
International Journal of Approximate Reasoning 185 (2025) 109478

Available online 26 May 2025
0888-613X/© 2025 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Contents lists available at ScienceDirect

International Journal of Approximate Reasoning

journal homepage: www.elsevier.com/locate/ijar

Algorithms for computing the set of acceptable arguments

Lars Bengel a, Matthias Thimm a, ,∗, Federico Cerutti b, Mauro Vallati c

a University of Hagen, Germany
b University of Brescia, Italy
c University of Huddersfield, United Kingdom

A B S T R A C T

We investigate the computational problem of determining the set of acceptable arguments in abstract argumentation wrt. credulous and skeptical
reasoning under grounded, complete, stable, and preferred semantics. In particular, we investigate the computational complexity of that problem and
its verification variant, and develop several algorithms for all problem variants, including two baseline approaches based on iterative acceptability
queries and extension enumeration, and some optimised versions. We experimentally compare the runtime performance of these algorithms: our
results show that our newly optimised algorithms significantly outperform the baseline algorithms in most cases.

1. Introduction

In abstract argumentation [1], an argument 𝑎 is skeptically (credulously) accepted wrt. some semantics 𝜎, if it belongs to all
(at least one) 𝜎-extensions, respectively. Work on algorithms for solving reasoning problems in abstract argumentation—see e.g. the
survey [2]—so far focused on deciding acceptability for a single query argument, or determining a single or all 𝜎-extensions. However,
the computational problem of directly computing the set of all acceptable arguments (wrt. either credulous or skeptical reasoning) has
not been considered yet explicitly in the literature. Of course, this problem can be solved by reducing it to the problems mentioned
above. For example, one can determine the set of all credulously accepted arguments by first computing all 𝜎-extensions and then
taking their union. In this paper, we ask whether this approach is appropriate for the problem and whether other approaches provide
superior performance.

Having efficient algorithms for computing the set of credulously or skeptically accepted arguments is of practical importance. For
instance, consider CISpaces [3], an argumentation-based research-grade prototype for supporting intelligence analysts in their sense-

making process, under consideration for transitioning into a commercial product. It supports intelligence analysts in sense-making in
assessing competing hypotheses, where each hypothesis is a preferred extension. Knowing whether specific arguments are not in any
possible extensions—the dual problem of credulous acceptance—or knowing whether arguments are skeptically justified is of great
service as also discussed in [4]. It allows human analysts to reduce their cognitive burden by consciously deciding whether or not to
look more into a specific argument they made in their sense-making process.

In this paper, we first look at the theoretical complexity of the problem of verifying whether a given set of arguments is exactly the
set of acceptable arguments wrt. both credulous and skeptical reasoning under grounded, complete, stable, and preferred semantics.
Our results mirror similar previous results [5] in that, for example, the verification problem for grounded semantics under both
credulous and skeptical reasoning is in P, while the verification problem for skeptical reasoning for preferred semantics is DP2-

* Corresponding author.

E-mail addresses: lars.bengel@fernuni-hagen.de (L. Bengel), matthias.thimm@fernuni-hagen.de (M. Thimm), federico.cerutti@unibs.it (F. Cerutti),
m.vallati@hud.ac.uk (M. Vallati).

https://doi.org/10.1016/j.ijar.2025.109478

Received 16 December 2024; Received in revised form 20 May 2025; Accepted 20 May 2025

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ijar
http://orcid.org/0000-0002-8157-1053
mailto:lars.bengel@fernuni-hagen.de
mailto:matthias.thimm@fernuni-hagen.de
mailto:federico.cerutti@unibs.it
mailto:m.vallati@hud.ac.uk
https://doi.org/10.1016/j.ijar.2025.109478
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijar.2025.109478&domain=pdf
https://doi.org/10.1016/j.ijar.2025.109478
http://creativecommons.org/licenses/by/4.0/

International Journal of Approximate Reasoning 185 (2025) 109478

2

L. Bengel, M. Thimm, F. Cerutti et al.

complete (see Section 3 for definitions of the complexity classes). While the proofs of membership follow easily from existing results
[5], the hardness proofs require some novel reduction techniques and insights.

In addition to the theoretical analysis, we present and analyse concrete algorithms for determining the set of acceptable arguments
wrt. preferred and stable semantics and both reasoning modes.1 We first consider two baseline algorithms. The first one computes
the set of acceptable arguments by simply iterating over all arguments and solving the corresponding decision problem for each
argument. To be comparable with our other algorithms, we use simple Sat-solver based algorithms in the spirit of 𝜇-toksia [6] for
these decision problems. Our second baseline method simply enumerates all extensions and then takes their union (for credulous
reasoning) or intersection (for skeptical reasoning). We improve upon this second algorithm by defining an optimised version that
enumerates only a subset of all extensions that already cover the whole set of acceptable arguments. Finally, we describe a fourth
algorithm that uses a MaxSat-solver to maximise the number of newly discovered acceptable arguments in each call. We provide an
extensive experimental evaluation of these four algorithms on all benchmarks from all ICCMA2 competitions. Our results consistently
show that the two optimised algorithms significantly outperform the baseline algorithms.

To summarise, the contributions of this paper are as follows.

1. We characterise the computational complexity of the verification problem of checking whether a given set is exactly the set of
acceptable arguments wrt. both credulous and skeptical reasoning and the grounded, complete, stable, and preferred semantics
(Section 3).

2. We present four (Sat-based) algorithms for solving the problem of determining the set of acceptable arguments wrt. credulous
reasoning and the stable and preferred semantics (Section 4).

3. We present four (Sat-based) algorithms for solving the problem of determining the set of acceptable arguments wrt. skeptical
reasoning and the stable and preferred semantics (Section 5).

4. We report on an experimental evaluation of the runtime performance of the above four algorithms (Section 6).

We provide necessary preliminaries in Section 2 and conclude in Section 7. All proofs of technical results can be found in the appendix.

This paper is an extended version of the conference paper [7]. This version contains all proofs of technical results, an extensive
presentation of the contributions, algorithms for both credulous and skeptical reasoning wrt. grounded, complete, stable, and preferred
semantics (the previous version only considered credulous reasoning wrt. to complete semantics), and a thorough experimental
evaluation of algorithms for both credulous and skeptical reasoning wrt. the grounded, complete, stable, and preferred semantics on
data sets from ICCMA 2015–2023 (the previous version only covered credulous reasoning wrt. to complete semantics and the data
sets from ICCMA 2015–2019).

2. Preliminaries

An abstract argumentation framework 𝖠𝖥 is a tuple 𝖠𝖥 = (𝖠,𝖱) where 𝖠 is a set of arguments and 𝖱 is a relation 𝖱 ⊆ 𝖠×𝖠. For two
arguments 𝑎, 𝑏 ∈ 𝖠 the relation 𝑎𝖱𝑏 means that argument 𝑎 attacks argument 𝑏. For 𝑎 ∈ 𝖠 define 𝑎− = {𝑏 ∣ 𝑏𝖱𝑎} and 𝑎+ = {𝑏 ∣ 𝑎𝖱𝑏}.
We say that a set 𝑆 ⊆ 𝖠 defends an argument 𝑏 ∈ 𝖠 if for all 𝑎 with 𝑎𝖱𝑏 then there is 𝑐 ∈ 𝑆 with 𝑐𝖱𝑎.

Semantics are given to abstract argumentation frameworks by means of extensions [1]. An extension 𝐸 is a set of arguments
𝐸 ⊆ 𝖠 intended to represent a coherent point of view on the argumentation modelled by 𝖠𝖥. Arguably, the most important property
of an extension is its admissibility. An extension 𝐸 is called admissible if and only if (1) 𝐸 is conflict-free, i.e., there are no arguments
𝑎, 𝑏 ∈ 𝐸 with 𝑎𝖱𝑏 and (2) 𝐸 defends every 𝑎 ∈ 𝐸, and it is called complete (CO) if, additionally, it satisfies (3) if 𝐸 defends 𝑎 then
𝑎 ∈𝐸.

Different types of classical semantics can be phrased by imposing further constraints. In particular, a complete extension 𝐸

• is grounded (GR) if and only if 𝐸 is minimal;

• is preferred (PR) if and only if 𝐸 is maximal; and

• is stable (ST) if and only if 𝖠 =𝐸 ∪ {𝑏 ∣ ∃𝑎 ∈𝐸 ∶ 𝑎𝖱𝑏}.

All statements on minimality/maximality are meant to be with respect to set inclusion. Note that the grounded extension is uniquely
determined and that stable extensions may not exist [1].

Example 1. Consider the abstract argumentation framework 𝖠𝖥1 depicted as a directed graph in Fig. 1. In 𝖠𝖥1 there are three
complete extensions 𝐸1,𝐸2,𝐸3 defined via 𝐸1 = {𝑎1}, 𝐸2 = {𝑎1, 𝑎3}, and 𝐸3 = {𝑎1, 𝑎4}. 𝐸1 is also grounded and 𝐸2 and 𝐸3 are both
stable and preferred.

Let 𝜎 ∈ {CO,GR,ST,PR} be some semantics and 𝖠𝖥 = (𝖠,𝖱) an abstract argumentation framework. Then, an argument 𝑎 ∈ 𝖠 is
skeptically accepted in 𝖠𝖥, denoted by 𝖠𝖥 ⊧s

𝜎
𝑎, if 𝑎 is contained in every 𝜎-extension. An argument 𝑎 ∈ 𝖠 is credulously accepted in 𝖠𝖥,

1 We do not consider grounded semantics and skeptical reasoning with complete semantics, since these problems are polynomial; we also do not consider credulous
reasoning with complete semantics explicitly, since this is equivalent to credulous reasoning with preferred semantics.

2 http://argumentationcompetition.org.

http://argumentationcompetition.org

International Journal of Approximate Reasoning 185 (2025) 109478

3

L. Bengel, M. Thimm, F. Cerutti et al.

𝑎1 𝑎2 𝑎3 𝑎4

Fig. 1. The abstract argumentation framework 𝖠𝖥1 from Example 1.

denoted by 𝖠𝖥 ⊧c
𝜎
𝑎, if 𝑎 is contained in some 𝜎-extension. Define Acc𝑠

𝜎
(𝖠𝖥) = {𝑎 ∈ 𝖠 ∣ 𝖠𝖥 ⊧𝑠

𝜎
𝑎} and Acc𝑐

𝜎
(𝖠𝖥) = {𝑎 ∈ 𝖠 ∣ 𝖠𝖥 ⊧𝑐

𝜎
𝑎} to be

the sets of skeptically and credulously accepted arguments in 𝖠𝖥, respectively. Observe that Acc𝑠
𝜎
(𝖠𝖥) ⊆ Acc𝑐

𝜎
(𝖠𝖥) for all semantics

and abstract argumentation frameworks, except for 𝜎 = ST and an argumentation framework 𝖠𝖥′ that possesses no stable extension.
In the latter case Acc𝑠

𝜎
(𝖠𝖥′) = 𝖠 and Acc𝑐

𝜎
(𝖠𝖥′) = ∅ by definition.

In the remainder of the paper, we consider the computational problem of determining the sets Acc𝑠
𝜎
(𝖠𝖥) and Acc𝑐

𝜎
(𝖠𝖥), respec-

tively. Note that these exact problems have not been investigated before, to the best of our knowledge, in terms of computational
complexity and algorithms. Previous studies and algorithms either focus on a single acceptability problem, such as deciding whether
𝖠𝖥 ⊧x

𝜎
𝑎 is true for 𝑥 ∈ {𝑠, 𝑐} and some argument 𝑎 ∈ 𝖠, or computing one or all extensions (as done in the ICCMA series of argumen-

tation competitions).

3. Complexity of computing the set of acceptable arguments

We assume familiarity with basic concepts of computational complexity and basic complexity classes such as P, NP and coNP, see
[8] for an introduction. Recall that every decision problem can be represented as a language 𝐿 that contains exactly those instances
to the problem with answer “yes.” A complexity class can then be represented by the languages of those problems it contains. We will
make use of the complexity class DP, which is defined as DP = {𝐿1 ∩𝐿2 ∣𝐿1 ∈ NP,𝐿2 ∈ coNP}. So DP contains the intersections of a
language in NP and a language in coNP. We also need the following class DP2 = {𝐿1 ∩𝐿2 ∣𝐿1 ∈ NPNP,𝐿2 ∈ coNPNP} where NPNP

is the class of problems that can be solved by a non-deterministic Turing machine in polynomial time that has access to an NP oracle
and coNPNP is the class of problems where the complement can be solved by a non-deterministic Turing machine in polynomial time
that has access to an NP oracle. NPNP is also written as Σ𝑃2 and coNPNP as Π𝑃

2 . So DP2 contains those languages that are intersections
of a language in Σ𝑃2 and a language in Π𝑃

2 .

In this section, we are interested in the computational complexity of the following decision problem:

ACC𝑥
𝜎

Input: 𝖠𝖥 = (𝖠,𝖱) and 𝐸 ⊆ 𝖠
Output: true iff 𝐸 = Acc𝑥

𝜎
(𝖠𝖥),

for a semantics 𝜎 and 𝑥 ∈ {𝑠, 𝑐}.

We start with the tractable problems.

Proposition 1. ACC𝑠
GR, ACC𝑐

GR, and ACC𝑠
CO are in P.

Many other problems are DP-complete.

Proposition 2. ACC𝑐
CO, ACC𝑐

PR, and ACC𝑐
ST are DP-complete.

Proposition 3. ACC𝑠
ST is DP-complete.

Skeptical inference with preferred semantics is (unsurprisingly) on the second level of the polynomial hierarchy.

Proposition 4. ACC𝑠
PR is DP2-complete.

The results from above also allow us to easily provide an upper bound for the computational complexity of the functional problem
of determining the set of acceptable arguments. For the following result, recall that FNPDP[1] is the complexity class of functional
problems that can be solved by a non-deterministic Turing machine running in polynomial time that can call a DP-oracle for a
constant number of times. The class FNPDP2[1] is defined analogously. Let furthermore EnumACC𝜎

𝑥
denote the problem of computing

Acc𝑥
𝜎
(𝖠𝖥).

Corollary 1. Let 𝖠𝖥 be an abstract argumentation framework.

1. The problems EnumACCGR
𝑠

, EnumACCGR
𝑐

, EnumACCCO
𝑠

are in FP, respectively.

2. The problems EnumACC𝐶𝑂
𝑐

, EnumACCPR
𝑐

, EnumACCST
𝑐

, EnumACCST
𝑠

are in FNPDP[1], respectively.

3. The problem EnumACCPR
𝑠

is in FNPDP2[1].

Table 1 summarises the results of this section and also lists known complexity results for deciding credulous reasoning (Cred𝜎
for deciding whether on input 𝖠𝖥 and 𝑎 it holds 𝖠𝖥 ⊧c

𝜎
𝑎) and skeptical reasoning (Skep𝜎 for deciding whether on input 𝖠𝖥 and 𝑎 it

International Journal of Approximate Reasoning 185 (2025) 109478

4

L. Bengel, M. Thimm, F. Cerutti et al.

Table 1
Overview in existing (columns Cred𝜎 and Skep𝜎) and new (remaining columns)
complexity results; all statements are membership statements, except where a suffix
“-c” indicates completeness statements.

𝜎 Cred𝜎 Skep𝜎 ACC𝑐

𝜎
ACC𝑠

𝜎
EnumACC𝑐

𝜎
EnumACC𝑠

𝜎

GR P P P P FP FP
CO NP-c P DP-c P FNPDP[1] FP
ST NP-c coNP-c DP-c DP-c FNPDP[1] FNPDP[1]

PR NP-c ΠP
2 -c DP-c DP2-c FNPDP[1] FNPDP[2]

holds 𝖠𝖥 ⊧s
𝜎
𝑎) for reference, cf. [5]. Membership proofs (see Appendix A) for the new results do derive quite naturally from proofs

of those previously known results, while hardness proofs required some new and challenging techniques.

4. Algorithms for credulous reasoning

We will now investigate some algorithms that compute the set Acc𝑐
𝜎
(𝖠𝖥) for 𝜎 ∈ {CO,ST,PR}. We do not consider grounded

semantics here as Acc𝑐GR(𝖠𝖥) can be computed in polynomial time anyway, cf. see Proposition 1.

We will develop reduction-based algorithms [9,2] and leverage Sat-solving technologies. Our encodings of acceptability problems
into Sat are based on the encodings proposed initially in [10] and used in modern Sat-based argumentation solvers, see e.g. [9,11].
We consider complete semantics first. Let 𝖠𝖥 = (𝖠,𝖱) be an abstract argumentation framework. For each argument 𝑎 ∈ 𝖠 we introduce
three propositional variables 𝚒𝚗𝑎,𝚘𝚞𝚝𝑎,𝚞𝚗𝚍𝚎𝚌𝑎 which model the cases that 𝑎 is in the extension, 𝑎 is attacked by the extension, 𝑎 is
not in the extension nor attacked by it, respectively. Then define

ΦCO
𝑎

=

(
𝚘𝚞𝚝𝑎 ⇔

⋁
𝑏∈𝑎−

𝚒𝚗𝑏

)
∧

(
𝚒𝚗𝑎 ⇔

⋀
𝑏∈𝑎−

𝚘𝚞𝚝𝑏

)
∧
(
𝚒𝚗𝑎 ∨ 𝚘𝚞𝚝𝑎 ∨ 𝚞𝚗𝚍𝚎𝚌𝑎

)
∧ (¬𝚒𝚗𝑎 ∨ ¬𝚘𝚞𝚝𝑎) ∧ (¬𝚒𝚗𝑎 ∨ ¬𝚞𝚗𝚍𝚎𝚌𝑎) ∧ (¬𝚘𝚞𝚝𝑎 ∨ ¬𝚞𝚗𝚍𝚎𝚌𝑎)

and

ΨCO
𝖠𝖥 =

⋀
𝑎∈𝖠

ΦCO
𝑎
.

For any propositional formula Φ, let Mod(Φ) denote its set of models. For any model 𝜔 let 𝐸(𝜔) = {𝑎 ∣ 𝜔(𝚒𝚗𝑎) = true}. Variants of
the following observations have been proven in e.g. [10].

Proposition 5. Let 𝖠𝖥= (𝖠,𝖱) be an abstract argumentation framework.

1. If 𝜔 ∈ Mod(ΨCO
𝖠𝖥

) then 𝐸(𝜔) is a complete extension of 𝖠𝖥.

2. If 𝐸 is a complete extension of 𝖠𝖥 then there is 𝜔∈ Mod(ΨCO
𝖠𝖥

) with 𝐸(𝜔) =𝐸.

3. 𝑎 ∈ Acc𝑐CO(𝖠𝖥) if and only if ΨCO
𝖠𝖥

∧ 𝚒𝚗𝑎 is satisfiable.

Due to Acc𝑐CO(𝖠𝖥) = Acc𝑐PR(𝖠𝖥) we set ΨPR
𝖠𝖥

= ΨCO
𝖠𝖥

and use the encoding ΨCO
𝖠𝖥

for credulous reasoning with preferred semantics
as well.

For stable semantics, we can define a slightly simpler encoding as we do not need to encode the case in which an argument is
neither in the extension nor attacked by the extension. So, for each argument 𝑎 ∈ 𝖠, we introduce one propositional variable 𝚒𝚗𝑎,
which models the case that 𝑎 is in the extension. Then define

ΦST
𝑎

=

(
¬𝚒𝚗𝑎 ⇔

⋁
𝑏∈𝑎−

𝚒𝚗𝑏

)
∧

(
𝚒𝚗𝑎 ⇔

⋀
𝑏∈𝑎−

¬𝚒𝚗𝑏

)
and

ΨST
𝖠𝖥 =

⋀
𝑎∈𝖠

ΦST
𝑎
.

The observations from Proposition 5 apply similarly for stable semantics as well.

Proposition 6. Let 𝖠𝖥= (𝖠,𝖱) be an abstract argumentation framework.

1. If 𝜔 ∈ Mod(ΨST
𝖠𝖥
) then 𝐸(𝜔) is a stable extension of 𝖠𝖥.

2. If 𝐸 is a stable extension of 𝖠𝖥 then there is 𝜔∈ Mod(ΨST
𝖠𝖥
) with 𝐸(𝜔) =𝐸.

3. 𝑎 ∈ Acc𝑐ST(𝖠𝖥) if and only if ΨST
𝖠𝖥

∧ 𝚒𝚗𝑎 is satisfiable.

International Journal of Approximate Reasoning 185 (2025) 109478

5

L. Bengel, M. Thimm, F. Cerutti et al.

Algorithm 1 Algorithm IAQ𝑐 .

Input: 𝖠𝖥 = (𝖠,𝖱), 𝜎 ∈ {CO,ST,PR}
Output: Acc𝑐

𝜎
(𝖠𝖥)

1: 𝑆 ← ∅
2: for 𝑎 ∈ 𝖠 do

3: if Sat(Ψ𝜎
𝖠𝖥

∧ 𝚒𝚗𝑎) then

4: 𝑆 ← 𝑆 ∪ {𝑎}
5: return 𝑆

The above observations enable us to use Sat solving technology by encoding abstract argumentation problems into one or a series
of Sat problems.3

Example 2. Given the abstract argumentation framework 𝖠𝖥1 from Example 1, ΨCO
𝖠𝖥

is(
𝚒𝚗𝑎1 ∨ 𝚘𝚞𝚝𝑎1 ∨ 𝚞𝚗𝚍𝚎𝚌𝑎1

)
∧(

𝚘𝚞𝚝𝑎2 ⇔ 𝚒𝚗𝑎1
)
∧
(
𝚒𝚗𝑎2 ⇔ 𝚘𝚞𝚝𝑎1

)
∧
(
𝚒𝚗𝑎2 ∨ 𝚘𝚞𝚝𝑎2 ∨ 𝚞𝚗𝚍𝚎𝚌𝑎2

)
∧(

𝚘𝚞𝚝𝑎3 ⇔ 𝚒𝚗𝑎2 ∨ 𝚒𝚗𝑎4
)
∧
(
𝚒𝚗𝑎3 ⇔ 𝚘𝚞𝚝𝑎2 ∧ 𝚘𝚞𝚝𝑎4

)
∧
(
𝚒𝚗𝑎3 ∨ 𝚘𝚞𝚝𝑎3 ∨ 𝚞𝚗𝚍𝚎𝚌𝑎3

)
∧(

𝚘𝚞𝚝𝑎4 ⇔ 𝚒𝚗𝑎3
)
∧
(
𝚒𝚗𝑎4 ⇔ 𝚘𝚞𝚝𝑎3

)
∧
(
𝚒𝚗𝑎4 ∨ 𝚘𝚞𝚝𝑎4 ∨ 𝚞𝚗𝚍𝚎𝚌𝑎4

)
Observe that Acc𝑐CO(𝖠𝖥1) = {𝑎1, 𝑎3, 𝑎4}.

In the remainder of this section, we will use 𝖠𝖥1 as a running example to explain the behaviour of the introduced algorithms.

4.1. Iterative acceptability queries

A straightforward algorithm for determining Acc𝑐
𝜎
(𝖠𝖥) is to exploit observations 3 of Propositions 5 and 6, respectively, and check

for each 𝑎 ∈ 𝖠 whether Ψ𝜎
𝖠𝖥

∧𝚒𝚗𝑎 is satisfiable using some Sat solver. We denote this algorithm IAQ𝑐 (for iterative acceptability queries
wrt. credulous reasoning), it is depicted as Algorithm 1. We write Sat(𝜙) for a call to an external Sat solver that evaluates to true
if 𝜙 is satisfiable.

Example 3. Assuming 𝜎 = CO, the IAQ𝑐 algorithm makes exactly one call per argument to the Sat solver, and updates 𝑆 accordingly.
Considering 𝖠𝖥1, after its initialisation 𝑆 ← ∅, 𝑆 is updated as follows:

1. loop on 𝑎1: 𝑆 = {𝑎1}
2. loop on 𝑎2: 𝑆 = {𝑎1}
3. loop on 𝑎3: 𝑆 = {𝑎1, 𝑎3}
4. loop on 𝑎4: 𝑆 = {𝑎1, 𝑎3, 𝑎4}

The following observation regarding the correctness of the algorithm should be obvious.

Proposition 7. Algorithm IAQ𝑐 is sound and complete.

4.2. Exhaustive extension enumeration

Another straightforward approach is to leverage the fact that Sat solvers usually do not only report on the satisfiability of a given
formula but also provide a model as a witness. For a model 𝜔 let

𝐶(𝜔) =
⋁

𝜔(𝛼)=true

¬𝛼 ∨
⋁

𝜔(𝛼)=false

𝛼.

One can then enumerate all models of formula 𝜙 by first retrieving any one model 𝜔, then retrieving a model 𝜔′ of 𝜙 ∧ 𝐶(𝜔), then
a model 𝜔′′ if 𝜙 ∧ 𝐶(𝜔) ∧ 𝐶(𝜔′) and so on. It is clear that all models retrieved this way are models of 𝜙 and that by adding 𝐶(𝜔),
we avoid retrieving the same model on future calls again. Eventually, the formula becomes unsatisfiable, so we retrieved all the
models. We can use this strategy to enumerate all complete/stable extensions of an input abstract argumentation framework (using
observations 2 and 3 of Propositions 5 and 6, respectively). The union of these is then the set Acc𝑐

𝜎
(𝖠𝖥). We denote this algorithm

3 Note that formulas such as ΨCO
𝖠𝖥

can be easily turned in conjunctive normal form, the standard input format for Sat solvers, with only polynomial overhead, so
we do not explicitly discuss matters related to this aspect in the following.

International Journal of Approximate Reasoning 185 (2025) 109478

6

L. Bengel, M. Thimm, F. Cerutti et al.

Algorithm 2 Algorithm EEE𝑐 .

Input: 𝖠𝖥 = (𝖠,𝖱), 𝜎 ∈ {CO,ST,PR}
Output: Acc𝑐

𝜎
(𝖠𝖥)

1: 𝑆 ← ∅
2: Ψ←Ψ𝜎

𝖠𝖥
3: while false ≠ 𝜔 = Witness(Ψ) do

4: 𝑆 ← 𝑆 ∪𝐸(𝜔)
5: Ψ←Ψ∧𝐶(𝜔)
6: return 𝑆

Algorithm 3 Algorithm SEE𝑐 .

Input: 𝖠𝖥 = (𝖠,𝖱), 𝜎 ∈ {CO,ST,PR}
Output: Acc𝑐

𝜎
(𝖠𝖥)

1: 𝑆 ← ∅
2: 𝐷←𝖠
3: while false ≠ 𝜔 = Witness(Ψ𝜎

𝖠𝖥
∧
⋁

𝑎∈𝐷 𝚒𝚗𝑎) do

4: 𝑆 ← 𝑆 ∪𝐸(𝜔)
5: 𝐷←𝐷 ⧵𝐸(𝜔)
6: return 𝑆

EEE𝑐 and it is depicted as Algorithm 2. We write Witness(𝜙) for a call to an external Sat solver that evaluates to a model 𝜔 of 𝜙 if
𝜙 is satisfiable, or false otherwise.

Example 4. Assuming 𝜎 = CO, let us consider one by one the iterations that the EEE𝑐 algorithm performs on 𝖠𝖥1.

1. 𝐸 = {𝑎1, 𝑎3} is found, so

𝐸(𝜔) = {𝑎1, 𝑎3} 𝑆 = {𝑎1, 𝑎3} 𝐶(𝜔) = {¬𝑎1 ∨ 𝑎2 ∨ ¬𝑎3 ∨ 𝑎4}

2. 𝐸 = {𝑎1} is found, so

𝐸(𝜔) = {𝑎1} 𝑆 = {𝑎1, 𝑎3} 𝐶(𝜔) = {¬𝑎1 ∨ 𝑎2 ∨ 𝑎3 ∨ 𝑎4}

3. 𝐸 = {𝑎1, 𝑎4} is found, so

𝐸(𝜔) = {𝑎1, 𝑎4} 𝑆 = {𝑎1, 𝑎3, 𝑎4} 𝐶(𝜔) = {¬𝑎1 ∨ 𝑎2 ∨ 𝑎3 ∨ ¬𝑎4}

A final iteration is then performed, but Ψ is now unsatisfiable, as no more extensions exist, and therefore Witness(Ψ) = 𝐹𝐴𝐿𝑆𝐸,
and the algorithm terminates.

The following observation regarding the correctness of the algorithm should be obvious.

Proposition 8. Algorithm EEE𝑐 is sound and complete.

4.3. Selective extension enumeration

We now turn to our proposal of a non-trivial algorithm for computing Acc𝑐
𝜎
(𝖠𝖥). A major drawback of the algorithm EEE𝑐 is that

an abstract argumentation framework may feature an exponential number of complete/stable extensions and many may overlap to
a large degree. It may therefore be the case that in many iterations of the main loop in line 3 of Algorithm 2 no new arguments are
added to 𝑆 . To address this issue, we propose a more selective extension enumeration SEE, implemented in Algorithm 3.

Differently from Algorithm 2, the algorithm SEE𝑐 constrains the search for further models (line 3) by requiring that at least one
argument that has not already been classified as accepted, needs to be included. Indeed, at the first iteration (line 3) the Sat solver
will identify a 𝜎-extension with at least one 𝚒𝚗 argument. The set of 𝚒𝚗 arguments in the obtained extension will then be removed
from the set 𝐷 of unvisited arguments (line 5). From the second iteration, the Sat solver will then be forced to identify 𝜎-extensions
that intersect with the unvisited arguments. As we can see in the following example, SEE𝑐 requires one less iteration to identify all
the acceptable arguments, compared to EEE𝑐 from the previous section.

Example 5. Assuming again 𝜎 = CO, let us consider the iterations that the SEE𝑐 algorithm performs on 𝖠𝖥1.

1. 𝐸 = {𝑎1, 𝑎3} is found, so

𝐸(𝜔) = {𝑎1, 𝑎3} 𝑆 = {𝑎1, 𝑎3} 𝐷 = {𝑎2, 𝑎4}

International Journal of Approximate Reasoning 185 (2025) 109478

7

L. Bengel, M. Thimm, F. Cerutti et al.

Algorithm 4 Algorithm SEEM𝑐 .

Input: 𝖠𝖥 = (𝖠,𝖱), 𝜎 ∈ {CO,ST,PR}
Output: Acc𝑐

𝜎
(𝖠𝖥)

1: 𝑆 ← ∅
2: 𝐷←𝖠
3: while false ≠ 𝜔 = MaxSat({𝚒𝚗𝑎 ∣ 𝑎 ∈𝐷},Ψ𝜎

𝖠𝖥
) do

4: 𝑆 ← 𝑆 ∪𝐸(𝜔)
5: 𝐷←𝐷 ⧵𝐸(𝜔)
6: return 𝑆

2. 𝐸 = {𝑎1, 𝑎4} is found, so

𝐸(𝜔) = {𝑎1, 𝑎4} 𝑆 = {𝑎1, 𝑎3, 𝑎4} 𝐷 = {𝑎2}

Finally, since 𝑎2 cannot be included in any complete extension, the overall formula is unsatisfiable and the execution ends. Observe, in
particular, that after the algorithm found the extension 𝐸 = {𝑎1, 𝑎3} in the first iteration, it will not consider the extension 𝐸′ = {𝑎1}
in any of the following iterations as it introduces no new arguments.

Proposition 9. Algorithm SEE𝑐 is sound and complete.

4.4. Selective extension enumeration via MaxSat

In (unweighted) MaxSat [12], formulas can be either hard or soft. The solutions of a MaxSat problem are determined among all as-

signments that satisfy all the hard formulas and are those that maximise the number of satisfied soft formulas. We write MaxSat(𝑆,𝐻)
(with a set of formulas 𝑆 and a formula 𝐻) for a call to an external MaxSat solver that evaluates to a model 𝜔 that satisfies 𝐻 and a
maximal number of formulas in 𝑆 . If 𝐻 is not satisfiable, MaxSat(𝑆,𝐻) evaluates to false. Algorithm 4 shows our final algorithm
SEEM𝑐 for credulous reasoning.

The algorithm SEEM𝑐 forces the MaxSat solver to maximise the set of unvisited arguments at each iteration. Given the simplicity
and the size of the abstract argumentation framework 𝖠𝖥1, in this specific case, the SEEM𝑐 algorithm would perform as SEE𝑐 , so we
do not give an additional example here.

Proposition 10. Algorithm SEEM𝑐 is sound and complete.

Despite the fact that SEEM𝑐 seems to be the most sophisticated algorithm so far, we will see later (in Section 6) that it is indeed
outperformed in many cases by the simpler SEE𝑐 version.

5. Algorithms for skeptical reasoning

We will now investigate some algorithms that compute the set Acc𝑠
𝜎
(𝖠𝖥) for 𝜎 ∈ {ST,PR}. We do not consider grounded and

complete semantics here as Acc𝑠GR(𝖠𝖥) = Acc𝑠CO(𝖠𝖥) can be computed in polynomial time anyway, cf. see Proposition 1.

For stable semantics, we will develop Sat-based algorithms and use the encoding ΨST
𝖠𝖥

from the previous section. For that, we will
take the following well-known fact about skeptical reasoning wrt. stable semantics and ΨST

𝖠𝖥
.

Proposition 11. Let 𝖠𝖥= (𝖠,𝖱) be an abstract argumentation framework. Then 𝑎∈ Acc𝑠ST(𝖠𝖥) if and only if ΨST
𝖠𝖥

∧ ¬𝚒𝚗𝑎 is unsatisfiable.

For preferred semantics, note that the problem of deciding whether an argument 𝑎 is skeptically accepted is Π𝑃
2 -complete [5].

Thus, it cannot be solved by a single Sat-solver call (under standard complexity-theoretic assumptions). To develop similar baseline
algorithms as before for skeptical reasoning under preferred semantics (in particular skeptical variants of the methods IAQ and EEE),
we will make use of oracle calls of the form SkepPref(𝖠𝖥, 𝑎) and PrefExts(𝖠𝖥). Here SkepPref(𝖠𝖥, 𝑎) returns true if and only if
𝑎 is skeptically accepted wrt. preferred semantics in 𝖠𝖥 (and false otherwise) while PrefExts(𝖠𝖥) returns the set of all preferred
extensions of 𝖠𝖥. These calls can be implemented by solvers capable of solving these problems, such as e.g., 𝜇-toksia [6] or fudge
[13] (which themselves use iterative calls to a Sat-solver for producing the answers).

5.1. Iterative acceptability queries

As in Section 4.1 for the case of credulous reasoning, a straightforward algorithm for determining Acc𝑠
𝜎
(𝖠𝖥) is to check skeptical

acceptance for each 𝑎 ∈ 𝖠 individually. We denote this algorithm IAQ𝑠, which is depicted as Algorithm 5. As before, we write Sat(𝜙)
for a call to an external Sat solver that evaluates to true if 𝜙 is satisfiable (and SkepPref(𝖠𝖥, 𝑎) to decide skeptical acceptance wrt.
preferred semantics). The following observation regarding the correctness of the algorithm should be obvious.

Proposition 12. Algorithm IAQ𝑠 is sound and complete.

International Journal of Approximate Reasoning 185 (2025) 109478

8

L. Bengel, M. Thimm, F. Cerutti et al.

Algorithm 5 Algorithm IAQ𝑠.

Input: 𝖠𝖥 = (𝖠,𝖱), 𝜎 ∈ {ST,PR}
Output: Acc𝑠

𝜎
(𝖠𝖥)

1: 𝑆 ← ∅
2: for 𝑎 ∈ 𝖠 do

3: if 𝜎 = ST then

4: if ¬Sat(ΨST
𝖠𝖥

∧ ¬𝚒𝚗𝑎) then

5: 𝑆 ← 𝑆 ∪ {𝑎}
6: if 𝜎 = PR then

7: if SkepPref(𝖠𝖥, 𝑎) then

8: 𝑆 ← 𝑆 ∪ {𝑎}
9: return 𝑆

Algorithm 6 Algorithm EEE𝑠.

Input: 𝖠𝖥 = (𝖠,𝖱), 𝜎 ∈ {ST,PR}
Output: Acc𝑠

𝜎
(𝖠𝖥)

1: 𝑆 ←𝖠
2: if 𝜎 = ST then

3: Ψ←ΨST
𝖠𝖥

4: while false ≠ 𝜔 = Witness(Ψ) do

5: 𝑆 ← 𝑆 ∩𝐸(𝜔)
6: Ψ←Ψ∧𝐶(𝜔)
7: if 𝜎 = PR then

8: for 𝐸 ∈ PrefExts(𝖠𝖥) do

9: 𝑆 ← 𝑆 ∩𝐸
10: return 𝑆

Algorithm 7 Algorithm SEE𝑠.

Input: 𝖠𝖥 = (𝖠,𝖱)
Output: Acc𝑠ST(𝖠𝖥)
1: 𝑆 ←𝖠
2: while false ≠ 𝜔 = Witness(ΨST

𝖠𝖥
∧
⋁

𝑎∈𝑆 ¬𝚒𝚗𝑎) do

3: 𝑆 ← 𝑆 ∩𝐸(𝜔)
4: return 𝑆

5.2. Exhaustive extension enumeration

As in Section 4.2 for the case of credulous reasoning, another straightforward approach for skeptical reasoning is to exhaustively
enumerate all extensions and take their intersection. For that, recall

𝐶(𝜔) =
⋁

𝜔(𝛼)=true

¬𝛼 ∨
⋁

𝜔(𝛼)=false

𝛼,

for any model 𝜔. We denote this algorithm EEE𝑠 and it is depicted as Algorithm 6. As before, we write Witness(𝜙) for a call to an
external Sat solver that evaluates to a model 𝜔 of 𝜙 if 𝜙 is satisfiable, or false otherwise (and we use PrefExts(𝖠𝖥) for a call to
a solver that enumerates all preferred extensions). The following observation regarding the correctness of the algorithm should be
obvious.

Proposition 13. Algorithm EEE𝑠 is sound and complete.

5.3. Selective extension enumeration via Sat for skeptical reasoning wrt. stable semantics

In this and the next section, we continue with algorithms that follow the scheme of the algorithms SEE𝑐 and SEEM𝑐 presented in
Sections 4.3 and 4.4, respectively, but only for skeptical reasoning wrt. stable semantics. Due to the higher computational complexity
of skeptical reasoning wrt. preferred semantics, those ideas cannot be applied in the same manner.

Again, a major drawback of the algorithm EEE𝑠 (for stable semantics) is that an abstract argumentation framework may feature
an exponential number of stable extensions and many may overlap to a large degree. So it may be the case that in many iterations
of the main loop in line 4 of Algorithm 6 no new arguments are added to 𝑆 . To address this, we present in Algorithm 7 the skeptical
variant of selective extension enumeration SEE𝑠 for stable semantics.

As one can see, the skeptical variant SEE𝑠 is even a bit simpler than the credulous variant SEE𝑐 (see Algorithm 3). We only
maintain a set 𝑆 of arguments that will hold the acceptable arguments once the algorithm terminates. This set is initialised with
all arguments. In each iteration of the algorithm, we constrain the search for further models (line 2) by requiring that at least one
argument currently assumed to be skeptically accepted must be ¬𝚒𝚗. Then, we take the intersection of the obtained stable extension
with the set 𝑆 and continue. Once no further model can be found, it is clear that all arguments in 𝑆 must be contained in every stable
extension.

International Journal of Approximate Reasoning 185 (2025) 109478

9

L. Bengel, M. Thimm, F. Cerutti et al.

Algorithm 8 Algorithm SEEM𝑠.

Input: 𝖠𝖥 = (𝖠,𝖱)
Output: Acc𝑠ST(𝖠𝖥)
1: 𝑆 ←𝖠
2: while false ≠ 𝜔 = MaxSat({¬𝚒𝚗𝑎 ∣ 𝑎 ∈ 𝑆},ΨST

𝖠𝖥
) do

3: 𝑆 ← 𝑆 ∩𝐸(𝜔)
4: return 𝑆

Proposition 14. Algorithm SEE𝑠 is sound and complete.

5.4. Selective extension enumeration via MaxSat for skeptical reasoning wrt. stable semantics

We can apply the same idea when going from SEE𝑐 to SEEM𝑐 for skeptical reasoning wrt. stable semantics as well. Line 2 of
Algorithm 7 only requires that at least one of the variables 𝚒𝚗𝑎 for 𝑎 ∈ 𝑆 be false. Using a MaxSat solver allows us to maximise the
number of arguments that can be dismissed in each iteration. Recall that MaxSat(𝑆,𝐻) (with a set of formulas 𝑆 and a formula 𝐻)
denotes a call to an external MaxSat solver that evaluates to a model 𝜔 that satisfies 𝐻 and a maximal number of formulas in 𝑆 . If
𝐻 is not satisfiable, MaxSat(𝑆,𝐻) evaluates to false. Algorithm 8 shows our final algorithm SEEM𝑠 for skeptical reasoning.

Proposition 15. Algorithm SEEM𝑠 is sound and complete.

As for the variant SEEM𝑐 for credulous reasoning and despite the fact that SEEM𝑠 seems to be the most sophisticated algorithm
so far (for skeptical reasoning), we will see later (in Section 6) that it is indeed outperformed in many cases by the simpler SEE𝑠

version.

6. Experimental evaluation

We performed an extensive experimental evaluation to compare the runtime performance of our new algorithms. We describe the
setup of this evaluation in Section 6.1 and present the results in Section 6.2. In Section 6.3 we conduct a small ablation study to show
that the concrete Sat-solver has no influence on the general behaviour of our algorithms.

6.1. Experimental setup

For the experimental evaluation, we considered the following problems

EC-PR Enumerate the acceptable arguments wrt. credulous reasoning with preferred semantics

EC-ST Enumerate the acceptable arguments wrt. credulous reasoning with stable semantics

ES-PR Enumerate the acceptable arguments wrt. skeptical reasoning with preferred semantics

ES-ST Enumerate the acceptable arguments wrt. skeptical reasoning with stable semantics

Again, we do not consider complete semantics since credulous reasoning with complete semantics is equivalent to credulous reason-

ing with preferred semantics, and skeptical reasoning with complete semantics is equivalent to credulous/skeptical reasoning with
grounded semantics, which can be solved in polynomial time and is also not considered.

For the above problems, we consider the algorithms depicted in Algorithms 1–8. More precisely, the competitors for the individual
problems are:

• EC-PR: IAQ𝑐 , EEE𝑐 , SEE𝑐 , SEEM𝑐

• EC-ST: IAQ𝑐 , EEE𝑐 , SEE𝑐 , SEEM𝑐

• ES-PR: IAQ𝑠, EEE𝑠

• ES-ST: IAQ𝑠, EEE𝑠, SEE𝑠, SEEM𝑠

Our algorithms were implemented in C++.4 For all calls of the form Sat(⋅), Witness(⋅) and MaxSat(⋅, ⋅) we used the CGSS
2.2.5 MaxSat-solver [14,15] based on the CaDiCal 1.9.5 Sat-solver [16,17]. For the problem ES-PR, all algorithms do not require
MaxSat(⋅, ⋅) calls and thus only use CaDiCal 1.9.5. We implemented the function SkepPref(𝖠𝖥, 𝑎) utilised in Algorithm 5 via a
CEGAR-style approach [18], similar to that of the 𝜇-toksia solver [6]. For Algorithm 6, the function PrefExts(𝖠𝖥) for enumerating
the preferred extensions has been implemented via the Sat-encoding ΨCO

𝖠𝖥
of the complete semantics and an iterative maximisation of

all found models [19]. We ran the experiments on a machine running Ubuntu 20.04 with an Intel Xeon E5 3.4 GHz CPU and 192 GB
of RAM. The evaluation has been conducted via the Probo2 benchmark suite [20]. We considered the benchmark datasets from the
ICCMA’15 to ICCMA’23 competitions [21–24]. Table 2 gives an overview on features of these datasets. There, #AFs is the number of

4 https://github.com/aig-hagen/algorithms_for_acceptable_arguments.

https://github.com/aig-hagen/algorithms_for_acceptable_arguments

International Journal of Approximate Reasoning 185 (2025) 109478

10

L. Bengel, M. Thimm, F. Cerutti et al.

Table 2
Statistics for all considered benchmark datasets.

Dataset #AFs Avg. |𝐴| Med. |𝐴| Std. |𝐴| Avg. |𝑅| Avg. 𝐷
ICCMA’15 192 1980 675 2424 105396 68
ICCMA’17 1050 16638 500 151641 301409 169
ICCMA’19 326 826 196 1784 97639 239
ICCMA’21 480 87331 48200 92881 7239611 161
ICCMA’23 329 29791 796 203719 1002470 299

Table 3
Results for EC-PR on the ICCMA’15, ICCMA’17, ICCMA’19, ICCMA’21 and
ICCMA’23 benchmark sets.

ICCMA’15
No. Algorithm 𝑁 #TO RT PAR10 #VBS
1 VBS 192 0 2474.12 12.89 -

2 SEE𝑐 192 0 2493.56 12.99 106
3 EEE𝑐 192 0 2571.85 13.40 43
4 IAQ𝑐 192 1 2942.53 77.83 10
5 SEEM𝑐 192 19 11491.34 1247.35 33
ICCMA’17
No. Algorithm 𝑁 #TO RT PAR10 #VBS
1 VBS 1050 223 28450.93 2575.67 -

2 SEE𝑐 1050 232 29529.34 2679.55 239
3 IAQ𝑐 1050 240 36385.91 2777.51 133
4 SEEM𝑐 1050 308 31471.52 3549.97 194
5 EEE𝑐 1050 541 32191.84 6213.52 118
ICCMA’19
No. Algorithm 𝑁 #TO RT PAR10 #VBS
1 VBS 326 0 664.77 2.04 -

2 SEE𝑐 326 0 774.88 2.38 134
3 EEE𝑐 326 0 946.80 2.90 85
4 IAQ𝑐 326 0 1004.89 3.08 59
5 SEEM𝑐 326 4 5437.36 163.92 48
ICCMA’21
No. Algorithm 𝑁 #TO RT PAR10 #VBS
1 VBS 480 347 62511.65 8805.23 -

2 IAQ𝑐 480 349 68501.58 8867.71 106
3 SEE𝑐 480 390 40434.98 9834.24 27
4 EEE𝑐 480 480 0.00 12000.00 0
5 SEEM𝑐 480 480 0.00 12000.00 0
ICCMA’23
No. Algorithm 𝑁 #TO RT PAR10 #VBS
1 VBS 329 59 9806.91 2181.78 -

2 SEE𝑐 329 63 8755.90 2324.49 129
3 IAQ𝑐 329 68 11353.52 2514.75 53
4 SEEM𝑐 329 81 10092.91 2985.08 45
5 EEE𝑐 329 142 7603.76 5202.44 43

instances in the dataset5; |𝐴| is the number of arguments of an instance, for which Table 2 shows the average, median and standard
deviation; Avg. |𝑅| is the average number of attacks in the instances of the dataset; Avg. 𝐷 is the average node degree over the whole
dataset.

Each algorithm was given 20 minutes to compute the solution for every instance (=argumentation framework) and problem. For
every algorithm and problem, we consider the number of unsolved instances and the runtime of solved instances. We also considered
the PAR10 (Penalised Average Runtime) score to compare the performance of the algorithms. This score combines runtime and ability
to solve, as it is calculated by considering runs that did not solve the problem as ten times the cutoff time.

5 Note that the ICCMA’17 purposefully contains duplicate AFs. In total there are 874 unique AFs in the ICCMA’17 dataset.

International Journal of Approximate Reasoning 185 (2025) 109478

11

L. Bengel, M. Thimm, F. Cerutti et al.

Table 4
Results for EC-ST on the ICCMA’15, ICCMA’17, ICCMA’19, ICCMA’21 and ICC-

MA’23 benchmark sets.

ICCMA’15
No. Algorithm 𝑁 #TO RT PAR10 #VBS
1 VBS 192 0 1442.36 7.51 -

2 EEE𝑐 192 0 1492.35 7.77 50
3 SEE𝑐 192 0 1520.09 7.92 95
4 IAQ𝑐 192 0 2336.67 12.17 25
5 SEEM𝑐 192 7 10497.84 492.18 22
ICCMA’17
No. Algorithm 𝑁 #TO RT PAR10 #VBS
1 VBS 1050 209 36085.22 2422.94 -

2 SEE𝑐 1050 219 33461.65 2534.73 260
3 IAQ𝑐 1050 232 35937.57 2685.65 125
4 SEEM𝑐 1050 279 22751.58 3210.24 133
5 EEE𝑐 1050 325 41943.91 3754.23 177
ICCMA’19
No. Algorithm 𝑁 #TO RT PAR10 #VBS
1 VBS 326 0 592.56 1.82 -

2 SEE𝑐 326 0 724.18 2.22 131
3 EEE𝑐 326 0 730.91 2.24 116
4 IAQ𝑐 326 0 790.67 2.43 43
5 SEEM𝑐 326 4 3008.31 156.47 36
ICCMA’21
No. Algorithm 𝑁 #TO RT PAR10 #VBS
1 VBS 480 159 99064.08 4181.38 -

2 IAQ𝑐 480 175 107816.26 4599.62 226
3 SEE𝑐 480 234 87482.91 6032.26 51
4 SEEM𝑐 480 368 49448.02 9303.02 27
5 EEE𝑐 480 401 16596.06 10059.58 17
ICCMA’23
No. Algorithm 𝑁 #TO RT PAR10 #VBS
1 VBS 329 38 14796.29 1430.99 -

2 SEE𝑐 329 39 16550.30 1472.80 135
3 IAQ𝑐 329 49 18408.16 1843.19 42
4 SEEM𝑐 329 57 13039.01 2118.66 37
5 EEE𝑐 329 81 13497.44 2995.43 77

6.2. Results

Tables 3–6 show the performance of the considered algorithms on all benchmarks for the respective problems EC-PR, EC-ST,
ES-PR, and ES-ST. For each benchmark and problem we also include the virtual best solver (VBS), i.e., the solver that uses per
instance the best other solver. In each table, 𝑁 is the total number of instances of the benchmark set; #TO gives the number of
time-outs/errors of each solver on this benchmark set; RT gives the runtime in seconds on all correctly solved benchmarks; PAR10
gives the average runtime where time-outs count ten times the cutoff-time, i.e., 12,000 seconds; #VBS gives the number of instances
contributed to the VBS. Algorithms are ranked by the number of unsolved instances (in increasing order). In the case of ties, solvers
are then ranked by runtime (in increasing order). Figs. 2 and 3 visualise the performance of all approaches on the ICCMA’21 and
ICCMA’23 benchmark sets (the other benchmark sets are not shown in order to keep the plots readable; their addition would not add
interesting information).

The first observation when inspecting the results is that out of 15 experiments, where the algorithm SEE𝑐/SEE𝑠 participated (one
for each pair of benchmark set and problem EC-PR, EC-ST, and ES-ST), it achieved first rank in 12 of them. In particular, SEE𝑐/SEE𝑠

outperforms EEE𝑐/EEE𝑠 in all but one case, namely on the ICCMA’15 data set for EC-ST. However, in that case, both algorithms
have almost the same performance (no time outs and about 1500s total runtime), so there is indeed no case where EEE𝑐/EEE𝑠 (sig-

nificantly) outperforms SEE𝑐/SEE𝑠. This shows that exhaustive extension enumeration can generally be avoided when determining
the set of acceptable arguments. SEE𝑐/SEE𝑠 also outperforms IAQ𝑐/IAQ𝑠 in all but two cases, namely EC-PR and EC-ST on the
ICCMA’21 data set. In both cases, IAQ𝑐 outperforms SEE𝑐 quite significantly. The main difference between the ICCMA’21 data set
and the others is that it features many large instances, which seems to benefit the IAQ𝑐 approach. Finally, SEE𝑐/SEE𝑠 also outper-

forms the algorithm SEEM𝑐/SEEM𝑠 in all of them. The reason for this is likely that the total number of required Sat-solver calls for
SEE𝑐/SEE𝑠 is lower than the total number of required Sat-solver calls for SEEM𝑐/SEEM𝑠, since the latter requires a MaxSat-solver
call for finding each new extension, which results in multiple Sat-solver calls for each such extension. Although the number of found

International Journal of Approximate Reasoning 185 (2025) 109478

12

L. Bengel, M. Thimm, F. Cerutti et al.

Table 5
Results for ES-PR on the ICCMA’15, ICCMA’17, ICCMA’19, ICCMA’21 and IC-

CMA’23 benchmark sets.

ICCMA’15
No. Algorithm 𝑁 #TO RT PAR10 #VBS
1 VBS 192 0 934.68 4.87 -

2 EEE𝑠 192 0 934.68 4.87 192
3 IAQ𝑠 192 47 22608.66 3055.25 0
ICCMA’17
No. Algorithm 𝑁 #TO RT PAR10 #VBS
1 VBS 1050 299 42531.08 3457.65 -

2 EEE𝑠 1050 343 46995.16 3964.76 461
3 IAQ𝑠 1050 587 59977.92 6765.69 144
ICCMA’19
No. Algorithm 𝑁 #TO RT PAR10 #VBS
1 VBS 326 0 386.61 1.19 -

2 EEE𝑠 326 0 387.11 1.19 310
3 IAQ𝑠 326 9 27777.68 416.50 16
ICCMA’21
No. Algorithm 𝑁 #TO RT PAR10 #VBS
1 VBS 480 480 0 12000.00 -

2 EEE𝑠 480 480 0 12000.00 0
3 IAQ𝑠 480 480 0 12000.00 0
ICCMA’23
No. Algorithm 𝑁 #TO RT PAR10 #VBS
1 VBS 329 81 6544.26 2974.30 -

2 EEE𝑠 329 101 6207.97 3702.76 213
3 IAQ𝑠 329 136 19856.58 5020.84 35

Fig. 2. Number of solved instances given the per-instance runtime by each algorithm for credulous reasoning on the ICCMA’21 and ICCMA’23 datasets.

extensions by SEE𝑐/SEE𝑠 is usually larger than for SEEM𝑐/SEEM𝑠, fewer Sat-solver calls are required for the former. Assuming
that each Sat-solver call has (roughly) the same time consumption, SEE𝑐/SEE𝑠 can outperform SEEM𝑐/SEEM𝑠.

An anomaly can be observed between 400 and 600 seconds runtime for SEE𝑐 in Fig. 2a, where a couple of instances can be
identified with similar runtime. Nearly all of these instances are from the ICCMA’21 dataset. In particular, these instances are those
with the smallest number of arguments in the ICCMA’21 dataset, they have between 9,450 and 12,600 arguments and thus about 8
times less arguments than the dataset average. Comparatively, they also have about 4 fewer attacks than the dataset average. These
instances are the only instances of the ICCMA’21 dataset that were solved at all by the algorithm SEE𝑐 , all other instances resulted
in a timeout. In the same instances, EEE𝑐 and SEEM𝑐 produce only timeouts and IAQ𝑐 exhibits no abnormal behaviour. In general,
this hints that IAQ𝑐 scales better with an increasing number of arguments than the other algorithms.

International Journal of Approximate Reasoning 185 (2025) 109478

13

L. Bengel, M. Thimm, F. Cerutti et al.

Table 6
Results for ES-ST on the ICCMA’15, ICCMA’17, ICCMA’19, ICCMA’21 and ICC-

MA’23 benchmark sets.

ICCMA’15
No. Algorithm 𝑁 #TO RT PAR10 #VBS
1 VBS 192 0 1152.76 6.00 -

2 SEE𝑠 192 0 1203.54 6.27 30
3 EEE𝑠 192 0 1539.26 8.02 38
4 IAQ𝑠 192 0 1996.11 10.40 10
5 SEEM𝑠 192 2 4389.96 147.86 114
ICCMA’17
No. Algorithm 𝑁 #TO RT PAR10 #VBS
1 VBS 1050 214 34651.15 2478.72 -

2 SEE𝑠 1050 218 34555.19 2524.34 220
3 IAQ𝑠 1050 232 38677.18 2688.26 71
4 SEEM𝑠 1050 245 21924.75 2820.88 261
5 EEE𝑠 1050 318 40397.99 3672.76 139
ICCMA’19
No. Algorithm 𝑁 #TO RT PAR10 #VBS
1 VBS 326 0 461.20 1.41 -

2 SEE𝑠 326 0 489.73 1.50 83
3 IAQ𝑠 326 0 679.94 2.09 36
4 EEE𝑠 326 0 709.62 2.18 67
5 SEEM𝑠 326 1 2007.56 42.97 140
ICCMA’21
No. Algorithm 𝑁 #TO RT PAR10 #VBS
1 VBS 480 82 99532.77 2257.36 -

2 SEE𝑠 480 82 99801.65 2257.92 350
3 SEEM𝑠 480 146 110667.28 3880.56 8
4 IAQ𝑠 480 204 91177.72 5289.95 0
5 EEE𝑠 480 401 13788.57 10053.73 40
ICCMA’23
No. Algorithm 𝑁 #TO RT PAR10 #VBS
1 VBS 329 34 15216.83 1286.37 -

2 SEE𝑠 329 35 15018.27 1322.24 120
3 IAQ𝑠 329 43 20851.61 1631.77 27
4 SEEM𝑠 329 67 13095.07 2483.57 100
5 EEE𝑠 329 79 14164.20 2924.51 48

Fig. 3. Number of solved instances given the per-instance runtime by each algorithm for skeptical reasoning on the ICCMA’21 and ICCMA’23 datasets.

International Journal of Approximate Reasoning 185 (2025) 109478

14

L. Bengel, M. Thimm, F. Cerutti et al.

Table 7
Results for EC-ST on the ICCMA’23 benchmark set for the algorithms IAQ𝑠 , EEE𝑠

and SEE𝑠 executed with three different Sat-solvers.

SEE𝑐

No. Algorithm 𝑁 #TO RT PAR10
1 SEE𝑐 (CaDiCal) 329 28 10999.14 1054.71
2 SEE𝑐 (Glucose) 329 40 15929.37 1507.38
3 SEE𝑐 (CryptoMiniSat) 329 42 16254.35 1581.32
IAQ𝑐

No. Algorithm 𝑁 #TO RT PAR10
1 IAQ𝑐 (CaDiCal) 329 34 11726.63 1275.76
2 IAQ𝑐 (CryptoMiniSat) 329 49 18997.24 1844.98
3 IAQ𝑐 (Glucose) 329 50 14301.12 1867.18
EEE𝑐

No. Algorithm 𝑁 #TO RT PAR10
1 EEE𝑐 (CaDiCal) 329 68 10761.63 2512.95
2 EEE𝑐 (Glucose) 329 79 15379.40 2928.20
3 EEE𝑐 (CryptoMiniSat) 329 88 12872.30 3248.85

As for the results for ES-PR (see Table 5), where only EEE𝑠 and IAQ𝑠 competed, it may come to a surprise that EEE𝑠 consistently
outperformed IAQ𝑠 (with the exception of the ICCMA’21 data set where neither algorithm could solve any instance; which is again
likely because the instances of ICCMA’21 are significantly larger than for the other data sets). However, one should recall that solving
a single query on skeptical acceptance wrt. preferred semantics is a ΠP

2 -complete problem [5] and itself involves multiple Sat-solver
calls. In contrast, determining (some) preferred extension is a comparably easy task. In the best case, it can be solved by a single
Sat-solver call (when the search heuristic of the solver favours labelling arguments as accepted). So even if the number of extensions
is comparably large, solving a series of comparably easier tasks is beneficial to solving fewer but harder tasks (at least in the case of
skeptical acceptance wrt. preferred semantics).

Another interesting observation can be made on the results for ES-ST, see Table 6. Despite the fact that SEEM𝑠 usually ranks at
the lower end, it has a significantly large contribution to the virtual best solver. This is particularly apparent for ICCMA’15, ICCMA’17,
and ICCMA’19, where SEEM𝑠 has the majority share in the virtual best solver. The reason for this is that ICCMA’15 and ICCMA’19
(and also a large part of ICCMA’17) feature many easy instances that all solvers can solve, but where SEEM𝑠 can solve them quite
fast. Still, the overhead required for MaxSat-solving in SEEM𝑠 leads to more timeouts for the harder instances, which leads to the
otherwise low ranking of SEEM𝑠.

6.3. Ablation study wrt. Sat-solvers

To evaluate the impact of the underlying Sat-solver that is used in each algorithm, we conducted a small ablation study, focusing
only on the ICCMA’23 benchmark set and the problems EC-ST and ES-ST. In addition to the previously used Sat-solver CaDiCal
1.9.5 [17], we also considered Glucose 4.1 [25] and CryptoMiniSat 5.11.21 [26]. Tables 7 and 8 show the results for the algorithms
IAQ, EEE and SEE executed with the three different Sat-solvers on the ICCMA’23 benchmark set for the problems EC-ST and ES-ST,
respectively. As one can see, the choice of the concrete Sat-solver has no influence on the ranking of the three algorithmic approaches.
However, one can observe that CaDiCal consistently outperforms the other Sat-solvers in this domain.

7. Summary and conclusion

In this paper, we considered the computational task of computing the set of acceptable arguments in abstract argumentation wrt.
credulous and skeptical reasoning and grounded, complete, stable, and preferred semantics. Our study on computational complexity
showed that the corresponding decision variants are complete for the DP family of complexity classes, mirroring results for classical
problems. We presented different Sat-based algorithms for computing the set of accepted arguments wrt. the different semantics and
reasoning modes, and our evaluation showed that the SEE approach turned out to be the most effective, also generally outperforming
(quite surprisingly) the approaches based on maximum satisfiability solving.

For future work, both the theoretical as well as the experimental study can be extended to include further semantics such as semi-

stable [27], stage [28], and CF2 semantics [29]. Since the complexity of reasoning with CF2 semantics (NP-complete for credulous
reasoning and coNP-complete reasoning for skeptical reasoning) is similar to reasoning with stable semantics, see, e.g., [5], we expect
that this will also be similar to the corresponding problems analysed in this paper for stable semantics (so DP-completeness for all
variants). Moreover, since skeptical reasoning with semi-stable and stage semantics is ΠP

2 -complete, we expect that the result for
ACC𝑠

PR carries over as well (namely DP2-completeness). Since credulous reasoning with semi-stable/stage semantics is ΣP
2 -complete,

a more challenging analysis and development of algorithmic approaches is expected for this case.

International Journal of Approximate Reasoning 185 (2025) 109478

15

L. Bengel, M. Thimm, F. Cerutti et al.

Table 8
Results for ES-ST on the ICCMA’23 benchmark set for the algorithms IAQ𝑠 , EEE𝑠

and SEE𝑠 executed with three different Sat-solvers.

SEE𝑠

No. Algorithm 𝑁 #TO RT PAR10
1 SEE𝑠 (CaDiCal) 329 27 11339.43 1019.27
2 SEE𝑠 (Glucose) 329 35 11705.36 1312.17
3 SEE𝑠 (CryptoMiniSat) 329 40 15033.60 1504.66
IAQ𝑠

No. Algorithm 𝑁 #TO RT PAR10
1 IAQ𝑠 (CaDiCal) 329 34 11810.67 1276.02
2 IAQ𝑠 (Glucose) 329 41 20346.03 1557.28
3 IAQ𝑠 (CryptoMiniSat) 329 53 16891.78 1984.47
EEE𝑠

No. Algorithm 𝑁 #TO RT PAR10
1 EEE𝑠 (CaDiCal) 329 68 11510.70 2515.23
2 EEE𝑠 (Glucose) 329 77 13078.14 2848.26
3 EEE𝑠 (CryptoMiniSat) 329 86 17660.49 3190.46

Another avenue for future work are improvements on the algorithms. In particular, algorithms IAQ, EEE, and SEE (for both
credulous and skeptical reasoning) are based on iterative calls to a SAT solver. The order of these calls (in particular when using
iterative SAT solving techniques) can influence overall runtime and approaches such as [30] could be used to decrease the number of
required SAT solver calls. Also approaches to algorithm selection [31] or portfolio-based approaches [32] could be used to combine
the advantages of the individual algorithms.

CRediT authorship contribution statement

Lars Bengel: Writing – review & editing, Writing – original draft, Visualization, Validation, Supervision, Software, Resources,
Project administration, Methodology, Investigation, Funding acquisition, Formal analysis, Data curation, Conceptualization. Matthias
Thimm: Writing – review & editing, Writing – original draft, Visualization, Validation, Supervision, Software, Resources, Project ad-

ministration, Methodology, Investigation, Funding acquisition, Formal analysis, Data curation, Conceptualization. Federico Cerutti:
Writing – review & editing, Writing – original draft, Visualization, Validation, Supervision, Software, Resources, Project administra-

tion, Methodology, Investigation, Funding acquisition, Formal analysis, Data curation, Conceptualization. Mauro Vallati: Writing
– review & editing, Writing – original draft, Visualization, Validation, Supervision, Software, Resources, Project administration,
Methodology, Investigation, Funding acquisition, Formal analysis, Data curation, Conceptualization.

Declaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing
interests: Lars Bengel reports financial support was provided by German Research Foundation. If there are other authors, they declare
that they have no known competing financial interests or personal relationships that could have appeared to influence the work
reported in this paper.

Acknowledgements

The research reported here was partially supported by the Deutsche Forschungsgemeinschaft (grants 375588274, 550735820).

Appendix A. Proofs of technical results

Proposition 1. ACC𝑠
GR, ACC𝑐

GR, and ACC𝑠
CO are in P.

Proof. Observe first that the problems ACC𝑠
GR, ACC𝑐

GR, and ACC𝑠
CO are actually identical as there is exactly one grounded extension

and it is equal to the intersection of all complete extensions. Furthermore, as determining the grounded extension 𝐸𝑔𝑟 is in P [5], we
can first compute it and then compare it to the input 𝐸 in linear time. □

Proposition 2. ACC𝑐
CO, ACC𝑐

PR, and ACC𝑐
ST are DP-complete.

Proof. Observe first that the problems ACC𝑐
CO and ACC𝑐

PR are identical. Recall also that verifying whether a given set 𝐸 is a complete
or stable extension can be done in polynomial time [5].

International Journal of Approximate Reasoning 185 (2025) 109478

16

L. Bengel, M. Thimm, F. Cerutti et al.

In order to show DP membership of ACC𝑐
𝜎

(with 𝜎 being either complete or stable semantics), we first define the two languages
𝐿1 and 𝐿2 as follows

𝐿1 = {(𝐸1,𝖠 ⧵𝐸1) ∈ 𝖠 ×𝖠 ∣𝐸1 ⊆ Acc𝑥
𝜎
(𝖠𝖥)}

𝐿2 = {(𝖠 ⧵𝐸2,𝐸2) ∈ 𝖠 ×𝖠 ∣𝐸2 ∩ Acc𝑥
𝜎
(𝖠𝖥) = ∅}

Observe that 𝐿1 ∈ NP: on instance (𝐸1,𝐸2) we guess for each 𝑎 ∈ 𝐸1 a set 𝐹 with 𝑎 ∈ 𝐹 and verify in polynomial time whether it
is indeed a complete/stable extension. Furthermore, 𝐿2 ∈ coNP: if an instance (𝐸1,𝐸2) is not in 𝐿2, we can guess a set 𝐹 for some
𝑎 ∈𝐸2 (with 𝑎 ∈ 𝐹) and verify in polynomial time whether it is a complete/stable extension. Finally, 𝐿1 ∩𝐿2 is equivalent to ACC𝑐

𝜎

by projecting on the first component of the instances, showing its DP-membership.

For DP-hardness, we reduce the problem Sat-Unsat to ACC𝑐
𝜎
, which is known to be DP-complete [8]. An instance (𝜙,𝜓), with

two propositional formulas 𝜙, 𝜓 in conjunctive normal form with exactly three literals per clause (3-CNF), belongs to Sat-Unsat
iff 𝜙 is satisfiable and 𝜓 is not satisfiable. We make use of the standard reduction of 3-CNF to abstract argumentation frameworks
(see Reduction 3.6. in [5]). For a formula 𝜙 = 𝑐1 ∧…∧ 𝑐𝑛 with 𝑐𝑖 = 𝑙1,𝑖 ∨ 𝑙2,𝑖 ∨ 𝑙3,𝑖 over the alphabet 𝑉𝜙 = {𝑣1,… , 𝑣𝑚},6 we denote by
𝐹𝜙 = (𝖠𝜙,𝖱𝜙) the abstract argumentation framework defined via

𝖠𝜙 = {𝑎𝜙, 𝑎𝜙,𝑐1 ,… , 𝑎𝜙,𝑐𝑛
, 𝑣1,… , 𝑣𝑚,¬𝑣1,… ,¬𝑣𝑚}

𝖱𝜙 = {(𝑎𝜙,𝑐1 , 𝑎𝜙),… , (𝑎𝜙,𝑐𝑛 , 𝑎𝜙)}∪

{(𝑣, 𝑎𝜙,𝑐𝑖) ∣ 𝑣 ∈ 𝑐𝑖, 𝑖 = 1,… , 𝑛}∪

{(𝑣1,¬𝑣1), (¬𝑣1, 𝑣1),… , (𝑣𝑚,¬𝑣𝑚), (¬𝑣𝑚, 𝑣𝑚)}

For an Sat-Unsat instance (𝜙,𝜓) we require two additional assumptions: no clause 𝑐 appearing in either 𝜙 or 𝜓 is a tautology,
i.e., contains both 𝑣 and ¬𝑣 for some atom 𝑣 (the clause could be removed from the formula anyway), and 𝜙 and 𝜓 have disjoint
vocabularies (can be realised by renaming of atoms). Upon instance (𝜙,𝜓) we construct the framework 𝖠𝖥 = (𝖠𝜙 ∪𝖠𝜓 ,𝖱𝜙 ∪ 𝖱𝜓) and
ask whether

𝐸 = 𝖠𝜙 ∪𝖠𝜓 ⧵ {𝑎𝜓}

is exactly the set of credulously accepted arguments wrt. complete/stable semantics. This is the case if and only if (𝜙,𝜓) is a positive
instance of Sat-Unsat. To see this, assume that (𝜙,𝜓) is a positive instance and observe first that stable extensions exist in 𝖠𝖥 for
every instance (there is no odd loop in 𝖠𝖥). Furthermore, every 𝑣 and ¬𝑣 is accepted as it defends itself against its only attacker, so
there is always a complete/stable extension including it. As every clause 𝑐𝑖 in either 𝜙 or 𝜓 is not a tautology, the set {𝑙1,𝑖, 𝑙2,𝑖, 𝑙3,𝑖} (with
overlining indicating the complement literal) is conflict-free and defends 𝑐𝑖 , therefore 𝑐𝑖 can be credulously accepted. Furthermore,
if 𝜙 is satisfiable there is a stable/complete extension containing 𝑎𝜙 [5]. Finally, if 𝜓 is not satisfiable, 𝑎𝜓 cannot be credulously
accepted (as the only argument of 𝖠𝖥). So if 𝐸 is the set of credulously accepted arguments wrt. complete/stable semantics then
(𝜙,𝜓) is a positive instance of Sat-Unsat. The reverse direction is analogous. □

Proposition 3. ACC𝑠
ST is DP-complete.

Proof. The proof is similar to the proof of Proposition 2. For DP-membership we define two languages

𝐿1 = {(𝐸1,𝖠 ⧵𝐸1) ∈ 𝖠 ×𝖠 ∣𝐸1 ⊆ Acc𝑠ST(𝖠𝖥)}

𝐿2 = {(𝖠 ⧵𝐸2,𝐸2) ∈ 𝖠 ×𝖠 ∣𝐸2 ∩ Acc𝑠ST(𝖠𝖥) = ∅}

Observe that 𝐿1 is in coNP: if an instance (𝐸1,𝐸2) is not in 𝐿1 we guess a set 𝐸 with 𝐸1 ⧵𝐸 ≠ ∅ and verify in polynomial time that
𝐸 is stable (meaning that there is at least one argument in 𝐸1 that cannot be skeptically accepted). Furthermore, 𝐿2 is in NP: for
each argument 𝑎 ∈𝐸2 we can guess a set 𝐸 with 𝑎 ∉𝐸 and verify in polynomial time that 𝐸 is stable. Finally, 𝐿1 ∩𝐿2 is equivalent
to ACC𝑠

ST by projecting on the first component of the instances, showing its DP-membership (the reader may also verify that the
verification still works for the case of an abstract argumentation framework without stable extensions where Acc𝑠ST(𝖠𝖥) = 𝖠).

For DP-hardness, we use the same reduction as in the proof of Proposition 2, but include two new arguments 𝑥𝜙 , 𝑥𝜓 , and attacks
(𝑎𝜙,𝑥𝜙), (𝑎𝜓 ,𝑥𝜓). Then 𝐸 = {𝑥𝜓} is exactly the set of skeptically accepted arguments wrt. stable semantics if and only if (𝜙,𝜓) is
a positive instance of Sat-Unsat. Assume that (𝜙,𝜓) is a positive instance of Sat-Unsat, then no argument 𝑣 or ¬𝑣 is skeptically
accepted as there is always a stable extension including its only attacker. Furthermore, no 𝑐𝑖 is skeptically accepted as there is always
a stable extension including one of its attackers (as every clause is satisfiable). Furthermore, as 𝜙 is satisfiable, 𝑥𝜙 is not included
in the extension containing 𝑎𝜙, which must exist [5]. As 𝜙 is also not tautological (this can only be the case if all its clauses are
tautological), there must also be a stable extension not including 𝑎𝜙 . As 𝜓 is not satisfiable 𝑥𝜓 must be contained in every stable
extension and 𝑎𝜓 is in no stable extension. This shows that 𝐸 = {𝑥𝜓} is exactly the set of skeptically accepted arguments wrt. stable
semantics. The reverse direction is analogous. □

6 The argument 𝜙 can be interpreted as “the formula 𝜙 is true,” while the argument 𝑐𝑖 can be read as “clause 𝑐𝑖 is not satisfied” [5].

International Journal of Approximate Reasoning 185 (2025) 109478

17

L. Bengel, M. Thimm, F. Cerutti et al.

Proposition 4. ACC𝑠
PR is DP2-complete.

Proof. In order to show DP2 membership of ACC𝑠
PR we first define the two languages 𝐿1 and 𝐿2 as follows

𝐿1 = {(𝐸1,𝖠 ⧵𝐸1) ∈ 𝖠 ×𝖠 ∣𝐸1 ⊆ Acc𝑠PR(𝖠𝖥)}

𝐿2 = {(𝖠 ⧵𝐸2,𝐸2) ∈ 𝖠 ×𝖠 ∣𝐸2 ∩ Acc𝑠PR(𝖠𝖥) = ∅}

Observe that 𝐿1 is in coNPNP: if an instance (𝐸1,𝐸2) is not in 𝐿1 we guess a set 𝐸 with 𝐸1 ⧵ 𝐸 ≠ ∅ and verify that 𝐸 is preferred
(meaning that there is at least one argument in 𝐸1 that cannot be skeptically accepted). The latter problem is in coNP [5] and an
NP-oracle call is equivalent to an coNP-oracle call. Furthermore, 𝐿2 is in NPcoNP: for each argument 𝑎 ∈𝐸2 we can guess a set 𝐸 with
𝑎 ∉ 𝐸 and verify that 𝐸 is preferred. Finally, 𝐿1 ∩𝐿2 is equivalent to ACC𝑠

PR by projecting on the first component of the instances,
showing its DP2-membership.

For DP2-hardness, we reduce the DP2-complete problem ∀∃QBF2 [33] to ACC𝑠
PR. Here, an instance is a pair (𝜙,𝜓) of quantified

Boolean formulæ of the form

𝜙 = ∀𝑌 ∃𝑍 ∶ 𝜇(𝑌 ,𝑍)

𝜓 = ∀𝑌 ′∃𝑍′ ∶ 𝜇′(𝑌 ′,𝑍′)

where 𝜇(𝑌 ,𝑍) and 𝜇′(𝑌 ′,𝑍′) are propositional formulæ over the variables 𝑌 ∪𝑍 , 𝑌 ′ ∪𝑍′, respectively. The pair (𝜙,𝜓) is a “yes”
instance of ∀∃QBF2 if 𝜙 evaluates to true and 𝜓 evaluates to false.

First, we define a generalisation of Reduction 3.7 of [5] to compile a QBF of the form

𝜙 = ∀𝑦1,… , 𝑦𝑛∃𝑧1,… , 𝑧𝑚 ∶ 𝜇(𝑦1,… , 𝑦𝑛, 𝑧1,… , 𝑧𝑚) (A.1)

to abstract argumentation frameworks that works for arbitrary propositional formulæ 𝜇(𝑦1 ,… , 𝑦𝑛, 𝑧1,… , 𝑧𝑚) (not just CNF-formulæ).
For that, we inductively define a transformation from a propositional formula 𝜇 (we now omit mentioning the variables explicitly)
to an AF, i.e., 𝖠𝖥𝜇 = (𝖠𝜇,𝖱𝜇), via

1. If 𝜇 = 𝑣 for some 𝑣 ∈ {𝑦1,… , 𝑦𝑛, 𝑧1,… , 𝑧𝑚} define

𝖠𝑦𝑖
= {𝑝𝑣, 𝑝𝑣}

𝖱𝑦𝑖 = {(𝑝𝑣, 𝑝𝑣), (𝑝𝑣, 𝑝𝑣)}

2. If 𝜇 = ¬𝜇′ define

𝖠¬𝜇′ = 𝖠𝜇′ ∪ {𝑝¬𝜇′ }

𝖱¬𝜇′ = 𝖱𝜇′ ∪ {(𝑝𝜇′ , 𝑝¬𝜇′)}

3. If 𝜇 = 𝜇′ ∧ 𝜇′′ define

𝖠𝜇′∧𝜇′′ = 𝖠𝜇′ ∪𝖠𝜇′′ ∪ {ℎ1
𝜇′∧𝜇′′ , ℎ

2
𝜇′∧𝜇′′ , 𝑝𝜇′∧𝜇′′ }

𝖱𝜇′∧𝜇′′ = 𝖱𝜇′ ∪ 𝖱𝜇′ ∪ {(𝑝𝜇′ , ℎ1𝜇′∧𝜇′′), (𝑝𝜇′′ , ℎ
2
𝜇′∧𝜇′′), (ℎ

1
𝜇′∧𝜇′′ , 𝑝𝜇′∧𝜇′′),

(ℎ2
𝜇′∧𝜇′′ , 𝑝𝜇′∧𝜇′′)}

4. If 𝜇 = 𝜇′ ∨ 𝜇′′ define

𝖠𝜇′∨𝜇′′ = 𝖠𝜇′ ∪𝖠𝜇′′ ∪ {ℎ𝜇′∨𝜇′′ , 𝑝𝜇′∨𝜇′′ }

𝖱𝜇′∨𝜇′′ = 𝖱𝜇′ ∪ 𝖱𝜇′ ∪ {(𝑝𝜇′ , ℎ𝜇′∨𝜇′′), (𝑝𝜇′′ , ℎ𝜇′∨𝜇′′), (ℎ𝜇′∨𝜇′′ , 𝑝𝜇′∨𝜇′′)}

To complete the reduction, similarly to [5], we define for a QBF of the form (A.1) the AF 𝖠𝖥𝜙 = (𝖠
𝜙
,𝖱

𝜙
) with

𝖠𝜙 = 𝖠𝜇 ∪ {𝑝𝜇}

𝖱𝜙 = 𝖱𝜇 ∪ {(𝑝𝜇, 𝑝𝜇), (𝑝𝜇, 𝑝𝜇)} ∪ {(𝑝𝜇, 𝑧1),… , (𝑝𝜇, 𝑧𝑚)}

Fig. A.4 shows an example of the reduction. Observe that the QBF 𝜙 evaluates to true iff 𝑝𝜇 is skeptically accepted in 𝖠𝖥𝜙 wrt.
preferred semantics [5]. However, note that 𝑝𝜇 may not be the only argument that is skeptically accepted (for example, in Fig. A.4, 𝑝𝛼3
is skeptically accepted as well). In order for our aimed reduction to ACC𝑠

PR to work, we need to have a clearly defined status for each
argument. We address this by a process we call cloning. Each argument 𝑎 ∈ 𝖠𝜙 ⧵ {𝑝𝜇, 𝑝𝜇} is cloned yielding an additional argument
�̂�. For each attack (𝑎, 𝑏) ∈ 𝖱𝜙 ⧵ {(𝑎′, 𝑏′) ∣ 𝑎′, 𝑏′ ∉ {𝑝𝜇, 𝑝𝜇}} we add attacks (𝑎, �̂�), (�̂�, 𝑏), (�̂�, �̂�). Furthermore, for each attack (𝑎, 𝑝𝜇) we
add the attack (�̂�, 𝑝𝜇) and for each attack (𝑝𝜇, 𝑎) we add (𝑝𝜇, �̂�). We abbreviate the new argumentation framework by 𝖠𝖥𝜙 = (�̂�

𝜙
, �̂�

𝜙
).

International Journal of Approximate Reasoning 185 (2025) 109478

18

L. Bengel, M. Thimm, F. Cerutti et al.

𝑝𝑦1 𝑝𝑦1 𝑝𝑧1 𝑝𝑧1 𝑝𝑧2 𝑝𝑧2

𝑝𝛼1 ℎ1
𝛼2

ℎ2
𝛼2

𝑝𝛼2

𝑝¬𝛼2

ℎ𝛼3

𝑝𝛼3

ℎ1
𝜇

ℎ2
𝜇

𝑝𝜇 𝑝𝜇

Fig. A.4. Abstract argumentation framework 𝖠𝖥𝜙 for the QBF 𝜙 = ∀𝑦1 ∶ ∃𝑧1, 𝑧2 ∶ 𝜇 with 𝜇 = (¬𝑦1 ∨ 𝑧1) ∧ ¬(𝑧1 ∧ 𝑧2). We abbreviate 𝛼1 = ¬𝑦1 , 𝛼2 = 𝑧1 ∧ 𝑧2 , and
𝛼3 = ¬𝑦1 ∨ 𝑧1 .

𝑝𝑥 𝑝𝑥 𝑝𝑦 𝑝𝑦

ℎ

𝑝𝜇 𝑝𝜇

Fig. A.5. Abstract argumentation framework 𝖠𝖥𝜙 for the QBF 𝜙= ∀𝑥 ∶ ∃𝑦 ∶ 𝑥 ∨ 𝑦.

Figs. A.5 and A.6 show an example of the cloning process. Observe that every preferred extension 𝐸 of 𝖠𝖥𝜙 is also a preferred
extension of 𝖠𝖥𝜙. Furthermore, if one removes any number of arguments (except 𝑝𝜇 and 𝑝𝜇) in a preferred extension of 𝖠𝖥𝜙 and
replaces them with their clones, one again obtains a preferred extension of 𝖠𝖥𝜙. Finally, observe that every preferred extension of
𝖠𝖥𝜙 is of that form (i.e., it cannot be the case that both an argument and its clone are not in a preferred extension, even if all their
respective attackers are not in the extension; as a preferred extension is a maximal admissible set, one of them has to be included in
that case). It follows, that 𝑝𝜇 is the only skeptically accepted argument in 𝖠𝖥𝜙.

Now back to the reduction from ∀∃QBF2 to ACC𝑠
PR. For an instance (𝜙,𝜓)—we assume that 𝜙 and 𝜓 are defined on disjoint

vocabularies—we construct the abstract argumentation framework 𝖠𝖥(𝜙,𝜓) = (𝖠(𝜙,𝜓),𝖱(𝜙,𝜓)) defined via

𝖠(𝜙,𝜓) = �̂�𝜙 ∪ �̂�𝜓

𝖱(𝜙,𝜓) = �̂�𝜙 ∪ �̂�𝜓

Then (𝜙,𝜓) is a positive instance of ∀∃QBF2 if and only if Acc𝑠PR(𝖠𝖥(𝜙,𝜓)) = {𝑝𝜙} by construction. □

International Journal of Approximate Reasoning 185 (2025) 109478

19

L. Bengel, M. Thimm, F. Cerutti et al.

𝑝𝑥 𝑝𝑥 𝑝𝑦 𝑝𝑦�̂�𝑥 �̂�𝑥 �̂�𝑦 �̂�𝑦

ℎ ℎ̂

𝑝𝜇 𝑝𝜇

Fig. A.6. Cloned abstract argumentation framework 𝖠𝖥𝜙 for the QBF 𝜙= ∀𝑥 ∶ ∃𝑦 ∶ 𝑥 ∨ 𝑦.

Corollary 2. Let 𝖠𝖥 be an abstract argumentation framework.

1. The problems EnumACCGR
𝑠

, EnumACCGR
𝑐

, EnumACCCO
𝑠

are in FP, respectively.

2. The problems EnumACC𝐶𝑂
𝑐

, EnumACCPR
𝑐

, EnumACCST
𝑐

, EnumACCST
𝑠

are in FNPDP[1], respectively.

3. The problem EnumACCPR
𝑠

is in FNPDP2[1].

Proof. The cases in 1) follow from Proposition 1. For the other two cases, we can non-deterministically guess a set 𝐸 and then verify
that 𝐸 = Acc𝑥

𝜎
(𝖠𝖥) in DP, DP2, respectively, yielding algorithms in FNPDP[1] and FNPDP2[1], respectively. □

Proposition 5. Let 𝖠𝖥= (𝖠,𝖱) be an abstract argumentation framework.

1. If 𝜔 ∈ Mod(ΨCO
𝖠𝖥

) then 𝐸(𝜔) is a complete extension of 𝖠𝖥.

2. If 𝐸 is a complete extension of 𝖠𝖥 then there is 𝜔∈ Mod(ΨCO
𝖠𝖥

) with 𝐸(𝜔) =𝐸.

3. 𝑎 ∈ Acc𝑐CO(𝖠𝖥) if and only if ΨCO
𝖠𝖥

∧ 𝚒𝚗𝑎 is satisfiable.

Proof. Let 𝖠𝖥 = (𝖠,𝖱) be an abstract argumentation framework.

1. Let 𝜔 ∈ Mod(ΨCO
𝖠𝖥

) and define

𝐸(𝜔) = {𝑎 ∣ 𝜔(𝚒𝚗𝑎) = true}

In order to show that 𝐸(𝜔) is a complete extension, we have to show that 𝐸(𝜔) is conflict-free, admissible, and contains all
arguments it defends:

(a) Suppose 𝐸(𝜔) is not conflict-free. Then there are 𝑎, 𝑏 ∈𝐸(𝜔) such that 𝑏 ∈ 𝑎−. Due to 𝑏 ∈𝐸(𝜔) we have 𝜔(𝚒𝚗𝑏) = true and
due to 𝜔 ∈ Mod(ΨCO

𝖠𝖥
) we have 𝜔(𝚘𝚞𝚝𝑎) = true (due to the part

(
𝚘𝚞𝚝𝑎 ⇔

⋁
𝑏∈𝑎− 𝚒𝚗𝑏

)
of ΨCO

𝖠𝖥
). Due to the part (¬𝚒𝚗𝑎 ∨¬𝚘𝚞𝚝𝑎)

of ΨCO
𝖠𝖥

we have 𝜔(𝚒𝚗𝑎) = false, in contradiction to the assumption 𝑎 ∈𝐸(𝜔). So 𝐸(𝜔) is conflict-free.

(b) Suppose 𝐸(𝜔) is not admissible. Since 𝐸(𝜔) is conflict-free (see above), it follows that there is 𝑎 ∈ 𝐸(𝜔) such that there is
𝑏 ∈ 𝑎− and there is no 𝑐 ∈ 𝑏− with 𝑐 ∈𝐸(𝜔). Due to 𝑎∈𝐸(𝜔), we have 𝜔(𝚒𝚗𝑎) = true and due to the part

(
𝚒𝚗𝑎 ⇔

⋀
𝑏∈𝑎− 𝚘𝚞𝚝𝑏

)
of ΨCO

𝖠𝖥
it follows 𝜔(𝚘𝚞𝚝𝑏) = true. Then due to

(
𝚘𝚞𝚝𝑎 ⇔

⋁
𝑏∈𝑎− 𝚒𝚗𝑏

)
(with 𝑏 taking the role of 𝑎) there must be 𝑐′ ∈ 𝑏− with

𝜔(𝚒𝚗𝑐′) = true and therefore 𝑐′ ∈𝐸(𝜔).
(c) Due to

(
𝚒𝚗𝑎 ⇔

⋀
𝑏∈𝑎− 𝚘𝚞𝚝𝑏

)
∧, for every 𝑎 that is attacked only by arguments 𝑏 with 𝜔(𝚘𝚞𝚝𝑏) = true, we have 𝜔(𝚒𝚗𝑎) = true

and therefore 𝑎 ∈𝐸(𝜔). It follows that 𝐸(𝜔) contains all arguments it defends.

2. Let 𝐸 be a complete extension and define 𝜔 via

𝜔(𝚒𝚗𝑎) = true 𝜔(𝚘𝚞𝚝𝑎) = 𝜔(𝚞𝚗𝚍𝚎𝚌𝑎) = false

for all 𝑎 ∈𝐸 and

𝜔(𝚘𝚞𝚝𝑏) = true 𝜔(𝚒𝚗𝑏) = 𝜔(𝚞𝚗𝚍𝚎𝚌𝑏) = false

International Journal of Approximate Reasoning 185 (2025) 109478

20

L. Bengel, M. Thimm, F. Cerutti et al.

for all 𝑏 ∈𝐸− and

𝜔(𝚞𝚗𝚍𝚎𝚌𝑐) = true 𝜔(𝚒𝚗𝑐) = 𝜔(𝚘𝚞𝚝𝑐) = false

for all remaining arguments 𝑐 ∈ 𝖠 ⧵ (𝐸 ∪𝐸−). It should be clear that 𝜔 is a model of ΨCO
𝖠𝖥

.

3. Due to 1 and 2, ΨCO
𝖠𝖥

∧𝚒𝚗𝑎 is satisfiable iff there is a complete extension 𝐸 with 𝑎 ∈𝐸, which is equivalent to 𝑎 ∈ Acc𝑐CO(𝖠𝖥). □

Proposition 6. Let 𝖠𝖥= (𝖠,𝖱) be an abstract argumentation framework.

1. If 𝜔 ∈ Mod(ΨST
𝖠𝖥
) then 𝐸(𝜔) is a stable extension of 𝖠𝖥.

2. If 𝐸 is a stable extension of 𝖠𝖥 then there is 𝜔∈ Mod(ΨST
𝖠𝖥
) with 𝐸(𝜔) =𝐸.

3. 𝑎 ∈ Acc𝑐ST(𝖠𝖥) if and only if ΨST
𝖠𝖥

∧ 𝚒𝚗𝑎 is satisfiable.

Proof. Let 𝖠𝖥 = (𝖠,𝖱) be an abstract argumentation framework.

1. Let 𝜔 ∈ Mod(ΨST
𝖠𝖥
) and define

𝐸(𝜔) = {𝑎 ∣ 𝜔(𝚒𝚗𝑎) = true}

In order to show that 𝐸(𝜔) is a stable extension, we have to show that 𝐸(𝜔) is conflict-free and attacks all arguments it does not
contain:

(a) Suppose 𝐸(𝜔) is not conflict-free. Then there are 𝑎, 𝑏 ∈ 𝐸(𝜔) such that 𝑏 ∈ 𝑎−. Due to 𝑏 ∈ 𝐸(𝜔) we have 𝜔(𝚒𝚗𝑏) = true

and due to 𝜔 ∈ Mod(ΨST
𝖠𝖥
) we have 𝜔(𝚒𝚗𝑎) = false (due to the part

(
¬𝚒𝚗𝑎 ⇔

⋁
𝑏∈𝑎− 𝚒𝚗𝑏

)
of ΨST

𝖠𝖥
). It follows 𝑎 ∉ 𝐸(𝜔), in

contradiction to the assumption 𝑎 ∈𝐸(𝜔). So 𝐸(𝜔) is conflict-free.

(b) For 𝑎∉𝐸(𝜔) we have 𝜔(𝚒𝚗𝑎) = false and due to
(
¬𝚒𝚗𝑎 ⇔

⋁
𝑏∈𝑎− 𝚒𝚗𝑏

)
there must be 𝑏 ∈ 𝑎− with 𝜔(𝚒𝚗𝑏) = true, so 𝑏∈𝐸(𝜔).

2. Analogous to the proof of 2 of Proposition 5.

3. Analogous to the proof of 3 of Proposition 5. □

Proposition 7. Algorithm IAQ𝑐 is sound and complete.

Proof. Observe that 𝑆 is initialised with the empty set in line 1 and only arguments 𝑎 for which Ψ𝜎
𝖠𝖥

∧𝚒𝚗𝑎 is satisfiable (so arguments
𝑎 for which there is an extension 𝐸 with 𝑎 ∈𝐸) are added to 𝑆 in line 4. So upon termination, 𝑆 contains exactly the set of credulously
accepted arguments. □

Proposition 8. Algorithm EEE𝑐 is sound and complete.

Proof. Observe that 𝑆 is initialised with the empty set in line 1. In line 4, the set 𝐸(𝜔) is guaranteed to be an extension of 𝖠𝖥
(see Propositions 5 and 6) and added to 𝑆 . So upon termination (line 6), 𝑆 only contains credulously accepted arguments (showing
soundness). Assume there is credulously accepted 𝑎 with 𝑎 ∉ 𝑆 upon termination (towards showing completeness). Then an extension
𝐸 with 𝑎 ∈ 𝑆 yields a model 𝜔𝐸 of Ψ in line 3 (due to items 2 of Propositions 5 and 6) since all 𝐶(𝜔) are satisfied due to 𝑎 ∉ 𝑆

and therefore 𝜔(𝚒𝚗𝑎) = false for all such 𝜔. This is in conflict with the termination criterion in line 3 and therefore 𝑎 ∈ 𝑆 upon
termination. □

Proposition 9. Algorithm SEE𝑐 is sound and complete.

Proof. Let 𝖠𝖥 = (𝖠,𝖱), 𝜎 ∈ {CO,ST,PR} and 𝑆 = SEE𝑐(𝖠𝖥, 𝜎).
For soundness, let 𝑎∈ 𝑆 . Then (due to line 4) there is 𝜔 with 𝑎 ∈𝐸(𝜔) and 𝜔= Witness(Ψ𝜎

𝖠𝖥
∧
⋁

𝑎∈𝐷 𝚒𝚗𝑎). Due to Proposition 5
(resp. Proposition 6), the set 𝐸(𝜔) is a complete (resp. stable) extension of 𝖠𝖥, showing that 𝑎 is indeed credulously acceptable wrt.
complete/preferred (resp. stable) semantics.

For completeness, let 𝑎 ∈ Acc𝑐
𝜎
(𝖠𝖥) and assume 𝑎 ∉ 𝑆 . Let �̂� be the set 𝐷 in the final iteration of line 3, i.e., we have Witness(Ψ𝜎

𝖠𝖥
∧⋁

𝑎∈�̂� 𝚒𝚗𝑎) = false. Due to 𝑎 ∉ 𝑆 we have 𝑎 ∈ �̂� and since 𝑎 ∈ Acc𝑐
𝜎
(𝖠𝖥), the formula Ψ𝜎

𝖠𝖥
∧
⋁

𝑎∈�̂� 𝚒𝚗𝑎) is satisfiable, contradicting
Witness(Ψ𝜎

𝖠𝖥
∧
⋁

𝑎∈�̂� 𝚒𝚗𝑎) = false. □

Proposition 10. Algorithm SEEM𝑐 is sound and complete.

Proof. Let 𝖠𝖥 = (𝖠,𝖱), 𝜎 ∈ {CO,ST,PR} and 𝑆 = SEEM𝑐(𝖠𝖥, 𝜎).
For soundness, let 𝑎 ∈ 𝑆 . Then (due to line 4) there is 𝜔 with 𝑎 ∈ 𝐸(𝜔) and 𝜔 = MaxSat({𝚒𝚗𝑎 ∣ 𝑎 ∈ 𝐷},Ψ𝜎

𝖠𝖥
). In particular, 𝜔

is a model of Ψ𝜎
𝖠𝖥

which assigns true to 𝚒𝚗𝑎. Due to Proposition 5 (resp. Proposition 6), the set 𝐸(𝜔) is a complete (resp. stable)
extension of 𝖠𝖥, showing that 𝑎 is indeed credulously acceptable wrt. complete/preferred (resp. stable) semantics.

International Journal of Approximate Reasoning 185 (2025) 109478

21

L. Bengel, M. Thimm, F. Cerutti et al.

For completeness, let 𝑎 ∈ Acc𝑐
𝜎
(𝖠𝖥) and assume 𝑎 ∉ 𝑆 . Let �̂� be the set 𝐷 in the final iteration of line 3, i.e., we have MaxSat({𝚒𝚗𝑎 ∣

𝑎 ∈ �̂�},Ψ𝜎
𝖠𝖥
) = false. Due to 𝑎 ∉ 𝑆 we have 𝑎 ∈ �̂� and since 𝑎 ∈ Acc𝑐

𝜎
(𝖠𝖥), the formula Ψ𝜎

𝖠𝖥
∧ 𝚒𝚗𝑎 is satisfiable, contradicting

MaxSat({𝚒𝚗𝑎 ∣ 𝑎 ∈ �̂�},Ψ𝜎
𝖠𝖥
) = false. □

Proposition 11. Let 𝖠𝖥= (𝖠,𝖱) be an abstract argumentation framework. Then 𝑎∈ Acc𝑠ST(𝖠𝖥) if and only if ΨST
𝖠𝖥

∧ ¬𝚒𝚗𝑎 is unsatisfiable.

Proof. ΨST
𝖠𝖥

∧ ¬𝚒𝚗𝑎 is unsatisfiable if and only if there is no stable extension 𝐸 of 𝖠𝖥 with 𝑎 ∉ 𝐸, which is equivalent to 𝑎 being
skeptically accepted, so 𝑎 ∈ Acc𝑠ST(𝖠𝖥). □

Proposition 12. Algorithm IAQ𝑠 is sound and complete.

Proof. Observe that 𝑆 is initialised with the empty set in line 1 and only arguments 𝑎 that are skeptically accepted are added to 𝑆
in lines 5 and 8 respectively. So upon termination, 𝑆 contains exactly the set of skeptically accepted arguments. □

Proposition 13. Algorithm EEE𝑠 is sound and complete.

Proof. Observe that 𝑆 is initialised with all arguments in line 1. In lines 5 and 9, respectively, the sets 𝐸(𝜔) (respectively 𝐸) is
guaranteed to be an extension of 𝖠𝖥 and all arguments not contained in 𝐸 are removed from 𝑆 . So upon termination (line 10), 𝑆
contains all skeptically accepted arguments (showing completeness). Assume there is an argument 𝑎 that is not skeptically accepted
but 𝑎 ∈ 𝑆 upon termination (towards showing soundness). Then there must exist an extension 𝐸 with 𝑎 ∉ 𝑆 and this extension (or
another one with 𝑎 ∉ 𝑆) satisfies lines 4 or 8, respectively (or more precisely for line 4, there is a corresponding model 𝜔 for 𝐸). This
is in conflict with the termination criterion in lines 4 and 8, respectively and therefore 𝑎 ∉ 𝑆 upon termination. □

Proposition 14. Algorithm SEE𝑠 is sound and complete.

Proof. Let 𝖠𝖥 = (𝖠,𝖱) and 𝑆 = SEE𝑠(𝖠𝖥).
For soundness, let 𝑎 ∈ 𝑆 . Then (due to line 3) for all 𝜔 with 𝜔 = Witness(ΨST

𝖠𝖥
∧
⋁

𝑎∈𝑆 𝚘𝚞𝚝𝑎) we have 𝑎 ∈ 𝐸(𝜔) (and due to
Proposition 6 these sets 𝐸(𝜔) are stable extensions of 𝖠𝖥). In the final iteration of line 2 we have false = Witness(ΨST

𝖠𝖥
∧
⋁

𝑎∈𝑆 𝚘𝚞𝚝𝑎),
i.e., there is no stable extension of 𝖠𝖥 that does not include some argument of 𝑆 . It follows that 𝑎 is skeptically accepted wrt. stable
semantics.

For completeness, let 𝑎 ∈ Acc𝑠ST(𝖠𝖥) and assume 𝑎 ∉ 𝑆 . First, consider the case that 𝖠𝖥 has no stable extensions. Then we have
𝑆 = 𝖠 due to line 1 and it follows 𝑎 ∈ 𝑆 . We, therefore, assume that 𝖠𝖥 has at least one stable extension. Since 𝑎 ∈ Acc𝑠ST(𝖠𝖥), 𝑎 must
belong to every stable extension, in particular 𝑎 ∈𝐸(𝜔) for every 𝜔 in line 3. It follows 𝑎 ∈ 𝑆 , in contradiction to the assumption. □

Proposition 15. Algorithm SEEM𝑠 is sound and complete.

Proof. Let 𝖠𝖥 = (𝖠,𝖱) and 𝑆 = SEEM𝑠(𝖠𝖥).
For soundness, let 𝑎 ∈ 𝑆 . Then (due to line 3) for all 𝜔 with 𝜔 = MaxSat({𝚘𝚞𝚝𝑎 ∣ 𝑎 ∈ 𝑆},ΨST

𝖠𝖥
) we have 𝑎 ∈ 𝐸(𝜔) (and due to

Proposition 6 these sets 𝐸(𝜔) are stable extensions of 𝖠𝖥). In the final iteration of line 2 we have false = MaxSat({𝚘𝚞𝚝𝑎 ∣ 𝑎 ∈
𝑆},ΨST

𝖠𝖥
), i.e., there is no stable extension of 𝖠𝖥 that does not include some argument of 𝑆 . It follows that 𝑎 is skeptically accepted

wrt. stable semantics.

For completeness, let 𝑎 ∈ Acc𝑠ST(𝖠𝖥) and assume 𝑎 ∉ 𝑆 . First, consider the case that 𝖠𝖥 has no stable extensions. Then we have
𝑆 = 𝖠 due to line 1 and it follows 𝑎 ∈ 𝑆 . We, therefore, assume that 𝖠𝖥 has at least one stable extension. Since 𝑎 ∈ Acc𝑠ST(𝖠𝖥), 𝑎 must
belong to every stable extension, in particular 𝑎 ∈𝐸(𝜔) for every 𝜔 in line 3. It follows 𝑎 ∈ 𝑆 , in contradiction to the assumption. □

Data availability

All used data sets are freely available and links can be found in the paper.

References

[1] P.M. Dung, On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games, Artif. Intell. 77 (2)
(1995) 321–358.

[2] F. Cerutti, S.A. Gaggl, M. Thimm, J.P. Wallner, Foundations of implementations for formal argumentation, in: Handbook of Formal Argumentation, 2018.

[3] A. Toniolo, T.J. Norman, A. Etuk, F. Cerutti, R.W. Ouyang, M. Srivastava, N. Oren, T. Dropps, J.A. Allen, P. Sullivan, Agent support to reasoning with different
types of evidence in intelligence analysis, in: Proceedings of AAMAS, 2015, pp. 781–789.

[4] M. Vallati, F. Cerutti, M. Giacomin, Predictive models and abstract argumentation: the case of high-complexity semantics, Knowl. Eng. Rev. 34 (2019) e6.

[5] W. Dvořák, P.E. Dunne, Computational problems in formal argumentation and their complexity, in: Handbook of Formal Argumentation, 2018.

[6] A. Niskanen, M. Järvisalo, 𝜇-toksia: an efficient abstract argumentation reasoner, in: Proceedings of the 17th International Conference on Principles of Knowledge
Representation and Reasoning (KR 2020), 2020.

http://refhub.elsevier.com/S0888-613X(25)00119-7/bibFD59AEB6D0FBA353B356303BCB6E9B91s1
http://refhub.elsevier.com/S0888-613X(25)00119-7/bibFD59AEB6D0FBA353B356303BCB6E9B91s1
http://refhub.elsevier.com/S0888-613X(25)00119-7/bib0B77193B415647D86786CC3B4746B576s1
http://refhub.elsevier.com/S0888-613X(25)00119-7/bib87DA2ACB932698C0D01C445E4699F5B2s1
http://refhub.elsevier.com/S0888-613X(25)00119-7/bib87DA2ACB932698C0D01C445E4699F5B2s1
http://refhub.elsevier.com/S0888-613X(25)00119-7/bibBF393F55187D0A3647180985067A039Fs1
http://refhub.elsevier.com/S0888-613X(25)00119-7/bibF9E708F7D75F2414C7F6C60DBEF822F0s1
http://refhub.elsevier.com/S0888-613X(25)00119-7/bibE68C4FDCA9988C00C43FCE66A93D7138s1
http://refhub.elsevier.com/S0888-613X(25)00119-7/bibE68C4FDCA9988C00C43FCE66A93D7138s1

International Journal of Approximate Reasoning 185 (2025) 109478

22

L. Bengel, M. Thimm, F. Cerutti et al.

[7] M. Thimm, F. Cerutti, M. Vallati, On computing the set of acceptable arguments in abstract argumentation, in: H. Prakken, S. Bistarelli, F. Santini, C. Taticchi (Eds.),
Proceedings of the 8th International Conference on Computational Models of Argument (COMMA’20), in: Frontiers in Artificial Intelligence and Applications,
vol. 326, IOS Press, 2020, pp. 363–370.

[8] C. Papadimitriou, Computational Complexity, Addison-Wesley, 1994.

[9] G. Charwat, W. Dvořák, S.A. Gaggl, J.P. Wallner, S. Woltran, Methods for solving reasoning problems in abstract argumentation - a survey, Artif. Intell. 220
(2015) 28–63.

[10] P. Besnard, S. Doutre, Checking the acceptability of a set of arguments, in: Proceedings of NMR, 2004.

[11] F. Cerutti, M. Giacomin, M. Vallati, How we designed winning algorithms for abstract argumentation and which insight we attained, Artif. Intell. 276 (2019)
1–40.

[12] C.M. Li, F. Manya, Maxsat, hard and soft constraints, in: Handbook of Satisfiability, 2009.

[13] M. Thimm, F. Cerutti, M. Vallati, Skeptical reasoning with preferred semantics in abstract argumentation without computing preferred extensions, in: Proceedings
of the 30th International Joint Conference on Artificial Intelligence (IJCAI’21), 2021.

[14] H.E. Ihalainen, J. Berg, M. Järvisalo, Refined core relaxation for core-guided maxsat solving, in: 27th International Conference on Principles and Practice of
Constraint Programming (CP 2021), Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2021, pp. 1–28.

[15] H. Ihalainen, Refined core relaxations for core-guided maximum satisfiability algorithms, Ph.D. thesis, MSc thesis, University of Helsinki, 2022, http://hdl.handle.

net/10138/351207.

[16] A. Biere, K. Fazekas, M. Fleury, M. Heisinger, CaDiCaL, Kissat, Paracooba, Plingeling and Treengeling entering the SAT Competition 2020, in: T. Balyo, N.
Froleyks, M. Heule, M. Iser, M. Järvisalo, M. Suda (Eds.), Proc. of SAT Competition 2020 – Solver and Benchmark Descriptions, vol. B-2020–1, Department of
Computer Science Report Series B, University of Helsinki, 2020, pp. 51–53.

[17] A. Biere, T. Faller, K. Fazekas, M. Fleury, N. Froleyks, F. Pollitt, CaDiCaL 2.0, in: A. Gurfinkel, V. Ganesh (Eds.), Computer Aided Verification - 36th International
Conference, CAV 2024, Montreal, QC, Canada, July 24-27, 2024, Proceedings, Part I, in: Lecture Notes in Computer Science, vol. 14681, Springer, 2024,
pp. 133–152.

[18] W. Dvořák, M. Järvisalo, J.P. Wallner, S. Woltran, Complexity-sensitive decision procedures for abstract argumentation, Artif. Intell. 206 (2014) 53–78.

[19] J. Klein, M. Thimm, Revisiting sat techniques for abstract argumentation, in: Computational Models of Argument, IOS Press, 2020, pp. 251–262.

[20] J. Klein, M. Thimm, probo2: a benchmark framework for argumentation solvers, in: Computational Models of Argument, IOS Press, 2022, pp. 363–364.

[21] M. Thimm, S. Villata, The first international competition on computational models of argumentation: results and analysis, Artif. Intell. 252 (2017) 267–294.

[22] S.A. Gaggl, T. Linsbichler, M. Maratea, S. Woltran, Design and results of the second international competition on computational models of argumentation, Artif.
Intell. 278 (2020).

[23] S. Bistarelli, L. Kotthoff, J.-M. Lagniez, E. Lonca, J.-G. Mailly, J. Rossit, F. Santini, C. Taticchi, The third and fourth international competitions on computational
models of argumentation: design, results and analysis, Argum. Comput. (Preprint) (2024) 1–73.

[24] M. Järvisalo, T. Lehtonen, A. Niskanen, Solver and Benchmark Descriptions of iccma 2023: 5th International Competition on Computational Models of Argu-

mentation, 2023.

[25] G. Audemard, L. Simon, On the glucose SAT solver, Int. J. Artif. Intell. Tools 27 (1) (2018) 1840001:1–1840001:25, https://doi.org/10.1142/

S0218213018400018.

[26] M. Soos, K. Nohl, C. Castelluccia, Extending SAT solvers to cryptographic problems, in: O. Kullmann (Ed.), Theory and Applications of Satisfiability Testing - SAT
2009, 12th International Conference, SAT 2009, Swansea, UK, June 30 - July 3, 2009. Proceedings, in: Lecture Notes in Computer Science, vol. 5584, Springer,
2009, pp. 244–257.

[27] M. Caminada, Semi-stable semantics, in: The First Conference on Computational Models of Argument (COMMA’06), 2006, pp. 121–130.

[28] B. Verheij, Two approaches to dialectical argumentation: admissible sets and argumentation stages, in: Proceedings of NAIC, 1996, pp. 357–368.

[29] P. Baroni, M. Giacomin, G. Guida, SCC-recursiveness: a general schema for argumentation semantics, Artif. Intell. 168 (1–2) (2005) 162–210.

[30] M. Janota, J. Marques-Silva, On the query complexity of selecting minimal sets for monotone predicates, Artif. Intell. 233 (2016) 73–83, https://doi.org/10.

1016/J.ARTINT.2016.01.002.

[31] F. Cerutti, M. Giacomin, M. Vallati, Algorithm selection for preferred extensions enumeration, in: S. Parsons, N. Oren, C. Reed, F. Cerutti (Eds.), Computational
Models of Argument - Proceedings of COMMA 2014, Atholl Palace Hotel, Scottish Highlands, UK, September 9-12, 2014, in: Frontiers in Artificial Intelligence
and Applications, vol. 266, IOS Press, 2014, pp. 221–232.

[32] M. Vallati, F. Cerutti, M. Giacomin, On the combination of argumentation solvers into parallel portfolios, in: Proceedings of the 30th Australasian Joint Conference
on Artificial Intelligence (AG 2017), 2017.

[33] M. Thimm, J.P. Wallner, On the complexity of inconsistency measurement, Artif. Intell. 275 (2019) 411–456.

http://refhub.elsevier.com/S0888-613X(25)00119-7/bib5D2FC6278EEF92D4EB2D8C1B1C58169Es1
http://refhub.elsevier.com/S0888-613X(25)00119-7/bib5D2FC6278EEF92D4EB2D8C1B1C58169Es1
http://refhub.elsevier.com/S0888-613X(25)00119-7/bib5D2FC6278EEF92D4EB2D8C1B1C58169Es1
http://refhub.elsevier.com/S0888-613X(25)00119-7/bib964223A19A600465B2CB7CBDAA72C291s1
http://refhub.elsevier.com/S0888-613X(25)00119-7/bib7619515523296E7480775D9254F797D3s1
http://refhub.elsevier.com/S0888-613X(25)00119-7/bib7619515523296E7480775D9254F797D3s1
http://refhub.elsevier.com/S0888-613X(25)00119-7/bib4D7830B783A39120C0FED6EBC28F54C2s1
http://refhub.elsevier.com/S0888-613X(25)00119-7/bibCBC2E4609187B3F33BCCF83B029DC023s1
http://refhub.elsevier.com/S0888-613X(25)00119-7/bibCBC2E4609187B3F33BCCF83B029DC023s1
http://refhub.elsevier.com/S0888-613X(25)00119-7/bibA0E7C45788EBF67ECD0D807320A49548s1
http://refhub.elsevier.com/S0888-613X(25)00119-7/bib479F61374DEBF9824291B510B1ECF754s1
http://refhub.elsevier.com/S0888-613X(25)00119-7/bib479F61374DEBF9824291B510B1ECF754s1
http://refhub.elsevier.com/S0888-613X(25)00119-7/bib5D045FF37115E2243975DB18E99E575Cs1
http://refhub.elsevier.com/S0888-613X(25)00119-7/bib5D045FF37115E2243975DB18E99E575Cs1
http://hdl.handle.net/10138/351207
http://hdl.handle.net/10138/351207
http://refhub.elsevier.com/S0888-613X(25)00119-7/bib39B1699840FC21540DCF8B85437B2085s1
http://refhub.elsevier.com/S0888-613X(25)00119-7/bib39B1699840FC21540DCF8B85437B2085s1
http://refhub.elsevier.com/S0888-613X(25)00119-7/bib39B1699840FC21540DCF8B85437B2085s1
http://refhub.elsevier.com/S0888-613X(25)00119-7/bib3501A5EE8A48365222819E979D3A580Es1
http://refhub.elsevier.com/S0888-613X(25)00119-7/bib3501A5EE8A48365222819E979D3A580Es1
http://refhub.elsevier.com/S0888-613X(25)00119-7/bib3501A5EE8A48365222819E979D3A580Es1
http://refhub.elsevier.com/S0888-613X(25)00119-7/bibDAFA5E00F8C8674F195F29D68C99B7F3s1
http://refhub.elsevier.com/S0888-613X(25)00119-7/bibC3E30D13F7CA6456C0DAD1A3EEBF807Bs1
http://refhub.elsevier.com/S0888-613X(25)00119-7/bibA65AF765401510662F93AE25526AE47Ds1
http://refhub.elsevier.com/S0888-613X(25)00119-7/bibF906F528591A68B93ECC1CBB07A428A6s1
http://refhub.elsevier.com/S0888-613X(25)00119-7/bibF38657457E09F5E66BA0BD0B2848A07Cs1
http://refhub.elsevier.com/S0888-613X(25)00119-7/bibF38657457E09F5E66BA0BD0B2848A07Cs1
http://refhub.elsevier.com/S0888-613X(25)00119-7/bib809BA92D480BB41B1DFF70AAA95941C8s1
http://refhub.elsevier.com/S0888-613X(25)00119-7/bib809BA92D480BB41B1DFF70AAA95941C8s1
http://refhub.elsevier.com/S0888-613X(25)00119-7/bib900D07CC72D40CC9198D8818FDDB373Bs1
http://refhub.elsevier.com/S0888-613X(25)00119-7/bib900D07CC72D40CC9198D8818FDDB373Bs1
https://doi.org/10.1142/S0218213018400018
https://doi.org/10.1142/S0218213018400018
http://refhub.elsevier.com/S0888-613X(25)00119-7/bib26A066F4892BBF601A8B7FDD8AB710A1s1
http://refhub.elsevier.com/S0888-613X(25)00119-7/bib26A066F4892BBF601A8B7FDD8AB710A1s1
http://refhub.elsevier.com/S0888-613X(25)00119-7/bib26A066F4892BBF601A8B7FDD8AB710A1s1
http://refhub.elsevier.com/S0888-613X(25)00119-7/bib08F4C5725C5F49AF0F521F8B67E16C47s1
http://refhub.elsevier.com/S0888-613X(25)00119-7/bib643C89DC28DE264BCB4969F8E7851D26s1
http://refhub.elsevier.com/S0888-613X(25)00119-7/bibF392D85EDDB0FEADBF6DC7AE65BAB2B8s1
https://doi.org/10.1016/J.ARTINT.2016.01.002
https://doi.org/10.1016/J.ARTINT.2016.01.002
http://refhub.elsevier.com/S0888-613X(25)00119-7/bibAC3EAA50222CD2D25B0C06CF55C9ADDEs1
http://refhub.elsevier.com/S0888-613X(25)00119-7/bibAC3EAA50222CD2D25B0C06CF55C9ADDEs1
http://refhub.elsevier.com/S0888-613X(25)00119-7/bibAC3EAA50222CD2D25B0C06CF55C9ADDEs1
http://refhub.elsevier.com/S0888-613X(25)00119-7/bib77B023AEC495BB66A943D3CA8D4DC21Bs1
http://refhub.elsevier.com/S0888-613X(25)00119-7/bib77B023AEC495BB66A943D3CA8D4DC21Bs1
http://refhub.elsevier.com/S0888-613X(25)00119-7/bib21AC34FB135E5AC1E21283A95A137AD7s1

	Algorithms for computing the set of acceptable arguments
	1 Introduction
	2 Preliminaries
	3 Complexity of computing the set of acceptable arguments
	4 Algorithms for credulous reasoning
	4.1 Iterative acceptability queries
	4.2 Exhaustive extension enumeration
	4.3 Selective extension enumeration
	4.4 Selective extension enumeration via MaxSat

	5 Algorithms for skeptical reasoning
	5.1 Iterative acceptability queries
	5.2 Exhaustive extension enumeration
	5.3 Selective extension enumeration via Sat for skeptical reasoning wrt. stable semantics
	5.4 Selective extension enumeration via MaxSat for skeptical reasoning wrt. stable semantics

	6 Experimental evaluation
	6.1 Experimental setup
	6.2 Results
	6.3 Ablation study wrt. Sat-solvers

	7 Summary and conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Appendix A Proofs of technical results
	Data availability
	References

