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Abstract—We present reducto, a SAT-based solver for rea-
soning problems in abstract argumentation. The solver is mainly
built on standard SAT-encodings with some improvements. In
particular, for skeptical reasoning wrt. preferred semantics it
contributes a non-standard approach. reducto refrains from
iterative maximisation and instead utilises a reduct-based char-
acterisation of preferred semantics to efficiently find counterex-
amples for the skeptical acceptance of an argument.

I. BACKGROUND

An (abstract) argumentation framework (AF) is a tuple F =
(A,R) where A is a finite set of arguments and R is a relation
R ⊆ A×A [1]. For two arguments a, b ∈ A, the relation aRb
means that a attacks b. For a set S ⊆ A we define S+

F = {a ∈
A | ∃b ∈ S : bRa}. We say that a set S ⊆ A is conflict-free
iff for all a, b ∈ S we do not have aRb. A set S defends an
argument b ∈ A iff for all a with aRb there is c ∈ S with
cRa. Furthermore, a set S is called admissible (ad) iff it is
conflict-free and S defends all a ∈ S.

We define different semantics by imposing constrains on
admissible sets [2]. In particular, an admissible set S ⊆ A is
called a

• complete (CO) extension iff for every a ∈ A, if S defends
a then a ∈ S,

• preferred (PR) extension iff there exists no admissible S′

with S ⊊ S′,
• stable (ST) extension iff S ∪ S+

F = A,
• grounded (GR) extension iff S is complete and there is

no complete S′ with S′ ⊊ S.
For a given argumentation framework F = (A,R) and a

semantics σ ∈ {CO,PR,ST}, we denote with σ(F ) the set
of σ-extensions of F . We consider the following reasoning
problems for the above semantics [3]:

DC−σ Given an argument a ∈ A, decide whether there
exists some σ-extension E ∈ σ(F ) with a ∈ E,

DS−σ Given an argument a ∈ A, decide whether a
is contained in all σ-extensions of F ,

SE−σ Return a σ-extension of F .

II. SYSTEM OVERVIEW

The reducto solver supports the following problems:
DC-CO,DC-ST,DS-PR,DS-ST,SE-PR,SE-ST. In gen-
eral, reducto uses the classical SAT-reduction technique

to solve these problems [4]–[6]. Per default, reducto uses
CADICAL 2.1.3 [7], but it can be used with any SAT-solver
via the IPASIR interface. The source code is open source and
available on Github1.

For the problems DC-CO,DC-ST,DS-ST and SE-ST
the solver uses mostly standard SAT-encodings and one-
shot queries to the SAT-solver. For DS-PR reducto uses
novel approaches built on a reduct-based characterisation of
preferred semantics which we will outline in the following.

III. REDUCT-BASED APPROACH TO SKEPTICAL
PREFERRED REASONING

The central notion behind our approach is the S-reduct [8].

Definition 1. Let F = (A,R) be an AF and S ⊆ A. We define
the S-reduct of F as the AF FS = (A′, R′) with

A′ = A \ (S ∪ S+
F ), R′ = R ∩ (A′ ×A′).

Essentially, the reduct allows us to remove the part of the
AF F that is already “solved” by S. Based on this concept, the
notion of vacuous reduct semantics has been introduced [9].

Definition 2. Let σ, τ be argumentation semantics and F =
(A,R) is an AF. A set S ⊆ A is a στ -extension iff S is a
σ-extension and it holds that τ(FS) ⊆ {∅}.

Intuitively, a set S is a στ extension of F iff it is σ-extension
of F and in the reduct FS there exists no non-empty τ -
extension. We denote with στ (F ) the set of all στ -extensions
of F . It has been shown, that the preferred semantics can be
characterised as a vacuous reduct semantics [9], [10].

Theorem 1. For any AF F = (A,R). It holds that

PR(F ) = adad(F ) = COCO(F ).

That means, in order to verify whether a complete extension
S is preferred, we construct the reduct FS and verify that it
has no non-empty complete set. Related to that is also the
concept of Modularization of argumentation semantics [11]
which is satisfied by both complete and preferred semantics.

Theorem 2. Let F = (A,R) be an AF and σ ∈ {CO,PR}.
If S ∈ σ(F ) and S′ ∈ σ(FS), then S ∪ S′ ∈ σ(F ).

1https://github.com/aig-hagen/reducto

https://github.com/aig-hagen/reducto


In our algorithm, we employ the above properties to sim-
plify the argumentation framework during the computation and
then, if necessary, to combine the partial results in the end to
obtain the required witness for non-acceptance.

A. Algorithm
The algorithm employed by reducto for the DS-PR

problem is shown in Algorithm 1. Before starting the main
routine, we perform some pre-processing on the AF. That
includes restricting the AF to the arguments “relevant” to
the query a, similar to how it was outlined in [12]. We also
explicitly compute the grounded extension of the AF (line 1),
which can be done in polynomial time [3], and remove it from
the AF (line 6).

We use a standard SAT-encoding for complete semantics,
denoted as ΨCO

F , whose models correspond to complete exten-
sions [13], [14]. Furthermore, we add a clause to ensure that
any model is non-empty, defined as Ψne

F =
∨

a∈A ina. We
write WITNESS(Ψ) for a call to the SAT-solver that returns
the set {a ∈ A | ω(ina) = TRUE}, where ω is a model of Ψ,
if Ψ is satisfiable, otherwise it returns FALSE.

Essentially, our algorithm iterates over the non-empty com-
plete extensions of F that do not include the query. If such
an extension S attacks the query it represents a witness for
its non-acceptance. Otherwise, we consider the reduct FS and
verify with one additional SAT-call whether there is a non-
empty complete extension in FS . In case there is none, we
have found a witness for non-acceptance, otherwise we add a
complement clause to the encoding and ask the SAT-solver for
another complete extension of F . This complement clause is
defined as CF (S) =

∨
a∈A\S ina for some set S. This clause,

for each found complete extension S, ensures not only that the
SAT-solver does not find S again, but also that any S′ with
S′ ⊆ S is no valid witness in any following SAT-call.

In most cases of non-acceptance, reducto will return an
admissible set S that attacks the query argument as a witness.
Note that this implies immediately that there exists a preferred
extension S′ such that S ⊆ S′ with a ∈ S+

F . Thus such an
admissible set is sufficient as a witness for the non-acceptance
of a. In case such a set does not exist the solver simply returns
a preferred extension S such that a /∈ S.
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