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Abstract

We consider abstract argumentation and explanations for the
acceptance of arguments. Based on the notion of serialisabil-
ity, we introduce sequence explanations as a procedural form
of explanation for the acceptance of some argument. Intu-
itively, these explanations represent the process of accepting
(and rejecting) arguments in order to conclude the acceptance
of a certain argument. We define several variants of sequence
explanations and examine them in detail. In particular, we
also incorporate counterarguments into the explanations to
make them dialectical. Finally, we relate our explanations
to other approaches from the literature via a principle-based
analysis.

1 Introduction
In recent years, explainability has been a major focus in
artificial intelligence (AI) research. One of the promis-
ing approaches to explainable artificial intelligence is for-
mal argumentation (Atkinson, Bench-Capon, and Bollegala
2020). Many works have already highlighted how argu-
mentative approaches are well-suited to provide human-
understandable explanations (Antaki and Leudar 1992;
Miller 2019; Leofante et al. 2024). Various recent works
are concerned with computing post-hoc argumentative ex-
planations for black-box AI models (Cyras et al. 2021;
Potyka, Yin, and Toni 2022). On the other hand, the prob-
lem of explaining the reasoning within formal argumenta-
tion methods has also received lots of attention in the litera-
ture (Seselja and Straßer 2013; Ulbricht and Wallner 2021;
Borg and Bex 2024). In this work, we consider the latter
scenario, in particular, we are concerned with providing ex-
planations for the acceptance of arguments within abstract
argumentation frameworks (Fan and Toni 2014).

Abstract argumentation frameworks (AFs) as introduced
by Dung (1995) continue to be the most prominent argu-
mentation formalism in the literature. In an argumentation
framework arguments are modelled as abstract entities and
directed attacks represent conflicts between them. Reason-
ing is performed via semantics that select jointly acceptable
sets of arguments, called extensions, according to different
criteria. Argumentation is inherently linked with dialec-
tics (Rescher 1977). Two key aspects of dialectical argu-
mentation are the procedurality and the exchange of argu-
ments, i. e., the fact that arguments and counterarguments

are brought forward one after another in alternating fash-
ion (Hage 2000). The aim of this work is to define an ex-
planation method that takes both of these aspects into ac-
count and incorporates them properly within the explana-
tions themselves. This has so far not been considered in the
literature.

In regard of this goal, we will consider the notion of
serialisability for abstract argumentation, which provides
a non-deterministic construction scheme for admissible
sets (Thimm 2022). Hereby, an admissible set is constructed
by iteratively accepting atomic semantical units and subse-
quently removing their associated resolved conflict from the
argumentation framework. These atomic semantical units
are minimal, non-empty admissible sets and are called ini-
tial sets (Xu and Cayrol 2018). This approach allows us
to associate with an arbitrary admissible set so called seri-
alisation sequences, which are sequences of initial sets of
the respective reducts. These serialisation sequences repre-
sent essentially the different construction processes of the
corresponding admissible set. Intuitively, these serialisa-
tion sequences give structure to the admissible set and are
well-suited to provide the procedurality we want for our ex-
planation method (Bengel 2022). In particular, it has also
been shown that serialisation sequences are more expres-
sive than extension-based semantics (Bengel, Sander, and
Thimm 2024).

In this work, we introduce sequence explanations for ar-
gument acceptance in AFs. A sequence explanation is essen-
tially a serialisation sequence that leads to the acceptance of
the argument in question. We define minimal sequence ex-
planations that ensure that every decision and argument in
the sequence is actually relevant to explain the acceptance
of the target argument. Moreover, we expand sequence ex-
planations to also incorporate counterarguments in order to
obtain full dialectical sequence explanations. These then
also allow us to distinguish between two different levels of
strength of arguments that challenge the acceptance within
the dialectical explanation. Finally, we introduce two prin-
ciples to address the above discussed aspects of dialectical
argumentation and also provide a comprehensive analysis
of sequence explanation based on principles from the lit-
erature. For that, we also consider the sufficient and nec-
essary explanations of Borg and Bex (2024) and the strong
σ-explanations of Ulbricht and Wallner (2021).



To summarise, the main contributions of this paper are:

• We introduce and investigate sequence explanations and
several variants as a novel procedural form of explana-
tions for argument acceptance (Section 4).

• We expand sequence explanations to also include argu-
ments rejected in each step to make them dialectical (Sec-
tion 5).

• We discuss our approach in the context of related work
and provide a principle-based analysis (Section 6).

In Section 2 we recall the necessary background on argu-
mentation, Section 3 describes other explanation strategies
and principles for explanations from the literature and Sec-
tion 7 concludes the paper. Proofs for all technical results
can be found in the extended version of this paper (Bengel
and Thimm 2025), available online1.

2 Preliminaries
We consider abstract argumentation frameworks (AF) as in-
troduced by Dung (1995).

Definition 1. An abstract argumentation framework (AF) is
a pair F = (A,R) where A is a finite set of arguments and
R is a relation of attack R ⊆ A×A.

Let AF denote the set of all abstract argumentation frame-
works and A denotes the universe of all arguments. For
two arguments a, b ∈ A, the relation aRb means that ar-
gument a attacks argument b. For a set S ⊆ A, we denote
by F ↓S= (S,R ∩ (S × S)) the projection of F on S. Ad-
ditionally, for a set S ⊆ A we define

S+
F = {a ∈ A | ∃b ∈ S : bRa}

S−F = {a ∈ A | ∃b ∈ S : aRb}

For a singleton set S, we omit brackets for readability, i. e.,
we write a−F (a+F ). We simply write S+ (respectively S−)
instead of S+

F (resp. S−F ) if F is clear from the context. For
two sets S and S′ we may write SRS′ iff S′ ∩ S+

F ̸= ∅. We
say that a set S ⊆ A is conflict-free iff for all a, b ∈ S it is
not the case that aRb. A set S defends an argument b ∈ A
iff for all a with aRb there is c ∈ S with cRa. Furthermore,
a set S is called admissible (ad) iff it is conflict-free and S
defends all a ∈ S. Let ad(F) denote the set of admissible
sets of F .

We can then define the classical admissibility-based se-
mantics by restricting admissible sets (Dung 1995; Baroni,
Caminada, and Giacomin 2018). In particular, given F =
(A,R) an admissible set S ⊆ A is called

• complete (co) iff S contains all a ∈ A that it defends,

• grounded (gr) iff S is complete and ⊆-minimal,

• preferred (pr) iff S is ⊆-maximal,

• stable (st) iff S ∪ S+
F = A.

Such a set is then also called a σ-extension, for σ ∈
{co, gr, pr, st}, and we denote with σ(F) the set of σ-
extensions of F .

1https://doi.org/10.5281/zenodo.16024540

a b c d e f

Figure 1: The AF F1 from Example 1.

Example 1. Consider the AF F1 depicted in Figure 1. We
have that {a}, {a, c}, {a, d} and {a, c, e} are the complete
extensions of F1. The set {a} is also the unique grounded
extension, while the latter two are the preferred extensions
of F1. Finally, only {a, c, e} is a stable extension of F1.

Non-empty minimal admissible sets have been coined ini-
tial sets by Xu and Cayrol (2018).
Definition 2. For F = (A,R), a set S ⊆ A with S ̸= ∅
is called an initial set (is) if S is admissible and there is no
admissible S′ ⊊ S with S′ ̸= ∅.

is(F) denotes the set of initial sets of F . We further dif-
ferentiate between three types of initial sets (Thimm 2022).
Definition 3. For F = (A,R) and S ∈ is(F), we say that

1. S is unattacked iff S− = ∅,
2. S is unchallenged iff S− ̸= ∅ and there is no S′ ∈ is(F)

with S′RS,
3. S is challenged iff there is S′ ∈ is(F) with S′RS.

In the following, we denote with is ̸←(F), is̸↔(F), and
is↔(F) the set of unattacked, unchallenged, and challenged
initial sets, respectively.
Example 2. Consider again the AF F1 in Figure 1. The
AF has two initial sets: {a} and {d}. The former being
unattacked and the latter unchallenged in F1.

Furthermore, we recall the definition of the reduct (Bau-
mann, Brewka, and Ulbricht 2020).
Definition 4. For F = (A,R) and S ⊆ A, the S-reduct FS

is defined as FS = F↓A\(S∪S+
F ).

We recall the concept of serialisability (Thimm 2022),
which is a property of a semantics that allows to characterise
extensions in a constructive manner. For that we define the
serialisation sequence which is a decomposition of an exten-
sion into a series of initial sets (Blümel and Thimm 2022).
Definition 5. A serialisation sequence for F = (A,R) is
a sequence S = (S1, . . . Sn) with S1 ∈ is(F) and for each
2 ≤ i ≤ n we have that Si ∈ is(FS1∪···∪Si−1).

For a serialisation sequence S = (S1, . . . Sn), we denote
Ŝ = S1∪· · ·∪Sn and call Ŝ the induced extension of S. As
shown in (Thimm 2022), we can characterise any admissible
set by such sequences.
Proposition 1. Let F = (A,R) be an AF and S ⊆ A. It
holds that S ∈ ad(F) if and only if there exists a serialisa-
tion sequence S with Ŝ = S.

We denote with S(F) the serialisation sequences of F .
Example 3. We continue Example 2 with the AF F1 in Fig-
ure 1. Consider the sequence ({a}, {c}, {e}) ∈ S(F1).
We have {a} ∈ is(F1). Subsequently, in the reduct F{a}1
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the arguments a and b are removed from F1 and in the re-
sulting AF F{a}1 we have two (challenged) initial sets: {c}
and {d}. Finally, in the reduct F{a,c}1 only the arguments
e and f remain, with {e} being the only initial set. Thus,
({a}, {c}, {e}) is a serialisation sequence, corresponding to
the admissible set {a, c, e}. Notably, for the admissible set
{a, d} there are two serialisation sequences ({a}, {d}) and
({d}, {a}), due to the fact that both {a} and {d} are ini-
tial sets of F1 and their respective reducts. Naturally, every
sub-sequence of the above sequences is also a serialisation
sequence of F1.

3 Explanations in Abstract Argumentation
In this work, we consider methods of explaining the accep-
tance of an argument. For that, we define an argument-
explanation strategy EXPL in general to be a function that
given an AF F and some argument a returns sets of argu-
ments E that explain the acceptance of a given F .

Definition 6. Let F = (A,R) and a ∈ A. An argument-
explanation strategy EXPL is a function AF × A 7→ 22

A
. A

set E ∈ EXPL(F , a) for some F = (A,R) and a ∈ A is
called an explanation for a in F .

Note that for the sake of comparability, we generally de-
fine explanations in the form of sets, because all existing
approaches in the literature use set-based representations for
explanations.

In the following, we consider, in detail, some approaches
for explanations of argument acceptance in abstract argu-
mentation from the literature. First, we consider the suf-
ficient and necessary explanations of Borg and Bex [2021;
2024]. For that, we first recall that for some directed graph
F = (A,R) and a, b ∈ A, a sequence (a1, . . . , an) is called
a directed path from a to b iff a1 = a and an = b, and for
every i = 2, . . . , n it holds that (ai−1, ai) ∈ R. Based on
that, the notion of relevance is defined.

Definition 7. Let F = (A,R) be an AF and a, b ∈ A. We
say that b is relevant for a iff there exists a directed path
from b to a in F and b does not attack itself. A set S ⊆ A is
relevant for a iff all of its elements are relevant to a.

For some F = (A,R), we also denote

RelevantF (a) = {b ∈ A | b is relevant for a}

as the set of arguments relevant for a. We then distinguish
between sufficient and necessary for acceptance as follows.

Definition 8. Let F = (A,R) be an AF and a ∈ A. Then

• S ⊆ A is sufficient for the acceptance of a iff S is relevant
for a, S is conflict-free and S defends S ∪ {a} against all
attackers,

• b ∈ A is necessary for the acceptance of a iff b is relevant
for a and for every S ∈ ad(F) it holds that, if b /∈ S, then
a /∈ S.

Based on the above notions, we can then define different
types of explanation strategies for the acceptance of an ar-
gument (Borg and Bex 2024).
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Figure 2: The AF F2 from Example 4.

Definition 9. Let F = (A,R) be an AF and a ∈ A. Then,

SUFF(F , a) = {S ∪ {a} ⊆ A |
S is sufficient for the acceptance of a},

MINSUFF(F , a) = min
⊆

SUFF(F , a),

NEC(F , a) = {{a} ∪ {b ∈ A |
b is necessary for the acceptance of a}}.

The following example illustrates the three explanation
strategies.

Example 4. Consider the AF F2 in Figure 2. Every argu-
ment except f is relevant for a. We have that SUFF(F2, a) =
{{a, b, e}, {a, e, g}, {a, b, e, g}}. The former two explana-
tions are also ⊆-minimal sufficient explanations. The unique
necessary explanation for the acceptance of a is {a, e}. Note
that the necessary explanation is not admissible and in par-
ticular does not defend a.

Secondly, we consider the strong σ-explanations due
to Ulbricht and Wallner (2021) which are sets of arguments
that ensure the argument is acceptable wrt. σ in every sub-
framework containing the explaining set.

Definition 10. Let F = (A,R) be an AF, a ∈ A and σ is a
semantics. Then,

STRONGσ(F , a) = {E ⊆ A |
∀A′ ⊆ A s.t. E ⊆ A′ ⊆ A ∧
∃S′ ∈ σ(F↓A′) : a ∈ S′}

Example 5. Consider again the AF F2 = (A2,R2) in
Figure 2. The set {a, e, g} is a strong ad-explanation for
the acceptance of a in F2. Note that every set S′ with
{a, e, g} ⊆ S′ ⊆ A2 is also a strong ad-explanation for
a. The same applies to {a, b, e}.

We only consider the above introduced explanation meth-
ods in detail in this work. However, there exist numerous
other notable approaches to explanations in abstract argu-
mentation. Fan and Toni (2014) introduce related admis-
sible sets as explanations, which are minimal sets of argu-
ments required to show (non-)acceptance of an argument.
Similarly, Liao and van der Torre (2020) define explanation
semantics via a principle-based approach. Likewise, Booth
et al. (2014) examine critical sets of arguments after whose
acceptance the acceptance of the remaining arguments is
uniquely determined. The scenario of abduction, i. e., deter-
mining arguments that explain why some argument is (not)
accepted, is considered by Sakama (2018). Notably, they
also allow for the introduction of new arguments to the AF
for the explanations. To explain non-acceptance, Saribatur,
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Wallner, and Woltran (2020) establish strongly rejecting
subframeworks that showcase why some argument is not ac-
cepted wrt. different semantics. Complementing the above
works, Amgoud (2024) introduces a post-hoc approach that
discloses relationships between AFs and outputs of a seman-
tics, regardless of its internals and is able to explain more
than just (non-)acceptance. Moreover, Doutre, Duchatelle,
and Lagasquie-Schiex (2023) study explanations for whole
extensions and define multiple classes of explanations to vi-
sually explain why a set of arguments is an extension. Sim-
ilar to our approach, Baumann and Ulbricht (2021) decom-
pose an AF into subframeworks and extensions are con-
structed via those in order to explain their acceptance. In
contrast to our work however, they focus on cycles and their
role in the AF for the construction. In a similar fashion,
Alfano et al. (2023) introduce a form of structured expla-
nation for probabilistic argumentation frameworks based on
the idea of directionality on the strongly connected compo-
nents. In adjacent fields of knowledge representation, expla-
nations play a similar role. For instance, explaining conse-
quences via minimal subsets of description logic knowledge
bases (Baader and Peñaloza 2010), abductive reasoning in
logic programming (Kakas, Kowalski, and Toni 1992) or
minimal unsatisfiable subsets to explain unsatisfiability of
propositional logic formulae (Liffiton and Sakallah 2008).
We will however focus on the case of abstract argumenta-
tion in this work.

Finally, we will also consider principles for explanation
strategies that have been developed in the literature for for-
mally analysing explanation methods (Ulbricht and Wallner
2021). While not technically stated as principles by Borg
and Bex (2024), we formulate the notions of relevance, min-
imality, sufficiency and necessity here as such, since they
describe sensible properties of explanations. Note that in
the following, while we define the principles on the basis of
set-based explanation strategies according to Definition 6,
they can of course also be applied to serialisation sequences
S by considering the induced extension Ŝ. The reason for
that is again to ensure comparability of our approach and the
above introduced approaches from the literature.
Definition 11. An explanation strategy EXPL satisfies the
respective principle iff for every AF F = (A,R) and a ∈ A
the respective condition holds:
σ-basic If E ∈ EXPL(F , a), then there exists S ∈ σ(F↓E)

with a ∈ S.
σ-existence If there is some S ∈ σ(F) with a ∈ S, then

EXPL(F , a) ̸= ∅.
Monotonicity If E ∈ EXPL(F , a), then E′ ∈ EXPL(F , a)

for any E′ with E ⊆ E′ ⊆ A.
(Min-)Conflict-Freeness If E is (⊆-minimal) in

EXPL(F , a), then E is conflict-free in F .
Defense If E ∈ EXPL(F , a), then E defends itself in F .
Independence If E ∈ EXPL(F , a) and b /∈ E with a ̸= b,

then E ∈ EXPL(F↓A\{b}, a).
Relevance If E ∈ EXPL(F , a), then E ⊆ RelevantF (a).
Minimality If E ∈ EXPL(F , a), then there exists no E′ ∈

EXPL(F , a) with E′ ⊊ E.

Sufficiency If E ∈ EXPL(F , a), then E is relevant to a,
conflict-free and E defends E ∪ {a} in F .

Necessity If E ∈ EXPL(F , a), then for every b ∈ E we
have that if b /∈ S for some S ∈ ad(F), then a /∈ S.
It should be noted that the satisfaction of these principles

has so far not been investigated for any of the above men-
tioned explanation strategies, except partially for the strong
σ-explanations of Ulbricht and Wallner (2021). In Section 6,
we will complete the principle-based evaluation of the two
above introduced approaches and compare them to our se-
quence explanations. A detailed principle-based analysis of
the other approaches is left for future work.

4 Sequence Explanations for Argument
Acceptance

We now introduce a novel approach for explanations of
argument acceptance built on the notion of serialisation
sequences. Serialisation sequences provide construction
schemes for admissible sets. Meaning, the sequence expla-
nations (and the variants that we introduce in the following)
are only built on the notion of admissibility and are indepen-
dent of semantics. Instead of constructing arbitrary admissi-
ble sets, we will use this procedure to accept atomic building
blocks (initial sets) until we reach the argument whose ac-
ceptance we want to explain. Intuitively, an explanation for
the acceptance of an argument a then represents a process of
decisions ultimately leading to the acceptance of a.
Definition 12. Let F = (A,R) be an AF and a ∈ A. We
define the set of sequence explanations SEQEX(F , a) for the
acceptance of a given F as:

SEQEX(F , a) = {(S1, . . . Sn) ∈ S(F) | a ∈ Sn}
Example 6. Consider again the AF F2 depicted in Fig-
ure 2. ({e}, {b}, {a}) is a sequence explanation for the ac-
ceptance of a. Moreover, we have the sequence explanations
({e}, {b}, {g}, {a}) and ({e}, {g}, {b}, {a}) both inducing
the same admissible set. Note however, that for instance
({e}, {b}, {f}, {a}) would also be a sequence explanation
for a, even though f is not relevant for a.

As highlighted by the above example, this definition does
not ensure that all arguments that occur in the explanation
for the acceptance of an argument a are actually relevant for
the argument a, cf. Definition 7. Nevertheless, as the follow-
ing result shows, there is still a connection to the necessary
explanation of Borg and Bex (2024).
Proposition 2. Let F = (A,R) be an AF and a ∈ A. Then
it holds that

⋂
E∈SEQEX(F,a) Ê = E with E ∈ NEC(F , a).

In order to properly incorporate relevance into the ex-
planations, we refine the definition of an explanation to
be a minimal serialisation sequence (S1, . . . Sn) such that
a ∈ Sn. In other words, such an explanation for a repre-
sents a minimal sequence of conflict resolutions that lead to
a being acceptable in F .

For that, we define the length of a serialisation sequence
S = (S1, . . . Sn) simply as the number of initial sets it con-
tains, i. e., |S| = n. For two serialisation sequences S,S ′
we define S ⊑ S ′ iff |S| ≤ |S ′|.
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Definition 13. Let F = (A,R) be an AF and a ∈
A. We define the set of minimal sequence explanations
MINSEQEX(F , a) for the acceptance of a given F as:

MINSEQEX(F , a) = min
⊑

SEQEX(F , a)

Example 7. We consider again the AF F2 in Figure 2. There
are only two minimal sequence explanations for a, namely
({e}, {b}, {a}) and ({e}, {g}, {a}).

Indeed, including minimality (wrt. the length of the ex-
planation sequence) is already enough to ensure that only
relevant arguments are included in the explanation as the fol-
lowing result shows.

Proposition 3. Let F = (A,R) be an AF and a ∈ A.
Then, for every E ∈ MINSEQEX(F , a) we have Ê \ {a} ⊆
RelevantF (a).

Beyond that, there is an even closer connection between
minimal sequence explanations and the sufficient explana-
tions of Borg and Bex (2024).

Proposition 4. Let F = (A,R) be an AF and a ∈ A.
Then it holds for every E ∈ MINSEQEX(F , a) that Ê ∈
SUFF(F , a).

Conversely, for every (minimal) sufficient explanation
there may be multiple sequence explanations, due to the
higher expressivity of the sequence-based representation.

We now want to examine under which circumstances an
argument should be considered part of an explanation for its
own acceptance and in which case it should not. For that,
we regard the defense notion. Intuitively, if an argument
a is actively involved in its own defense, then it should be
part of a proper explanation of its acceptance, otherwise is
should not be necessary to include in the explanation. This
is also reflected in the notion of relevance by Borg and Bex
(cf. Definition 7), i. e., we have that if a+F ∩ a−F ̸= ∅ then
a ∈ RelevantF (a). However, this is not incorporated into
the sufficient and necessary explanations for the acceptance
of a, since those include the argument a explicitly in any
case, cf. Definition 9. Moreover, it is not always imme-
diately apparent whether the self-defense of an argument is
actually necessary, and thus whether it should be included in
an explanation, as shown by the following example.

Example 8. Consider the AF F3 in Figure 3. While the
argument d defends itself against the attacker f , it is also
attacked by a. Per definition, the argument c is necessary
for the defense of d against a. However, c also defends d
against f and thus makes the self-defense of d against f su-
perfluous. Hence, it can be argued that d should not be part
of an explanation for its own acceptance.

On the other hand, the argument b is attacked by both a
and e. The argument c is again necessary to defend against a,
but so is the self-defense of b against e. In this case b should
be part of every acceptance explanation for itself, since it
actually contributes to its own defense.

Finally, the argument g does not self-defend itself at all
and is clearly unnecessary to include in any explanation for
its acceptance.

c

a

f

d

b

g

e

Figure 3: The AF F3 from Example 8.

To formalise this intuition, we establish the new principle
of Self-Reliance for acceptance explanations, stating that an
explanation for the acceptance of an argument a should only
include a, if a actively contributes to its own defense.
Definition 14. Let EXPL be an explanation strategy. EXPL
satisfies Self-Reliance iff for every F = (A,R) and a ∈ A
it holds that if E ∈ EXPL(F , a) and a ∈ E, then E−FE\{a} ̸=
∅.

In particular, E−FE\{a} ̸= ∅ states that there must be some
attacker of the explanation E after accepting every argument
of E except a (represented by the reduct FE\{a}). Neither
the (minimal) sequence explanations nor any of the other
considered approaches satisfy this principle as shown by the
following example.
Example 9. Consider again the AF F3 in Figure 3. We have
that SUFF(F3, d) = MINSUFF(F3, d) = NEC(F3, d) =
{{c, d}}. Furthermore, {c, d} is also a strong σ-explanation
for d and ({c}, {d}) is the only (minimal) sequence expla-
nation for d.

In order to resolve the above described problem, we utilise
the procedurality of our explanations together with the dis-
tinction of initial sets as described in Definition 3. Meaning,
the argument a shall only be included in an acceptance ex-
planation for itself, iff there exists a proper attacker in the fi-
nal step of the serialisation process where a is accepted, i. e.,
the initial set Sn with a ∈ Sn is attacked in FS1∪···∪Sn−1 .
If this is not the case, then {a} is an unattacked initial set
in the final step and can be detached from the explanation
sequence.
Definition 15. Let F = (A,R) be an AF and a ∈
A. We define the set of strong sequence explanations
STSEQEX(F , a) for the acceptance of a given F as follows:

STSEQEX(F , a) = min
⊑

{E = (S1, . . . Sn) |

E ∈ MINSEQEX(F , a) ∧ Sn /∈ is̸←(FS1∪···∪Sn−1) ∨

(S1, . . . , Sn, {a}) ∈ SEQEX(F , a) with {a} ∈ is̸←(F Ê)}
Example 10. We consider again the AF F3 in Figure 3. The
only strong sequence explanation for the acceptance of d is
({c}), since in the minimal serialisation sequence ({c}, {d})
we have {d} ∈ is ̸←(F{c}). The same applies to g, where
the only strong sequence explanation is also ({c}). On the
other hand, for b the only strong sequence explanation is
({c}, {b}) because {b} is challenged initial in the reduct
F{c}.
Example 11. Consider the AF F4 in Figure 4. There
is only one minimal sequence explanation for the accep-
tance of g, namely E1 = ({f}, {g}). Notably, there are
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Figure 4: The AF F4 from Example 11.

also the sequence explanations E2 = ({f}, {b}, {g}) and
E3 = ({f}, {e}, {g}) as well as E4 = ({e}, {f}, {g}).
While the latter three are not ⊑-minimal, they correspond
to the strong sequence explanations, ({f}, {b}), ({f}, {e})
and ({e}, {f}) respectively, for g, since {g} is unattacked
initial in the respective reduct in all three sequences. E1 is
also a strong sequence explanation for g, since {g} defends
itself against a in the reduct F{f}4 .

Indeed, this explanation method satisfies the principle of
Self-Reliance in general.

Proposition 5. STSEQEX satisfies Self-Reliance.

4.1 Restricted Sequence Explanations
Utilising the distinction between initial sets from Defini-
tion 3, we refine the sequence explanations to incorporate
additional aspects. For instance, we can restrict the se-
quences to only contain unattacked initial sets, essentially
yielding explanations where self-defense is not permitted.

Definition 16. Let F = (A,R) be an AF and a ∈ A. We
define the set of grounded explanations SEQEXgr(F , a) for
the acceptance of a given F as follows:

SEQEXgr(F , a) = {E ∈ SEQEX(F , a) |
∀Si ∈ E : Si ∈ is ̸←(FS1∪···∪Si−1)}

We can then of course also define MINSEQEXgr(F , a)
and STSEQEXgr(F , a) analogously to Definitions 13 and
15. This restriction is closely related to the grounded and
strongly admissible semantics (Baroni, Caminada, and Gia-
comin 2018; Caminada 2014).

Example 12. Consider again the AF F4 in Figure 4 and we
focus on the argument g. The sequence ({f}, {e}, {g}) is
not a grounded sequence explanation for g, because {e} ∈
is↔(F{f}). Similarly, ({f}, {g}) is not a grounded expla-
nation, because {g} requires self-defense in the reduct F{f}.
The only (minimal) grounded sequence explanation for g is
({f}, {b}, {g}), where no self-defense is required for any
argument. Accordingly, ({f}, {b}) would be the only strong
grounded sequence explanation for g in F4.

Generally, one can of course also put different restrictions
on the explanation sequences. For instance, another reason-
able approach would be to weaken the above restriction and
allow for both unattacked and unchallenged initial sets. That
would be in accordance to the unchallenged semantics (Ben-
gel and Thimm 2022) and essentially represent explanations
under which arguments may only self-defend against attack-
ers that are not proper challengers, i. e., arguments that are
not admissible themselves.

5 Dialectical Explanations
So far, we have outlined how the sequence explanations
implement the procedural aspect of argumentation as a se-
quence of minimally acceptable sets that essentially sup-
port the argument in question. We now turn to the sec-
ond important element of dialectical argumentation, namely
the exchange of arguments and counterarguments. In order
to construct human-understandable argumentative explana-
tions, we also need to incorporate the appropriate counterar-
guments. For that, we associate to some sequence explana-
tion Es, containing the supporting arguments for the accep-
tance of the argument a, the sequence Ed of defeated argu-
ments.
Definition 17. Let F = (A,R) be an AF and a ∈ A. We
define a dialectical sequence explanation for the acceptance
of a given F as a pair of sequences:

Es = (S1, . . . Sn), Ed = (T1, . . . , Tn)

such that Es is some sequence explanation for a and for each
i = 1, . . . , n we have Ti = (Ês ∪ {a})−F ∩ (Si)

+

FS1∪···∪Si−1
.

Each Ti is defined to contain the attackers of a and its
supporting arguments (represented by (ÊS ∪ {a})−F ) assum-
ing that they are rejected by Si and have not been rejected
in a previous step already, i. e., the arguments attacked by Si

in the reduct FS1∪···∪Si−1 . It can then be shown easily that
a dialectical explanation Ed for the acceptance of a, based
on minimal or strong sequence explanations, only contains
arguments that are relevant for a.
Proposition 6. Let F = (A,R) be an AF and
((S1, . . . Sn), (T1, . . . , Tn)) is a dialectical explanation for
a ∈ A with (S1, . . . Sn) ∈ MINSEQEX(F , a). It holds that
Ti ⊆ RelevantF (a) and Ti ∩ Tj = ∅ for all i, j = 0, . . . , n
with i ̸= j.
Example 13. We consider again the AF F4 in Figure 4. We
take the explanation ({f}, {e}, {g}) for the acceptance of
g. The corresponding sequence of defeated arguments is
Ed = ({h}, {a, d}, ∅). Notice that, while c is attacked by
f , it is not included in Ed, because c does not attack any ar-
gument of the explanation sequence and thus does not con-
tribute anything to the explanation. Even though g also at-
tacks a, a has already been defeated by e in a previous step
of the argumentation process and is therefore not included
again. Alternatively, for the strong sequence explanation
({f}, {b}) for g, we have the corresponding defeated se-
quence ({c, h}, {a}). This time, c is included because it
attacks b, which is part of the sequence, but d is no longer
relevant to the explanation.

To facilitate the construction of insightful explanations,
our approach also allows us to distinguish further for each
step between two types of defeated arguments:
(1) necessarily rejected arguments, i. e., they attack the cor-

responding initial set and must be defended against:
NecRejF (S) = S− ∩ S+

(2) incidentally rejected arguments, i. e., their rejection
simply follows logically from accepting the initial set, but
is not necessary for its acceptance:

IncRejF (S) = S+ \ S−
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Note that NecRejF (S) and IncRejF (S) are disjunct and
we have that the necessarily and incidentally rejected argu-
ments by some admissible S ⊆ A characterise exactly the
arguments attacked by S.

Proposition 7. Let F = (A,R) be an AF and S ∈ ad(F).
Then the following statements hold:

1. NecRejF (S) ∩ IncRejF (S) = ∅,
2. If S ∈ ad(F), then NecRejF (S) ∪ IncRejF (S) = S+

F .

This essentially allows us to distinguish between weak
and strong counterarguments. Strong counterarguments ac-
tively challenge the explanation (within the sequence) while
weak counterarguments do not. This information can prove
useful when presenting such an explanation to a user or
when analysing the strength of the argument or its expla-
nation.

Example 14. We continue Example 13 with the AF F4

in Figure 4. Consider the dialectical sequence explanation
(Es, Ed) for the acceptance of g with Es = ({f}, {e}, {g})
and Ed = ({h}, {a, d}, ∅). We examine, step by step, the
defeated attackers of the explanation: h, d, a. First, we
have that IncRejF4

({f}) = {h}. Furthermore, we have
NecRejF{f}

4
({e}) = {d}. On the other hand, we have

IncRejF{f}
4

({e}) = {a}. Meaning essentially, that h and
a are merely weak counterarguments and d is a strong coun-
terargument, in the context of this sequence. If we consider
instead the sequence explanation ({f}, {g}), with the de-
feated arguments ({h}, {a}), h is again a weak counterargu-
ment, but a is now a strong contender, since it is necessarily
rejected by g in this sequence.

Let DISEQEX(F , a) denote the set of dialectical se-
quence explanations (Es, Ed) for the acceptance of a in F ,
such that Es ∈ STSEQEX(F , a). Even though the dialectical
sequence explanations can be built on any type of sequence
explanation, we will only consider the variant that is based
on the strong sequence explanations in the following, since
those are the only explanations that satisfy the principle of
Self-Reliance. For some dialectical sequence explanation
(Es, Ed), we denote with Ê = Ês ∪ Êd the corresponding set
representation.

Let us consider again the two key aspects of dialectical
argumentation mentioned in the introduction: procedurality
and the exchange of arguments. To formally capture the ex-
change of arguments aspect, we now introduce the principle
of Dialectical Completeness for acceptance explanations.

Definition 18. Let EXPL be an explanation strategy. EXPL
satisfies Dialectical Completeness iff for every F = (A,R)
and a ∈ A it holds that if E ∈ EXPL(F , a), then there
is some admissible E′ ⊆ E ∪ {a} such that a ∈ E′ and
E′−F ⊆ E.

This property essentially ensures two things for an accep-
tance explanations. On the one hand, it ensures that each ex-
planation E contains an admissible “core” set of arguments
E′ around the query a. On the other hand, it requires that the
explanation also takes into account all the counterarguments
of at least this core set. In combination, this then ensures

that the explanation gives a complete dialectical picture of
the acceptance of a.

Example 15. We continue Example 13 with the AF F4 de-
picted in Figure 4. Consider the dialectical sequence expla-
nation (Es, Ed) for the acceptance of g with

Es = ({f}, {e}, {g}) and Ed = ({h}, {a, d}, ∅).

The corresponding set representation is then E =
{a, d, e, f, g, h}. It is easy to see that we have the admissible
subset E′ = Ês = {e, f, g} which contains the argument g.
Furthermore, all attackers of E′ in F4, namely a, d and h,
are contained in E. It is also apparent in this example that a
set-based representation loses a lot of expressivity compared
to our sequence-based representation.

As the following result shows, the dialectical sequence ex-
planations satisfy both Self-Reliance and Dialectical Com-
pleteness.

Proposition 8. DISEQEX satisfies Self-Reliance and Di-
alectical Completeness.

6 Discussion
Our sequence explanations provide a new form of explana-
tion for the acceptance of arguments that incorporate both
the procedural and dialectical aspect of argumentation. In
a similar manner, discussion games provide rule-based dia-
logues between two players for the acceptance of an argu-
ment (Caminada 2018). In contrast to our approach, a dis-
cussion game always starts with the argument in question
and in every step only individual arguments are played. In
particular, they also allow arguments to be repeated. This re-
dundancy may not happen in sequence explanations, as we
consider sets of arguments in each step and no argument can
occur twice in a dialectical sequence explanation. Discus-
sion games generally also have no mechanism to determine
the strength of attackers or to capture the idea of the self-
reliance property. The same applies also to dispute trees,
where acceptance is determined by considering a tree-like
dialogue representation (Cyras et al. 2017). Furthermore,
Baroni, Giacomin, and Guida (2005) introduce a scheme for
recursively constructing extensions along the strongly con-
nected components (SCCs) of an AF similar to serialisabil-
ity, but their approach enforces the construction order based
on the SCC-structure of the AF. That is very similar to the
approach of Alfano et al. (2023), where they construct struc-
tural explanations for acceptance in probabilistic AFs by
constructing σ-extensions according to the SCC-structure.
Notably, the sequences both of these approaches obtain for
some σ-extension of an AF consist of smaller σ-extensions
of the SCCs of the AF. That is critically different to our ap-
proach, where a sequence explanation is comprised of initial
sets. These initial sets are the minimal semantical units and
they are crucial in ensuring that the explanation is concise
and relevant for the argument in question. In addition to
that, our dialectical explanations also incorporate counter-
arguments into the explanation, which neither of these two
approaches consider.
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Another important advantage of our approach is that
SEQEX, MINSEQEX and STSEQEX are generally indepen-
dent of semantics and built only on the concept of admis-
sibility. Consider, for instance, complete and preferred se-
mantics. They are both built on admissibility, but have addi-
tional requirements for extensions: the inclusion of all de-
fended arguments and ⊆-maximality, respectively. When
considering the acceptance of some argument a, both of
these conditions are completely irrelevant for explaining the
acceptance of a. In particular, somehow being dependent
on ⊆-maximality for the explanation of the acceptance of
a will necessarily lead to the inclusion of non-relevant ar-
guments. Notably, the STSEQEXgr explanations are closely
tied to grounded semantics, where the notion of self-defense
is disallowed, which can be a reasonable restriction for ac-
ceptance explanations.

We conducted a principle-based analysis to provide a for-
mal and objective comparison between our approach and ex-
isting approaches based on the principles of Ulbricht and
Wallner (2021) and Borg and Bex (2024) introduced in Sec-
tion 3, as well as the newly defined Self-Reliance and Di-
alectical Completeness properties. For that, we considered
the explanation strategies introduced in Section 3 as well
as the different variants of sequence explanations defined in
Sections 4 and 5. Please note again, that the principles are
defined on set-based explanations to ensure better compara-
bility between different approaches, since the set represen-
tation is the most general.

In Theorem 1 and Table 1, we summarise the results of
our principle-based analysis of explanation methods.

Theorem 1. Let σ be a semantics. The compliance of
explanation strategies SEQEX, MINSEQEX, STSEQEX,
STSEQEXgr, DISEQEX, SUFF, NEC, MINSUFF and
STRONGσ wrt. the properties σ-basic, σ-existence, Mono-
tonicity, Min-CF, Defense, Independence, Relevance, Mini-
mality, Sufficiency, Necessity, Self-Reliance and Dialectical
Completeness is as shown in Table 1.

σ-existence is satisfied by all explanation strategies. In
contrast to the other variants of sequence explanations,
STSEQEX does not satisfy σ-basic for any semantics σ. This
is simply due to how the principle is defined: it requires that
there exists a σ-extension in the projection onto the explana-
tion that contains the argument. That is obviously not possi-
ble if the argument is not contained in the explanation. The
same applies to STSEQEXgr and DISEQEX, which are both
based on strong sequence explanations.

Independence is only satisfied by SEQEX but no other
variant of sequence explanations. The reason is simply that
Relevance and Independence are incompatible, i. e., the set
of relevant arguments RelevantF (a) may change if we re-
move some argument from the AF. In a similar way, Mono-
tonicity is trivially violated if Relevance is satisfied.

Due to the fact that STSEQEXgr explanations are defined
to only consist of unattacked initial sets, which rule out self-
defense of arguments, they naturally satisfy Minimality in
contrast to the basic variants of sequence explanations (see
Example 16). As one might expect, their existence is how-
ever only guaranteed if the argument is part of the grounded

d

g

h

f

c

a

e

b

0

Figure 5: The AF F5 from Example 16.

extension of the AF.

Example 16. Consider the argument b in the AF F5 de-
picted in Figure 5. A strong sequence explanation for the
acceptance of b is the sequence ({d}, {f}), because d de-
fends b against a and in the reduct F{d}5 we have the ini-
tial set {f} which defends b against the remaining attack
from e. However, there is the sequence ({f, g}, {d}), which
is a minimal sequence explanation for the acceptance of
b. Note that for the corresponding admissible sets we have
{d, f} ⊊ {d, f, g}, which shows that the STSEQEX expla-
nations are not ⊆-minimal. This stems from the fact that
these explanations are rather built on the minimum number
of decisions to take for the acceptance of the argument. In
the above case, it is possible to accept the defender f via the
set {f, g} without accepting d first, because the defense of f
by d against h is not necessary. This is also reflected in the
strong sequence explanations for the acceptance of f : ({d})
and ({f, g}).

The dialectical sequence explanations (DISEQEX) are the
only explanations that satisfy both Self-Reliance and Dialec-
tical Completeness. Compared to STSEQEX, the satisfac-
tion of Dialectical Completeness comes at the price of no
longer satisfying Min-CF, Defense and Sufficiency. This is
to be expected, since the inclusion of counterarguments into
the explanation will introduce conflicts. It should however
be noted that the proper sequence-based representation of
dialectical sequence explanations, as described in Section 5,
gives a clear separation between arguments that support the
target and the counterarguments.

As the previous discussion already hinted at, the goal of
this principle-based comparison is not to satisfy as many
principles as possible. Rather, it is supposed to provide ob-
jective criteria to compare different approaches in order to
find the one that is most suitable for a specific use case. Fur-
thermore, we would like to highlight again that these princi-
ples are generally tailored to set-based explanations, mean-
ing the advantages of our process-based approach and the
dialectical aspect are not necessarily visible just considering
principle satisfaction. Only the Self-Reliance and Dialecti-
cal Completeness principles somehow capture the two as-
pects of dialectical argumentation outlined by Hage (2000).
Ultimately, we believe that representing explanations as se-
quences is the superior choice if one wants to properly con-
struct argumentative explanations. In particular, to properly
model an exchange of arguments, utilising a sequence-based
representation is inevitable.
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SEQEX MINSEQEX STSEQEX STSEQEXgr DISEQEX SUFF NEC MINSUFF STRONGσ

σ-basic ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✓*
σ-existence ✓ ✓ ✓ gr ✓ ✓ ✓ ✓ ✓*
Monotonicity ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓*
Min-CF ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗*
Defense ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✗*
Independence ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓*
Relevance ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗
Minimality ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✓ ✗
Sufficiency ✗ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✗
Necessity ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗
Self-Reliance ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗
Dia. Complet. ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗

Table 1: Overview over the discussed explanation strategies and their satisfaction of principles for explanations from the literature. All results
consider σ ∈ {ad, co, gr, pr, st}. All proofs can be found in the appendix. Results marked with * are from (Ulbricht and Wallner 2021). All
other results are new.

7 Conclusion

In this work, we introduced the notion of sequence expla-
nations as a procedural form of explanation for the accep-
tance of arguments. Such an explanation is then essentially
a sequence of minimally acceptable sets of arguments that
lead to the acceptance of the argument in question. We dis-
cussed several variants which ensure, for instance, that only
relevant arguments are included or pose restrictions on what
kind of defense is permitted. Furthermore, we expanded
the sequence explanations to also include the correspond-
ing relevant counterarguments to provide a full dialectical
argumentative explanation for the acceptance of arguments.
More specifically, our dialectical sequence explanations are
the only explanation strategy that capture both the procedu-
rality and exchange of arguments of dialectical argumenta-
tion. Moreover, this approach also gives a fine-grained view
into the strength of counterarguments. Finally, we evaluated
our approach based on principles from the literature and dis-
cussed its advantages over existing approaches from the lit-
erature.

For future work, we intend to develop a proper represen-
tation and visualisation of the (dialectical) sequence expla-
nations. In particular, we want this representation to be un-
derstandable for non-experts and we plan to evaluate their
effectiveness in an empirical study. Related to that, devel-
oping algorithms to efficiently compute the sequence expla-
nations as well as investigating the computational complex-
ity is another important direction for future work. More-
over, we also want to extend our approach to other formal
argumentation approaches. Of particular interest is, for in-
stance, assumption-based argumentation (Dung, Kowalski,
and Toni 2009), where arguments are formed by sets of as-
sumptions that together imply a conclusion. In this domain,
a sequence explanation would essentially represent the pro-
cess of accepting (and rejecting) assumptions in order to ac-
cept a specific assumption. Another interesting target for-
malism are abstract dialectical frameworks (Brewka et al.
2017), a powerful generalisation of argumentation frame-
works, especially since serialisation sequences have recently

been introduced to this domain and are

Acknowledgements
The research reported here was partially supported by the
Deutsche Forschungsgemeinschaft (grant 550735820).

References
Alfano, G.; Calautti, M.; Greco, S.; Parisi, F.; and Trubit-
syna, I. 2023. Explainable acceptance in probabilistic and
incomplete abstract argumentation frameworks. Artif. Intell.
323:103967.
Amgoud, L. 2024. Post-hoc explanation of extension se-
mantics. In ECAI 2024 - 27th European Conference on Ar-
tificial Intelligence, 2024, volume 392 of Frontiers in Artifi-
cial Intelligence and Applications, 3276–3283. IOS Press.
Antaki, C., and Leudar, I. 1992. Explaining in conversation:
Towards an argument model. European Journal of Social
Psychology 22(2):181–194.
Atkinson, K.; Bench-Capon, T. J. M.; and Bollegala, D.
2020. Explanation in AI and law: Past, present and future.
Artif. Intell. 289:103387.
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and Wilczynski, A., eds., 17èmes Journées d’Intelligence
Artificielle Fondamentale, JIAF 2023, 124–134.
Dung, P. M.; Kowalski, R. A.; and Toni, F. 2009.
Assumption-based argumentation. In Simari, G. R., and
Rahwan, I., eds., Argumentation in Artificial Intelligence.
Springer. 199–218.
Dung, P. M. 1995. On the acceptability of arguments
and its fundamental role in nonmonotonic reasoning, logic
programming and n-person games. Artificial Intelligence
77(2):321–358.
Fan, X., and Toni, F. 2014. On computing explanations
in abstract argumentation. In Schaub, T.; Friedrich, G.; and
O’Sullivan, B., eds., ECAI 2014 - 21st European Conference
on Artificial Intelligence, volume 263 of Frontiers in Artifi-
cial Intelligence and Applications, 1005–1006. IOS Press.
Hage, J. 2000. Dialectical models in artificial intelligence
and law. Artificial Intelligence and Law 8(2/3):137–172.
Kakas, A. C.; Kowalski, R. A.; and Toni, F. 1992. Abductive
logic programming. J. Log. Comput. 2(6):719–770.
Leofante, F.; Ayoobi, H.; Dejl, A.; Freedman, G.; Gorur,
D.; Jiang, J.; Paulino-Passos, G.; Rago, A.; Rapberger,
A.; Russo, F.; Yin, X.; Zhang, D.; and Toni, F. 2024.
Contestable AI needs computational argumentation. CoRR
abs/2405.10729.
Liao, B., and van der Torre, L. 2020. Explanation seman-
tics for abstract argumentation. In Computational Models
of Argument - Proceedings of COMMA 2020, volume 326
of Frontiers in Artificial Intelligence and Applications, 271–
282. IOS Press.
Liffiton, M. H., and Sakallah, K. A. 2008. Algorithms for
computing minimal unsatisfiable subsets of constraints. J.
Autom. Reason. 40(1):1–33.
Miller, T. 2019. Explanation in artificial intelligence: In-
sights from the social sciences. Artif. Intell. 267:1–38.
Potyka, N.; Yin, X.; and Toni, F. 2022. Explaining random
forests using bipolar argumentation and markov networks
(technical report). CoRR abs/2211.11699.
Rescher, N. 1977. Dialectics: A controversy-oriented ap-
proach to the theory of knowledge. Suny Press.
Sakama, C. 2018. Abduction in argumentation frameworks.
J. Appl. Non Class. Logics 28(2-3):218–239.
Saribatur, Z. G.; Wallner, J. P.; and Woltran, S. 2020.
Explaining non-acceptability in abstract argumentation. In
ECAI 2020 - 24th European Conference on Artificial Intelli-
gence, volume 325 of Frontiers in Artificial Intelligence and
Applications, 881–888. IOS Press.

10



Seselja, D., and Straßer, C. 2013. Abstract argumenta-
tion and explanation applied to scientific debates. Synth.
190(12):2195–2217.
Thimm, M. 2022. Revisiting initial sets in abstract argu-
mentation. Argument & Computation 13(3):325–360.
Ulbricht, M., and Wallner, J. P. 2021. Strong explanations in
abstract argumentation. In Thirty-Fifth AAAI Conference on
Artificial Intelligence, AAAI 2021, 6496–6504. AAAI Press.
Xu, Y., and Cayrol, C. 2018. Initial sets in abstract argumen-
tation frameworks. Journal of Applied Non-Classical Logics
28(2-3):260–279.

11


	Introduction
	Preliminaries
	Explanations in Abstract Argumentation
	Sequence Explanations for Argument Acceptance
	Restricted Sequence Explanations

	Dialectical Explanations
	Discussion
	Conclusion

