reducto — A Reduct-based Solver for Skeptical
Preferred Reasoning

Lars Bengel
Artificial Intelligence Group
University of Hagen
Germany
lars.bengel @ fernuni-hagen.de

Abstract—We present reducto, a SAT-based solver for rea-
soning problems in abstract argumentation. The solver is mainly
built on standard SAT-encodings with some improvements. In
particular, for skeptical reasoning wrt. preferred semantics it
contributes a non-standard approach. reducto refrains from
iterative maximisation and instead utilises a reduct-based char-
acterisation of preferred semantics to efficiently find counterex-
amples for the skeptical acceptance of an argument.

1. BACKGROUND

An (abstract) argumentation framework (AF) is a tuple F' =
(A, R) where A is a finite set of arguments and R is a relation
R C A x A [1]. For two arguments a, b € A, the relation aRb
means that a attacks b. For a set S C A we define S} = {a €
A|3beS:bRa}. We say that a set S C A is conflict-free
iff for all a,b € S we do not have aRb. A set S defends an
argument b € A iff for all a with aRb there is ¢ € S with
cRa. Furthermore, a set S is called admissible (ad) iff it is
conflict-free and S defends all a € S.

We define different semantics by imposing constrains on
admissible sets [2]. In particular, an admissible set S C A is
called a

o complete (CO) extension iff for every a € A, if S defends

athena €S,

o preferred (PR) extension iff there exists no admissible S’

with S C ',

o stable (ST) extension iff S US| = A,

o grounded (GR) extension iff S is complete and there is

no complete S’ with S" C S.

For a given argumentation framework F' = (A, R) and a
semantics o € {CO, PR, ST}, we denote with o(F') the set
of o-extensions of F'. We consider the following reasoning
problems for the above semantics [3]:

DC—o Given an argument a € A, decide whether there
exists some o-extension E € o(F) with a € E,
DS—o Given an argument a € A, decide whether a
is contained in all o-extensions of F',
SE—o¢ Return a o-extension of F'.

II. SYSTEM OVERVIEW

The reducto solver supports the following problems:
DC-CO,DC-ST,DS-PR, DS-ST, SE-PR,SE-ST. In gen-
eral, reducto uses the classical SAT-reduction technique

Julian Sander
Artificial Intelligence Group
University of Hagen
Germany
julian.sander @fernuni-hagen.de

Matthias Thimm
Artificial Intelligence Group
University of Hagen
Germany
matthias.thimm @fernuni-hagen.de

to solve these problems [4]-[6]. Per default, reducto uses
CADICAL 2.1.3 [7], but it can be used with any SAT-solver
via the IPASIR interface. The source code is open source and
available on Github'.

For the problems DC-CO,DC-ST,DS-ST and SE-ST
the solver uses mostly standard SAT-encodings and one-
shot queries to the SAT-solver. For DS-PR reducto uses
novel approaches built on a reduct-based characterisation of
preferred semantics which we will outline in the following.

III. REDUCT-BASED APPROACH TO SKEPTICAL
PREFERRED REASONING

The central notion behind our approach is the S-reduct [8].

Definition 1. Let F' = (A, R) be an AF and S C A. We define
the S-reduct of F as the AF F'¥ = (A', R') with

A =A\(SUSf), R =Rn(4A xA4).

Essentially, the reduct allows us to remove the part of the
AF F that is already “solved” by S. Based on this concept, the
notion of vacuous reduct semantics has been introduced [9].

Definition 2. Let o, 7 be argumentation semantics and F =
(A,R) is an AF. A set S C A is a o"-extension iff S is a
o-extension and it holds that 7(F°) C {0}.

Intuitively, a set S'is a 07 extension of F' iff it is o-extension
of F and in the reduct F'° there exists no non-empty -
extension. We denote with o7 (F') the set of all o”-extensions
of F. It has been shown, that the preferred semantics can be
characterised as a vacuous reduct semantics [9], [10].

Theorem 1. For any AF F = (A, R). It holds that
PR(F) = ad®™(F) = CO°°(F).

That means, in order to verify whether a complete extension
S is preferred, we construct the reduct F'° and verify that it
has no non-empty complete set. Related to that is also the
concept of Modularization of argumentation semantics [11]
which is satisfied by both complete and preferred semantics.

Theorem 2. Let F' = (A, R) be an AF and o € {CO, PR}.
If S€o(F)and S' € o(F¥), then SU S’ € o(F).

'https://github.com/aig-hagen/reducto

https://github.com/aig-hagen/reducto

In our algorithm, we employ the above properties to sim-
plify the argumentation framework during the computation and
then, if necessary, to combine the partial results in the end to
obtain the required witness for non-acceptance.

A. Algorithm

The algorithm employed by reducto for the DS-PR
problem is shown in Algorithm 1. Before starting the main
routine, we perform some pre-processing on the AF. That
includes restricting the AF to the arguments “relevant” to
the query a, similar to how it was outlined in [12]. We also
explicitly compute the grounded extension of the AF (line 1),
which can be done in polynomial time [3], and remove it from
the AF (line 6).

We use a standard SAT-encoding for complete semantics,
denoted as WSO, whose models correspond to complete exten-
sions [13], [14]. Furthermore, we add a clause to ensure that
any model is non-empty, defined as Vi = \/ ., in,. We
write WITNESS(U) for a call to the SAT-solver that returns
the set {a € A | w(in,) = TRUE}, where w is a model of ¥,
if U is satisfiable, otherwise it returns FALSE.

Essentially, our algorithm iterates over the non-empty com-
plete extensions of F' that do not include the query. If such
an extension S attacks the query it represents a witness for
its non-acceptance. Otherwise, we consider the reduct /¥ and
verify with one additional SAT-call whether there is a non-
empty complete extension in F'°. In case there is none, we
have found a witness for non-acceptance, otherwise we add a
complement clause to the encoding and ask the SAT-solver for
another complete extension of F'. This complement clause is
defined as Cp(S) = V¢ 4\ s ina for some set S. This clause,
for each found complete extension S, ensures not only that the
SaT-solver does not find S again, but also that any S’ with
S’ C S is no valid witness in any following SAT-call.

In most cases of non-acceptance, reducto will return an
admissible set S that attacks the query argument as a witness.
Note that this implies immediately that there exists a preferred
extension S’ such that S C S’ with a € S;. Thus such an
admissible set is sufficient as a witness for the non-acceptance
of a. In case such a set does not exist the solver simply returns
a preferred extension S such that a ¢ S.

REFERENCES

[1] P. M. Dung, “On the acceptability of arguments and its fundamental role
in nonmonotonic reasoning, logic programming and n-person games,”
Artif. Intell., vol. 77, no. 2, pp. 321-358, 1995.

[2] P. Baroni, D. Gabbay, M. Giacomin, and L. van der Torre, Eds.,
Handbook of Formal Argumentation. College Publications, 2018.

[3] W. Dvorédk and P. E. Dunne, “Computational problems in formal argu-
mentation and their complexity,” Handbook of Formal Argumentation,
vol. 1, 2017.

[4] G. Charwat, W. Dvordk, S. A. Gaggl, J. P. Wallner, and S. Woltran,
“Methods for solving reasoning problems in abstract argumentation - A
survey,” Artif. Intell., vol. 220, pp. 28-63, 2015.

[5] F. Cerutti, S. A. Gaggl, M. Thimm, and J. P. Wallner, “Foundations
of implementations for formal argumentation,” Handbook of Formal
Argumentation, vol. 1, 2017.

[6] A. Niskanen and M. Jarvisalo, “p-toksia: An efficient abstract argumen-
tation reasoner,” in Proceedings of the 17th International Conference
on Principles of Knowledge Representation and Reasoning, KR 2020,
D. Calvanese, E. Erdem, and M. Thielscher, Eds., 2020, pp. 800-804.

Algorithm 1 Algorithm for DS-PR.
Input: F=(A,R),ac A
utput: S C A, otherwise YES
: Sgr + GROUNDED(F)
if a € Sgr then
return YES
if a € SgR’F then
return Sgg
F ¢+ [
U WO A e
1+ 0
9: while TRUE do
10: S < WITNESS(¥ A —in,)

W N =

AR A

11: if S = FALSE then

12: if i++ = 0 then

13: if WITNESS(U A in,) then
14: return YES

15: else

16: return Sgr

17: return YES

18: if a € S} then

19: return Sgr U S

20: 5"+ WITNESS (PSR A Ure)
21: if S’ = FALSE then

22: return Sgr U S

23: if a € S;f then

24: return Sgr U SU S’

25: if a € S’ then

26: U+ UACR(SUS)

27: else

28: U UA CF(S)

[7]1 A. Biere, T. Faller, K. Fazekas, M. Fleury, N. Froleyks, and F. Pollitt,
“Cadical 2.0,” in Computer Aided Verification - 36th International Con-
ference, CAV 2024, ser. Lecture Notes in Computer Science, A. Gurfinkel
and V. Ganesh, Eds., vol. 14681. Springer, 2024, pp. 133-152.

[8] R. Baumann, G. Brewka, and M. Ulbricht, “Revisiting the foundations
of abstract argumentation - semantics based on weak admissibility and
weak defense,” in The Thirty-Fourth AAAI Conference on Artificial
Intelligence, AAAI 2020. AAAI Press, 2020, pp. 2742-2749.

[9] M. Thimm, “On undisputed sets in abstract argumentation,” in Thirty-
Seventh AAAI Conference on Artificial Intelligence, AAAI 2023,
B. Williams, Y. Chen, and J. Neville, Eds. =~ AAAI Press, 2023, pp.
6550-6557.

[10] L. Bliimel and M. Thimm, “Revisiting vacuous reduct semantics for
abstract argumentation,” in ECAI 2024 - 27th European Conference on
Artificial Intelligence, 2024. 10S Press, 2024, pp. 3517-3524.

[11] R. Baumann, G. Brewka, and M. Ulbricht, “Shedding new light on
the foundations of abstract argumentation: Modularization and weak
admissibility,” Artif. Intell., vol. 310, p. 103742, 2022.

[12] B. Liao and H. Huang, “Partial semantics of argumentation: basic
properties and empirical,” J. Log. Comput., vol. 23, no. 3, pp. 541-562,
2013.

[13] P. Besnard and S. Doutre, “Checking the acceptability of a set of argu-
ments,” in 10th International Workshop on Non-Monotonic Reasoning
(NMR 2004), J. P. Delgrande and T. Schaub, Eds., 2004, pp. 59-64.

[14] F. Cerutti, M. Giacomin, and M. Vallati, “How we designed winning
algorithms for abstract argumentation and which insight we attained,”
Artif. Intell., vol. 276, pp. 1-40, 2019.

	Background
	System Overview
	Reduct-based Approach to Skeptical Preferred Reasoning
	Algorithm

	References

