariant under certain classi-
cal equivalences, in particular De Morgan’s law and distribu-
tivity rules.

Example 8. Given an interpretation v => =(p A gq). Apply-
ing De Morgan’s law to —(p A g) yields = pV —q. It is the
case U =2 =(pAgq) iff v = —pV—q.

Similarly, |=* is preserved under transformations such as
associativity and distributivity of V and A, as well as the
rewriting of implications into disjunctions. This invariance
justifies assuming, without loss of generality, that all formu-
las are given in conjunctive normal form (CNF).

To ensure that the subsequent results apply uniformly, we
restrict attention to knowledge bases in CNF. The follow-
ing proposition shows that this restriction does not affect the
generality of our results.

Proposition 11. Ler v be a 3-valued interpretation and let
¢ be a formula. It holds that v |=> ¢ iff v |=> ¢, where ¢’
is an equivalent conjunctive normal form of ¢.

As a first step toward establishing the equivalence be-
tween conflicting-atoms-based inference and 3-valued se-
mantics, we consider the case of disjunctive formulas. The
following lemma shows that if a 3-valued interpretation
satisfies such a formula, then there exists a correspond-
ing 2-valued interpretation—within the v-induced hitting
set—that also satisfies the formula. This forms the basis for
lifting satisfaction from 3-valued models to their classical
refinements.

Lemma 2. Let ¢ be a clause and v a 3-valued interpretation
with v |=> @. Then there is ® € Hy with @ |= ¢.

We now extend the previous result to full knowledge
bases. The proposition shows that every 3-valued model of
a knowledge base induces a hitting set of classical interpre-
tations that together satisfy all formulas in the base.

Proposition 12. Let K be a knowledge base, where K =
{C1,...,C,} and Cy,...,C, are clauses, and v a 3-valued
interpretation for K. If v |=3 K then Hy, € 7 (K).

We now extend the previous result to full knowledge
bases. The proposition shows that every 3-valued model of
a knowledge base induces a hitting set of classical interpre-
tations that together satisfy all formulas in the base.

Proposition 13. Let K be a knowledge base, where
K = {Ci,...,C,} and Cy,...,C, are clauses, and v €
MinMod® (K), then Hy € #4(K).

We now establish the converse: every minimal hitting
set under the conflicting-atoms preference induces a mini-
mal 3-valued model. This bidirectional correspondence fully
aligns the two approaches.

Proposition 14. Let K be a knowledge base where K =
{C1,...,Cy} and Cy,...,C, are clauses. For each H €
Hq(K), then vy € MinMod® (K).

In the following, we finally complete the equivalence be-
tween minimal conflicting-atoms hitting sets coincides with
inference in Priest’s 3-valued logic, provided the knowledge
base is in conjunctive normal form. This result connects
our semantic hitting set-based approach to a well-established
non-classical logic for reasoning under inconsistency.

Theorem 2. Let K be a knowledge base such that K =
{Cy,...,Cy} and Cy,...,C, are clauses. <I>Nq) iff Oplod

This correspondence demonstrates that the conflicting-
atoms minimality criterion not only aligns with intuitive no-
tions of disagreement in interpretations but also captures the
semantics of an established many-valued logic. By bridg-
ing our hitting set-based framework with Priest’s 3-valued
logic, we provide a principled foundation for reasoning un-
der inconsistency that combines the clarity of classical mod-
els with the flexibility of non-classical valuation.

6 KLM Properties for Inference with
Minimal Conflicting Atoms

In this section, we examine how our hitting set-based infer-
ence relations behave when knowledge bases are extended.
This is crucial for assessing whether the framework satisfies
desirable nonmonotonic reasoning principles, such as those
captured by the KLM postulates. We begin by analyzing
how minimal hitting sets evolve when a consistent formula
is added to a knowledge base.

Proposition 15. Let K be a knowledge base, let ¢ be a for-
mula, and let < C 22 x 22 be a relation. If there is a hitting
set H € H,(K) with @ € H such that ® |= ¢. Then, there is
noH' € 7 (KU{¢}) with H'<H, and H € 7,(KU{¢}).

To capture this behavior more generally, we introduce a
property of preference relations called regularity. Intuitively,
regularity ensures that if a formula is already satisfied within
a minimal hitting set, then adding that formula to the knowl-
edge base should not generate new, strictly preferred hitting
sets.

Definition 23. Given a knowledge base K, and a consistent
formula ¢. A relation < C 22 x 22 is called regular if there
exists some H € 77, (K) with @ € H such that ® |= ¢, then
H(KU{¢}) C I (K) holds.

Regularity requires a form of structural persistence in the
preference relation: if a formula y holds in some mini-
mal hitting set of a knowledge base K, then this hitting set
must remain among the minimal ones after the formula is
added. In other words, the existence of such a hitting set



H € J2.(K) ensures that all hitting sets 7% (K U {y}) must
satisfy the same preference constraints.

We now verify that the main preference relations consid-
ered in this paper—cardinality, conflicting atoms, and Ham-
ming distance—all satisfy the regularity condition.

Proposition 16. The relations <y, <4, and <4 are regular.

We recall that regularity ensures a form of persistence: if
a formula holds in some minimal hitting set of a knowledge
base, then the inclusion of that formula in the knowledge
base cannot introduce new strictly preferred hitting sets. The
following propositions formalize this behavior.

Proposition 17. Let K be a knowledge base, let ¢ be a con-
sistent formula, and let < C 2% x 22 be a regular relation.
If a minimal hitting set H € 5 (K) contains a model of ¢,
then 7, (KU{¢}) C A (K).

Next, we define the notion of hitting set equivalence,
which characterizes when two knowledge bases yield the
same collection of minimal hitting sets under a given pref-
erence relation.

Definition 24. Let K, K’ be knowledge bases and < C 28 %
2@ We say the knowledge bases K and K’ are hitting set
equivalent, or K =2 K’ if 7% (K) = 7% (K')

With the structural properties of preference relations
in place, we now assess how our inference framework
aligns with well-known nonmonotonic reasoning principles
— mainly System P, as introduced by Kraus, Lehmann, and
Magidor (Kraus, Lehmann, and Magidor 1990). The system
encompasses several desirable principles for nonmonotonic
reasoning, which we briefly recall below.

The following properties are mostly those of System P,
but note that knowledge bases may not contain inconsistent
formulas (yet the knowledge bases may be inconsistent at
all):

{9} r9. (Ref)
If ¢ = w and K~¢, then K. (RW)
If K =" K’ and K|~ ¢, then K'~. (LLE)
If w, KU{y}|¢ and K|~ y, then K|~¢. (Cut)
If y, Ky and K¢, then KU {y}~¢. (CM)
If g~y and yivy. then {§ V y}~x. (Or)
If K¢ and K J~y, then KU {y}~¢. (RM)

In the area of non-monotonic logic, System P is known as
the conservative core of non-monotonic reasoning, as it cap-
tures preferential entailment (Kraus, Lehmann, and Magidor
1990); respectively, all properties of System P, except for the
property Or, are known due to Gabbay as basic properties of
non-monotonic inference relations (Gabbay 1984).

The following theorem summarizes which of the KLM
postulates are satisfied by our inference relations, assuming
the underlying preference relation is regular and proper. The
result shows that the framework adheres to nearly all key
principles of nonmonotonic reasoning. In particular, neces-
sary inference relations satisfy all properties of System P,
including cautious monotony, while possible inference rela-
tions fail this one condition, reflecting their more permissive
nature.
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Figure 3: Overview of the satisfaction (v'), respectively violation
(X), of inference properties by ", "¢, 2, and . For any
regular proper relation < C 29 % 2%

Theorem 3. Let < C 22 x 2% be a proper regular relation.

o MUY, N2 and P satisfy Ref, RW, LLE, Cut, Or,
and RM.

ns nc .
. ~ satisfy CM

=<

o (M2 S violate CM

This analysis confirms that our framework supports ro-
bust nonmonotonic reasoning when instantiated with regular
proper preference relations. The necessary inference modes,
in particular, satisfy all of the core KLM postulates, includ-
ing cautious monotony, thereby aligning with the founda-
tional principles of preferential entailment. While the pos-
sible inference modes trade some logical discipline for flex-
ibility, their behavior remains well-characterized within the
framework. Overall, these results underscore the expressive
power and formal soundness of hitting set-based inference
under appropriately constrained preference relations.

7 Concluding Remarks

We have introduced a general framework for inconsistency-
tolerant reasoning grounded in the notion of hitting sets
of classical interpretations. By defining inference relations
based on minimal hitting sets under a range of preference cri-
teria, our approach generalizes and extends classical MCS-
based reasoning to a semantic, model-oriented setting. We
characterized four distinct inference modes and systemat-
ically analyzed their logical properties. Our comparisons
with maximal consistent subset inference, Priest’s 3-valued
logic, and the KLM postulates demonstrate both the ex-
pressive flexibility and the formal rigor of the framework.
These results provide a foundation for principled reason-
ing in inconsistent environments. Some related work on
3-valued hitting set is of Coste-Marquis and Marquis 2008,
where three-valued models are utilized to derive consistent
two-valued models by systematically forgetting inconsistent
information. Future work should examine the computa-
tional complexity of these inference relations, explore their
deeper connections to other semantic nonmonotonic for-
malisms, and investigate applications in belief revision (Al-
chourron, Girdenfors, and Makinson 1985), formal argu-
mentation (Gabbay, Giacomin, and Simari 2024; Atkinson
et al. 2017), and logics that integrate both syntactic and se-
mantic criteria for minimality.
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