
reducto – A Reduct-based Solver for Skeptical
Preferred Reasoning

Lars Bengel
Artificial Intelligence Group

University of Hagen
Germany

lars.bengel@fernuni-hagen.de

Julian Sander
Artificial Intelligence Group

University of Hagen
Germany

julian.sander@fernuni-hagen.de

Matthias Thimm
Artificial Intelligence Group

University of Hagen
Germany

matthias.thimm@fernuni-hagen.de

Abstract—We present reducto, a SAT-based solver for rea-
soning problems in abstract argumentation. The solver is mainly
built on standard SAT-encodings with some improvements. In
particular, for skeptical reasoning wrt. preferred semantics it
contributes a non-standard approach. reducto refrains from
iterative maximisation and instead utilises a reduct-based char-
acterisation of preferred semantics to efficiently find counterex-
amples for the skeptical acceptance of an argument.

I. BACKGROUND

An (abstract) argumentation framework (AF) is a tuple F =
(A,R) where A is a finite set of arguments and R is a relation
R ⊆ A×A [1]. For two arguments a, b ∈ A, the relation aRb
means that a attacks b. For a set S ⊆ A we define S+

F = {a ∈
A | ∃b ∈ S : bRa}. We say that a set S ⊆ A is conflict-free
iff for all a, b ∈ S we do not have aRb. A set S defends an
argument b ∈ A iff for all a with aRb there is c ∈ S with
cRa. Furthermore, a set S is called admissible (ad) iff it is
conflict-free and S defends all a ∈ S.

We define different semantics by imposing constrains on
admissible sets [2]. In particular, an admissible set S ⊆ A is
called a

• complete (CO) extension iff for every a ∈ A, if S defends
a then a ∈ S,

• preferred (PR) extension iff there exists no admissible S′

with S ⊊ S′,
• stable (ST) extension iff S ∪ S+

F = A,
• grounded (GR) extension iff S is complete and there is

no complete S′ with S′ ⊊ S.
For a given argumentation framework F = (A,R) and a

semantics σ ∈ {CO,PR,ST}, we denote with σ(F ) the set
of σ-extensions of F . We consider the following reasoning
problems for the above semantics [3]:

DC−σ Given an argument a ∈ A, decide whether there
exists some σ-extension E ∈ σ(F ) with a ∈ E,

DS−σ Given an argument a ∈ A, decide whether a
is contained in all σ-extensions of F ,

SE−σ Return a σ-extension of F .

II. SYSTEM OVERVIEW

The reducto solver supports the following problems:
DC-CO,DC-ST,DS-PR,DS-ST,SE-PR,SE-ST. In gen-
eral, reducto uses the classical SAT-reduction technique

to solve these problems [4]–[6]. Per default, reducto uses
CADICAL 2.1.3 [7], but it can be used with any SAT-solver
via the IPASIR interface. The source code is open source and
available on Github1.

For the problems DC-CO,DC-ST,DS-ST and SE-ST
the solver uses mostly standard SAT-encodings and one-
shot queries to the SAT-solver. For DS-PR reducto uses
novel approaches built on a reduct-based characterisation of
preferred semantics which we will outline in the following.

III. REDUCT-BASED APPROACH TO SKEPTICAL
PREFERRED REASONING

The central notion behind our approach is the S-reduct [8].

Definition 1. Let F = (A,R) be an AF and S ⊆ A. We define
the S-reduct of F as the AF FS = (A′, R′) with

A′ = A \ (S ∪ S+
F ), R′ = R ∩ (A′ ×A′).

Essentially, the reduct allows us to remove the part of the
AF F that is already “solved” by S. Based on this concept, the
notion of vacuous reduct semantics has been introduced [9].

Definition 2. Let σ, τ be argumentation semantics and F =
(A,R) is an AF. A set S ⊆ A is a στ -extension iff S is a
σ-extension and it holds that τ(FS) ⊆ {∅}.

Intuitively, a set S is a στ extension of F iff it is σ-extension
of F and in the reduct FS there exists no non-empty τ -
extension. We denote with στ (F ) the set of all στ -extensions
of F . It has been shown, that the preferred semantics can be
characterised as a vacuous reduct semantics [9], [10].

Theorem 1. For any AF F = (A,R). It holds that

PR(F ) = adad(F ) = COCO(F ).

That means, in order to verify whether a complete extension
S is preferred, we construct the reduct FS and verify that it
has no non-empty complete set. Related to that is also the
concept of Modularization of argumentation semantics [11]
which is satisfied by both complete and preferred semantics.

Theorem 2. Let F = (A,R) be an AF and σ ∈ {CO,PR}.
If S ∈ σ(F ) and S′ ∈ σ(FS), then S ∪ S′ ∈ σ(F ).

1https://github.com/aig-hagen/reducto

https://github.com/aig-hagen/reducto


In our algorithm, we employ the above properties to sim-
plify the argumentation framework during the computation and
then, if necessary, to combine the partial results in the end to
obtain the required witness for non-acceptance.

A. Algorithm
The algorithm employed by reducto for the DS-PR

problem is shown in Algorithm 1. Before starting the main
routine, we perform some pre-processing on the AF. That
includes restricting the AF to the arguments “relevant” to
the query a, similar to how it was outlined in [12]. We also
explicitly compute the grounded extension of the AF (line 1),
which can be done in polynomial time [3], and remove it from
the AF (line 6).

We use a standard SAT-encoding for complete semantics,
denoted as ΨCO

F , whose models correspond to complete exten-
sions [13], [14]. Furthermore, we add a clause to ensure that
any model is non-empty, defined as Ψne

F =
∨

a∈A ina. We
write WITNESS(Ψ) for a call to the SAT-solver that returns
the set {a ∈ A | ω(ina) = TRUE}, where ω is a model of Ψ,
if Ψ is satisfiable, otherwise it returns FALSE.

Essentially, our algorithm iterates over the non-empty com-
plete extensions of F that do not include the query. If such
an extension S attacks the query it represents a witness for
its non-acceptance. Otherwise, we consider the reduct FS and
verify with one additional SAT-call whether there is a non-
empty complete extension in FS . In case there is none, we
have found a witness for non-acceptance, otherwise we add a
complement clause to the encoding and ask the SAT-solver for
another complete extension of F . This complement clause is
defined as CF (S) =

∨
a∈A\S ina for some set S. This clause,

for each found complete extension S, ensures not only that the
SAT-solver does not find S again, but also that any S′ with
S′ ⊆ S is no valid witness in any following SAT-call.

In most cases of non-acceptance, reducto will return an
admissible set S that attacks the query argument as a witness.
Note that this implies immediately that there exists a preferred
extension S′ such that S ⊆ S′ with a ∈ S+

F . Thus such an
admissible set is sufficient as a witness for the non-acceptance
of a. In case such a set does not exist the solver simply returns
a preferred extension S such that a /∈ S.

REFERENCES

[1] P. M. Dung, “On the acceptability of arguments and its fundamental role
in nonmonotonic reasoning, logic programming and n-person games,”
Artif. Intell., vol. 77, no. 2, pp. 321–358, 1995.

[2] P. Baroni, D. Gabbay, M. Giacomin, and L. van der Torre, Eds.,
Handbook of Formal Argumentation. College Publications, 2018.

[3] W. Dvorák and P. E. Dunne, “Computational problems in formal argu-
mentation and their complexity,” Handbook of Formal Argumentation,
vol. 1, 2017.

[4] G. Charwat, W. Dvorák, S. A. Gaggl, J. P. Wallner, and S. Woltran,
“Methods for solving reasoning problems in abstract argumentation - A
survey,” Artif. Intell., vol. 220, pp. 28–63, 2015.

[5] F. Cerutti, S. A. Gaggl, M. Thimm, and J. P. Wallner, “Foundations
of implementations for formal argumentation,” Handbook of Formal
Argumentation, vol. 1, 2017.

[6] A. Niskanen and M. Järvisalo, “µ-toksia: An efficient abstract argumen-
tation reasoner,” in Proceedings of the 17th International Conference
on Principles of Knowledge Representation and Reasoning, KR 2020,
D. Calvanese, E. Erdem, and M. Thielscher, Eds., 2020, pp. 800–804.

Algorithm 1 Algorithm for DS-PR.
Input: F = (A,R), a ∈ A
Output: S ⊆ A, otherwise YES
1: SGR ← GROUNDED(F )
2: if a ∈ SGR then
3: return YES

4: if a ∈ S+
GR,F then

5: return SGR

6: F ← FSGR

7: Ψ← ΨCO
F ∧Ψne

F

8: i← 0
9: while TRUE do

10: S ← WITNESS(Ψ ∧ ¬ina)
11: if S = FALSE then
12: if i++ = 0 then
13: if WITNESS(Ψ ∧ ina) then
14: return YES
15: else
16: return SGR

17: return YES

18: if a ∈ S+
F then

19: return SGR ∪ S

20: S′ ← WITNESS(ΨCO
FS ∧Ψne

FS )
21: if S′ = FALSE then
22: return SGR ∪ S

23: if a ∈ S′+
F then

24: return SGR ∪ S ∪ S′

25: if a ∈ S′ then
26: Ψ← Ψ ∧ CF (S ∪ S′)
27: else
28: Ψ← Ψ ∧ CF (S)

[7] A. Biere, T. Faller, K. Fazekas, M. Fleury, N. Froleyks, and F. Pollitt,
“Cadical 2.0,” in Computer Aided Verification - 36th International Con-
ference, CAV 2024, ser. Lecture Notes in Computer Science, A. Gurfinkel
and V. Ganesh, Eds., vol. 14681. Springer, 2024, pp. 133–152.

[8] R. Baumann, G. Brewka, and M. Ulbricht, “Revisiting the foundations
of abstract argumentation - semantics based on weak admissibility and
weak defense,” in The Thirty-Fourth AAAI Conference on Artificial
Intelligence, AAAI 2020. AAAI Press, 2020, pp. 2742–2749.

[9] M. Thimm, “On undisputed sets in abstract argumentation,” in Thirty-
Seventh AAAI Conference on Artificial Intelligence, AAAI 2023,
B. Williams, Y. Chen, and J. Neville, Eds. AAAI Press, 2023, pp.
6550–6557.

[10] L. Blümel and M. Thimm, “Revisiting vacuous reduct semantics for
abstract argumentation,” in ECAI 2024 - 27th European Conference on
Artificial Intelligence, 2024. IOS Press, 2024, pp. 3517–3524.

[11] R. Baumann, G. Brewka, and M. Ulbricht, “Shedding new light on
the foundations of abstract argumentation: Modularization and weak
admissibility,” Artif. Intell., vol. 310, p. 103742, 2022.

[12] B. Liao and H. Huang, “Partial semantics of argumentation: basic
properties and empirical,” J. Log. Comput., vol. 23, no. 3, pp. 541–562,
2013.

[13] P. Besnard and S. Doutre, “Checking the acceptability of a set of argu-
ments,” in 10th International Workshop on Non-Monotonic Reasoning
(NMR 2004), J. P. Delgrande and T. Schaub, Eds., 2004, pp. 59–64.

[14] F. Cerutti, M. Giacomin, and M. Vallati, “How we designed winning
algorithms for abstract argumentation and which insight we attained,”
Artif. Intell., vol. 276, pp. 1–40, 2019.


	Background
	System Overview
	Reduct-based Approach to Skeptical Preferred Reasoning
	Algorithm

	References

