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Abstract—We present reducto, a SAT-based solver for rea-
soning problems in abstract argumentation. The solver is mainly
built on standard SAT-encodings with some improvements. In
particular, for skeptical reasoning wrt. preferred semantics it
contributes a non-standard approach. reducto refrains from
iterative maximisation and instead utilises a reduct-based char-
acterisation of preferred semantics to efficiently find counterex-
amples for the skeptical acceptance of an argument.

1. BACKGROUND

An (abstract) argumentation framework (AF) is a tuple F' =
(A, R) where A is a finite set of arguments and R is a relation
R C A x A [1]. For two arguments a, b € A, the relation aRb
means that a attacks b. For a set S C A we define S} = {a €
A|3beS:bRa}. We say that a set S C A is conflict-free
iff for all a,b € S we do not have aRb. A set S defends an
argument b € A iff for all a with aRb there is ¢ € S with
cRa. Furthermore, a set S is called admissible (ad) iff it is
conflict-free and S defends all a € S.

We define different semantics by imposing constrains on
admissible sets [2]. In particular, an admissible set S C A is
called a

o complete (CO) extension iff for every a € A, if S defends

athena €S,

o preferred (PR) extension iff there exists no admissible S’

with S C ',

o stable (ST) extension iff S US| = A,

o grounded (GR) extension iff S is complete and there is

no complete S’ with S" C S.

For a given argumentation framework F' = (A, R) and a
semantics o € {CO, PR, ST}, we denote with o(F') the set
of o-extensions of F'. We consider the following reasoning
problems for the above semantics [3]:

DC—o Given an argument a € A, decide whether there
exists some o-extension E € o(F) with a € E,
DS—o Given an argument a € A, decide whether a
is contained in all o-extensions of F',
SE—o¢ Return a o-extension of F'.

II. SYSTEM OVERVIEW

The reducto solver supports the following problems:
DC-CO,DC-ST,DS-PR, DS-ST, SE-PR,SE-ST. In gen-
eral, reducto uses the classical SAT-reduction technique
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to solve these problems [4]-[6]. Per default, reducto uses
CADICAL 2.1.3 [7], but it can be used with any SAT-solver
via the IPASIR interface. The source code is open source and
available on Github'.

For the problems DC-CO,DC-ST,DS-ST and SE-ST
the solver uses mostly standard SAT-encodings and one-
shot queries to the SAT-solver. For DS-PR reducto uses
novel approaches built on a reduct-based characterisation of
preferred semantics which we will outline in the following.

III. REDUCT-BASED APPROACH TO SKEPTICAL
PREFERRED REASONING

The central notion behind our approach is the S-reduct [8].

Definition 1. Let F' = (A, R) be an AF and S C A. We define
the S-reduct of F as the AF F'¥ = (A', R') with

A =A\(SUSf), R =Rn(4A xA4).

Essentially, the reduct allows us to remove the part of the
AF F that is already “solved” by S. Based on this concept, the
notion of vacuous reduct semantics has been introduced [9].

Definition 2. Let o, 7 be argumentation semantics and F =
(A,R) is an AF. A set S C A is a o"-extension iff S is a
o-extension and it holds that 7(F°) C {0}.

Intuitively, a set S'is a 07 extension of F' iff it is o-extension
of F and in the reduct F'° there exists no non-empty -
extension. We denote with o7 (F') the set of all o”-extensions
of F. It has been shown, that the preferred semantics can be
characterised as a vacuous reduct semantics [9], [10].

Theorem 1. For any AF F = (A, R). It holds that
PR(F) = ad®™(F) = CO°°(F).

That means, in order to verify whether a complete extension
S is preferred, we construct the reduct F'° and verify that it
has no non-empty complete set. Related to that is also the
concept of Modularization of argumentation semantics [11]
which is satisfied by both complete and preferred semantics.

Theorem 2. Let F' = (A, R) be an AF and o € {CO, PR}.
If S€o(F)and S' € o(F¥), then SU S’ € o(F).
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In our algorithm, we employ the above properties to sim-
plify the argumentation framework during the computation and
then, if necessary, to combine the partial results in the end to
obtain the required witness for non-acceptance.

A. Algorithm

The algorithm employed by reducto for the DS-PR
problem is shown in Algorithm 1. Before starting the main
routine, we perform some pre-processing on the AF. That
includes restricting the AF to the arguments “relevant” to
the query a, similar to how it was outlined in [12]. We also
explicitly compute the grounded extension of the AF (line 1),
which can be done in polynomial time [3], and remove it from
the AF (line 6).

We use a standard SAT-encoding for complete semantics,
denoted as WSO, whose models correspond to complete exten-
sions [13], [14]. Furthermore, we add a clause to ensure that
any model is non-empty, defined as Vi = \/ ., in,. We
write WITNESS(U) for a call to the SAT-solver that returns
the set {a € A | w(in,) = TRUE}, where w is a model of ¥,
if U is satisfiable, otherwise it returns FALSE.

Essentially, our algorithm iterates over the non-empty com-
plete extensions of F' that do not include the query. If such
an extension S attacks the query it represents a witness for
its non-acceptance. Otherwise, we consider the reduct /¥ and
verify with one additional SAT-call whether there is a non-
empty complete extension in F'°. In case there is none, we
have found a witness for non-acceptance, otherwise we add a
complement clause to the encoding and ask the SAT-solver for
another complete extension of F'. This complement clause is
defined as Cp(S) = V¢ 4\ s ina for some set S. This clause,
for each found complete extension S, ensures not only that the
SaT-solver does not find S again, but also that any S’ with
S’ C S is no valid witness in any following SAT-call.

In most cases of non-acceptance, reducto will return an
admissible set S that attacks the query argument as a witness.
Note that this implies immediately that there exists a preferred
extension S’ such that S C S’ with a € S;. Thus such an
admissible set is sufficient as a witness for the non-acceptance
of a. In case such a set does not exist the solver simply returns
a preferred extension S such that a ¢ S.
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