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A B S T R A C T 

We investigate the computational problem of determining the set of acceptable arguments in abstract argumentation wrt. credulous and skeptical 
reasoning under grounded, complete, stable, and preferred semantics. In particular, we investigate the computational complexity of that problem and 
its verification variant, and develop several algorithms for all problem variants, including two baseline approaches based on iterative acceptability 
queries and extension enumeration, and some optimised versions. We experimentally compare the runtime performance of these algorithms: our 
results show that our newly optimised algorithms significantly outperform the baseline algorithms in most cases.

1. Introduction

In abstract argumentation [1], an argument 𝑎 is skeptically (credulously) accepted wrt. some semantics 𝜎, if it belongs to all 
(at least one) 𝜎-extensions, respectively. Work on algorithms for solving reasoning problems in abstract argumentation—see e.g. the 
survey [2]—so far focused on deciding acceptability for a single query argument, or determining a single or all 𝜎-extensions. However, 
the computational problem of directly computing the set of all acceptable arguments (wrt. either credulous or skeptical reasoning) has 
not been considered yet explicitly in the literature. Of course, this problem can be solved by reducing it to the problems mentioned 
above. For example, one can determine the set of all credulously accepted arguments by first computing all 𝜎-extensions and then 
taking their union. In this paper, we ask whether this approach is appropriate for the problem and whether other approaches provide 
superior performance.

Having efficient algorithms for computing the set of credulously or skeptically accepted arguments is of practical importance. For 
instance, consider CISpaces [3], an argumentation-based research-grade prototype for supporting intelligence analysts in their sense-

making process, under consideration for transitioning into a commercial product. It supports intelligence analysts in sense-making in 
assessing competing hypotheses, where each hypothesis is a preferred extension. Knowing whether specific arguments are not in any 
possible extensions—the dual problem of credulous acceptance—or knowing whether arguments are skeptically justified is of great 
service as also discussed in [4]. It allows human analysts to reduce their cognitive burden by consciously deciding whether or not to 
look more into a specific argument they made in their sense-making process.

In this paper, we first look at the theoretical complexity of the problem of verifying whether a given set of arguments is exactly the 
set of acceptable arguments wrt. both credulous and skeptical reasoning under grounded, complete, stable, and preferred semantics. 
Our results mirror similar previous results [5] in that, for example, the verification problem for grounded semantics under both 
credulous and skeptical reasoning is in P, while the verification problem for skeptical reasoning for preferred semantics is DP2-
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complete (see Section 3 for definitions of the complexity classes). While the proofs of membership follow easily from existing results 
[5], the hardness proofs require some novel reduction techniques and insights.

In addition to the theoretical analysis, we present and analyse concrete algorithms for determining the set of acceptable arguments 
wrt. preferred and stable semantics and both reasoning modes.1 We first consider two baseline algorithms. The first one computes 
the set of acceptable arguments by simply iterating over all arguments and solving the corresponding decision problem for each 
argument. To be comparable with our other algorithms, we use simple Sat-solver based algorithms in the spirit of 𝜇-toksia [6] for 
these decision problems. Our second baseline method simply enumerates all extensions and then takes their union (for credulous 
reasoning) or intersection (for skeptical reasoning). We improve upon this second algorithm by defining an optimised version that 
enumerates only a subset of all extensions that already cover the whole set of acceptable arguments. Finally, we describe a fourth 
algorithm that uses a MaxSat-solver to maximise the number of newly discovered acceptable arguments in each call. We provide an 
extensive experimental evaluation of these four algorithms on all benchmarks from all ICCMA2 competitions. Our results consistently 
show that the two optimised algorithms significantly outperform the baseline algorithms.

To summarise, the contributions of this paper are as follows.

1. We characterise the computational complexity of the verification problem of checking whether a given set is exactly the set of 
acceptable arguments wrt. both credulous and skeptical reasoning and the grounded, complete, stable, and preferred semantics 
(Section 3).

2. We present four (Sat-based) algorithms for solving the problem of determining the set of acceptable arguments wrt. credulous 
reasoning and the stable and preferred semantics (Section 4).

3. We present four (Sat-based) algorithms for solving the problem of determining the set of acceptable arguments wrt. skeptical 
reasoning and the stable and preferred semantics (Section 5).

4. We report on an experimental evaluation of the runtime performance of the above four algorithms (Section 6).

We provide necessary preliminaries in Section 2 and conclude in Section 7. All proofs of technical results can be found in the appendix.

This paper is an extended version of the conference paper [7]. This version contains all proofs of technical results, an extensive 
presentation of the contributions, algorithms for both credulous and skeptical reasoning wrt. grounded, complete, stable, and preferred 
semantics (the previous version only considered credulous reasoning wrt. to complete semantics), and a thorough experimental 
evaluation of algorithms for both credulous and skeptical reasoning wrt. the grounded, complete, stable, and preferred semantics on 
data sets from ICCMA 2015–2023 (the previous version only covered credulous reasoning wrt. to complete semantics and the data 
sets from ICCMA 2015–2019).

2. Preliminaries

An abstract argumentation framework 𝖠𝖥 is a tuple 𝖠𝖥 = (𝖠,𝖱) where 𝖠 is a set of arguments and 𝖱 is a relation 𝖱 ⊆ 𝖠×𝖠. For two 
arguments 𝑎, 𝑏 ∈ 𝖠 the relation 𝑎𝖱𝑏 means that argument 𝑎 attacks argument 𝑏. For 𝑎 ∈ 𝖠 define 𝑎− = {𝑏 ∣ 𝑏𝖱𝑎} and 𝑎+ = {𝑏 ∣ 𝑎𝖱𝑏}. 
We say that a set 𝑆 ⊆ 𝖠 defends an argument 𝑏 ∈ 𝖠 if for all 𝑎 with 𝑎𝖱𝑏 then there is 𝑐 ∈ 𝑆 with 𝑐𝖱𝑎.

Semantics are given to abstract argumentation frameworks by means of extensions [1]. An extension 𝐸 is a set of arguments 
𝐸 ⊆ 𝖠 intended to represent a coherent point of view on the argumentation modelled by 𝖠𝖥. Arguably, the most important property 
of an extension is its admissibility. An extension 𝐸 is called admissible if and only if (1) 𝐸 is conflict-free, i.e., there are no arguments 
𝑎, 𝑏 ∈ 𝐸 with 𝑎𝖱𝑏 and (2) 𝐸 defends every 𝑎 ∈ 𝐸, and it is called complete (CO) if, additionally, it satisfies (3) if 𝐸 defends 𝑎 then 
𝑎 ∈𝐸.

Different types of classical semantics can be phrased by imposing further constraints. In particular, a complete extension 𝐸

• is grounded (GR) if and only if 𝐸 is minimal;

• is preferred (PR) if and only if 𝐸 is maximal; and

• is stable (ST) if and only if 𝖠 =𝐸 ∪ {𝑏 ∣ ∃𝑎 ∈𝐸 ∶ 𝑎𝖱𝑏}.

All statements on minimality/maximality are meant to be with respect to set inclusion. Note that the grounded extension is uniquely 
determined and that stable extensions may not exist [1].

Example 1. Consider the abstract argumentation framework 𝖠𝖥1 depicted as a directed graph in Fig. 1. In 𝖠𝖥1 there are three 
complete extensions 𝐸1,𝐸2,𝐸3 defined via 𝐸1 = {𝑎1}, 𝐸2 = {𝑎1, 𝑎3}, and 𝐸3 = {𝑎1, 𝑎4}. 𝐸1 is also grounded and 𝐸2 and 𝐸3 are both 
stable and preferred.

Let 𝜎 ∈ {CO,GR,ST,PR} be some semantics and 𝖠𝖥 = (𝖠,𝖱) an abstract argumentation framework. Then, an argument 𝑎 ∈ 𝖠 is 
skeptically accepted in 𝖠𝖥, denoted by 𝖠𝖥 ⊧s

𝜎
𝑎, if 𝑎 is contained in every 𝜎-extension. An argument 𝑎 ∈ 𝖠 is credulously accepted in 𝖠𝖥, 

1 We do not consider grounded semantics and skeptical reasoning with complete semantics, since these problems are polynomial; we also do not consider credulous 
reasoning with complete semantics explicitly, since this is equivalent to credulous reasoning with preferred semantics.

2 http://argumentationcompetition.org.

http://argumentationcompetition.org
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𝑎1 𝑎2 𝑎3 𝑎4

Fig. 1. The abstract argumentation framework 𝖠𝖥1 from Example 1. 

denoted by 𝖠𝖥 ⊧c
𝜎
𝑎, if 𝑎 is contained in some 𝜎-extension. Define Acc𝑠

𝜎
(𝖠𝖥) = {𝑎 ∈ 𝖠 ∣ 𝖠𝖥 ⊧𝑠

𝜎
𝑎} and Acc𝑐

𝜎
(𝖠𝖥) = {𝑎 ∈ 𝖠 ∣ 𝖠𝖥 ⊧𝑐

𝜎
𝑎} to be 

the sets of skeptically and credulously accepted arguments in 𝖠𝖥, respectively. Observe that Acc𝑠
𝜎
(𝖠𝖥) ⊆ Acc𝑐

𝜎
(𝖠𝖥) for all semantics 

and abstract argumentation frameworks, except for 𝜎 = ST and an argumentation framework 𝖠𝖥′ that possesses no stable extension. 
In the latter case Acc𝑠

𝜎
(𝖠𝖥′) = 𝖠 and Acc𝑐

𝜎
(𝖠𝖥′) = ∅ by definition.

In the remainder of the paper, we consider the computational problem of determining the sets Acc𝑠
𝜎
(𝖠𝖥) and Acc𝑐

𝜎
(𝖠𝖥), respec-

tively. Note that these exact problems have not been investigated before, to the best of our knowledge, in terms of computational 
complexity and algorithms. Previous studies and algorithms either focus on a single acceptability problem, such as deciding whether 
𝖠𝖥 ⊧x

𝜎
𝑎 is true for 𝑥 ∈ {𝑠, 𝑐} and some argument 𝑎 ∈ 𝖠, or computing one or all extensions (as done in the ICCMA series of argumen-

tation competitions).

3. Complexity of computing the set of acceptable arguments

We assume familiarity with basic concepts of computational complexity and basic complexity classes such as P, NP and coNP, see 
[8] for an introduction. Recall that every decision problem can be represented as a language 𝐿 that contains exactly those instances 
to the problem with answer “yes.” A complexity class can then be represented by the languages of those problems it contains. We will 
make use of the complexity class DP, which is defined as DP = {𝐿1 ∩𝐿2 ∣𝐿1 ∈ NP,𝐿2 ∈ coNP}. So DP contains the intersections of a 
language in NP and a language in coNP. We also need the following class DP2 = {𝐿1 ∩𝐿2 ∣𝐿1 ∈ NPNP,𝐿2 ∈ coNPNP} where NPNP

is the class of problems that can be solved by a non-deterministic Turing machine in polynomial time that has access to an NP oracle 
and coNPNP is the class of problems where the complement can be solved by a non-deterministic Turing machine in polynomial time 
that has access to an NP oracle. NPNP is also written as Σ𝑃2 and coNPNP as Π𝑃

2 . So DP2 contains those languages that are intersections 
of a language in Σ𝑃2 and a language in Π𝑃

2 .

In this section, we are interested in the computational complexity of the following decision problem:

ACC𝑥
𝜎

Input: 𝖠𝖥 = (𝖠,𝖱) and 𝐸 ⊆ 𝖠
Output: true iff 𝐸 = Acc𝑥

𝜎
(𝖠𝖥),

for a semantics 𝜎 and 𝑥 ∈ {𝑠, 𝑐}.

We start with the tractable problems.

Proposition 1. ACC𝑠
GR, ACC𝑐

GR, and ACC𝑠
CO are in P.

Many other problems are DP-complete.

Proposition 2. ACC𝑐
CO, ACC𝑐

PR, and ACC𝑐
ST are DP-complete.

Proposition 3. ACC𝑠
ST is DP-complete.

Skeptical inference with preferred semantics is (unsurprisingly) on the second level of the polynomial hierarchy.

Proposition 4. ACC𝑠
PR is DP2-complete.

The results from above also allow us to easily provide an upper bound for the computational complexity of the functional problem 
of determining the set of acceptable arguments. For the following result, recall that FNPDP[1] is the complexity class of functional 
problems that can be solved by a non-deterministic Turing machine running in polynomial time that can call a DP-oracle for a 
constant number of times. The class FNPDP2[1] is defined analogously. Let furthermore EnumACC𝜎

𝑥
denote the problem of computing 

Acc𝑥
𝜎
(𝖠𝖥).

Corollary 1. Let 𝖠𝖥 be an abstract argumentation framework.

1. The problems EnumACCGR
𝑠

, EnumACCGR
𝑐

, EnumACCCO
𝑠

are in FP, respectively.

2. The problems EnumACC𝐶𝑂
𝑐

, EnumACCPR
𝑐

, EnumACCST
𝑐

, EnumACCST
𝑠

are in FNPDP[1], respectively.

3. The problem EnumACCPR
𝑠

is in FNPDP2[1].

Table 1 summarises the results of this section and also lists known complexity results for deciding credulous reasoning (Cred𝜎
for deciding whether on input 𝖠𝖥 and 𝑎 it holds 𝖠𝖥 ⊧c

𝜎
𝑎) and skeptical reasoning (Skep𝜎 for deciding whether on input 𝖠𝖥 and 𝑎 it 
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Table 1
Overview in existing (columns Cred𝜎 and Skep𝜎 ) and new (remaining columns) 
complexity results; all statements are membership statements, except where a suffix 
“-c” indicates completeness statements.

𝜎 Cred𝜎 Skep𝜎 ACC𝑐

𝜎
ACC𝑠

𝜎
EnumACC𝑐

𝜎
EnumACC𝑠

𝜎

GR P P P P FP FP 
CO NP-c P DP-c P FNPDP[1] FP 
ST NP-c coNP-c DP-c DP-c FNPDP[1] FNPDP[1]

PR NP-c ΠP
2 -c DP-c DP2-c FNPDP[1] FNPDP[2]

holds 𝖠𝖥 ⊧s
𝜎
𝑎) for reference, cf. [5]. Membership proofs (see Appendix A) for the new results do derive quite naturally from proofs 

of those previously known results, while hardness proofs required some new and challenging techniques. 

4. Algorithms for credulous reasoning

We will now investigate some algorithms that compute the set Acc𝑐
𝜎
(𝖠𝖥) for 𝜎 ∈ {CO,ST,PR}. We do not consider grounded 

semantics here as Acc𝑐GR(𝖠𝖥) can be computed in polynomial time anyway, cf. see Proposition 1.

We will develop reduction-based algorithms [9,2] and leverage Sat-solving technologies. Our encodings of acceptability problems 
into Sat are based on the encodings proposed initially in [10] and used in modern Sat-based argumentation solvers, see e.g. [9,11]. 
We consider complete semantics first. Let 𝖠𝖥 = (𝖠,𝖱) be an abstract argumentation framework. For each argument 𝑎 ∈ 𝖠 we introduce 
three propositional variables 𝚒𝚗𝑎,𝚘𝚞𝚝𝑎,𝚞𝚗𝚍𝚎𝚌𝑎 which model the cases that 𝑎 is in the extension, 𝑎 is attacked by the extension, 𝑎 is 
not in the extension nor attacked by it, respectively. Then define

ΦCO
𝑎

=

(
𝚘𝚞𝚝𝑎 ⇔

⋁
𝑏∈𝑎−

𝚒𝚗𝑏

)
∧

(
𝚒𝚗𝑎 ⇔

⋀
𝑏∈𝑎−

𝚘𝚞𝚝𝑏

)
∧
(
𝚒𝚗𝑎 ∨ 𝚘𝚞𝚝𝑎 ∨ 𝚞𝚗𝚍𝚎𝚌𝑎

)
∧ (¬𝚒𝚗𝑎 ∨ ¬𝚘𝚞𝚝𝑎) ∧ (¬𝚒𝚗𝑎 ∨ ¬𝚞𝚗𝚍𝚎𝚌𝑎) ∧ (¬𝚘𝚞𝚝𝑎 ∨ ¬𝚞𝚗𝚍𝚎𝚌𝑎)

and

ΨCO
𝖠𝖥 =

⋀
𝑎∈𝖠

ΦCO
𝑎
.

For any propositional formula Φ, let Mod(Φ) denote its set of models. For any model 𝜔 let 𝐸(𝜔) = {𝑎 ∣ 𝜔(𝚒𝚗𝑎) = true}. Variants of 
the following observations have been proven in e.g. [10].

Proposition 5. Let 𝖠𝖥= (𝖠,𝖱) be an abstract argumentation framework.

1. If 𝜔 ∈ Mod(ΨCO
𝖠𝖥

) then 𝐸(𝜔) is a complete extension of 𝖠𝖥.

2. If 𝐸 is a complete extension of 𝖠𝖥 then there is 𝜔∈ Mod(ΨCO
𝖠𝖥

) with 𝐸(𝜔) =𝐸.

3. 𝑎 ∈ Acc𝑐CO(𝖠𝖥) if and only if ΨCO
𝖠𝖥

∧ 𝚒𝚗𝑎 is satisfiable.

Due to Acc𝑐CO(𝖠𝖥) = Acc𝑐PR(𝖠𝖥) we set ΨPR
𝖠𝖥

= ΨCO
𝖠𝖥

and use the encoding ΨCO
𝖠𝖥

for credulous reasoning with preferred semantics 
as well.

For stable semantics, we can define a slightly simpler encoding as we do not need to encode the case in which an argument is 
neither in the extension nor attacked by the extension. So, for each argument 𝑎 ∈ 𝖠, we introduce one propositional variable 𝚒𝚗𝑎, 
which models the case that 𝑎 is in the extension. Then define

ΦST
𝑎

=

(
¬𝚒𝚗𝑎 ⇔

⋁
𝑏∈𝑎−

𝚒𝚗𝑏

)
∧

(
𝚒𝚗𝑎 ⇔

⋀
𝑏∈𝑎−

¬𝚒𝚗𝑏

)
and

ΨST
𝖠𝖥 =

⋀
𝑎∈𝖠

ΦST
𝑎
.

The observations from Proposition 5 apply similarly for stable semantics as well.

Proposition 6. Let 𝖠𝖥= (𝖠,𝖱) be an abstract argumentation framework.

1. If 𝜔 ∈ Mod(ΨST
𝖠𝖥
) then 𝐸(𝜔) is a stable extension of 𝖠𝖥.

2. If 𝐸 is a stable extension of 𝖠𝖥 then there is 𝜔∈ Mod(ΨST
𝖠𝖥
) with 𝐸(𝜔) =𝐸.

3. 𝑎 ∈ Acc𝑐ST(𝖠𝖥) if and only if ΨST
𝖠𝖥

∧ 𝚒𝚗𝑎 is satisfiable.
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Algorithm 1 Algorithm IAQ𝑐 .

Input: 𝖠𝖥 = (𝖠,𝖱), 𝜎 ∈ {CO,ST,PR}
Output: Acc𝑐

𝜎
(𝖠𝖥)

1: 𝑆 ← ∅
2: for 𝑎 ∈ 𝖠 do

3: if Sat(Ψ𝜎
𝖠𝖥

∧ 𝚒𝚗𝑎) then

4: 𝑆 ← 𝑆 ∪ {𝑎}
5: return 𝑆

The above observations enable us to use Sat solving technology by encoding abstract argumentation problems into one or a series 
of Sat problems.3

Example 2. Given the abstract argumentation framework 𝖠𝖥1 from Example 1, ΨCO
𝖠𝖥

is(
𝚒𝚗𝑎1 ∨ 𝚘𝚞𝚝𝑎1 ∨ 𝚞𝚗𝚍𝚎𝚌𝑎1

)
∧(

𝚘𝚞𝚝𝑎2 ⇔ 𝚒𝚗𝑎1
)
∧
(
𝚒𝚗𝑎2 ⇔ 𝚘𝚞𝚝𝑎1

)
∧
(
𝚒𝚗𝑎2 ∨ 𝚘𝚞𝚝𝑎2 ∨ 𝚞𝚗𝚍𝚎𝚌𝑎2

)
∧(

𝚘𝚞𝚝𝑎3 ⇔ 𝚒𝚗𝑎2 ∨ 𝚒𝚗𝑎4
)
∧
(
𝚒𝚗𝑎3 ⇔ 𝚘𝚞𝚝𝑎2 ∧ 𝚘𝚞𝚝𝑎4

)
∧
(
𝚒𝚗𝑎3 ∨ 𝚘𝚞𝚝𝑎3 ∨ 𝚞𝚗𝚍𝚎𝚌𝑎3

)
∧(

𝚘𝚞𝚝𝑎4 ⇔ 𝚒𝚗𝑎3
)
∧
(
𝚒𝚗𝑎4 ⇔ 𝚘𝚞𝚝𝑎3

)
∧
(
𝚒𝚗𝑎4 ∨ 𝚘𝚞𝚝𝑎4 ∨ 𝚞𝚗𝚍𝚎𝚌𝑎4

)
Observe that Acc𝑐CO(𝖠𝖥1) = {𝑎1, 𝑎3, 𝑎4}.

In the remainder of this section, we will use 𝖠𝖥1 as a running example to explain the behaviour of the introduced algorithms.

4.1. Iterative acceptability queries

A straightforward algorithm for determining Acc𝑐
𝜎
(𝖠𝖥) is to exploit observations 3 of Propositions 5 and 6, respectively, and check 

for each 𝑎 ∈ 𝖠 whether Ψ𝜎
𝖠𝖥

∧𝚒𝚗𝑎 is satisfiable using some Sat solver. We denote this algorithm IAQ𝑐 (for iterative acceptability queries 
wrt. credulous reasoning), it is depicted as Algorithm 1. We write Sat(𝜙) for a call to an external Sat solver that evaluates to true 
if 𝜙 is satisfiable. 

Example 3. Assuming 𝜎 = CO, the IAQ𝑐 algorithm makes exactly one call per argument to the Sat solver, and updates 𝑆 accordingly. 
Considering 𝖠𝖥1, after its initialisation 𝑆 ← ∅, 𝑆 is updated as follows:

1. loop on 𝑎1: 𝑆 = {𝑎1}
2. loop on 𝑎2: 𝑆 = {𝑎1}
3. loop on 𝑎3: 𝑆 = {𝑎1, 𝑎3}
4. loop on 𝑎4: 𝑆 = {𝑎1, 𝑎3, 𝑎4}

The following observation regarding the correctness of the algorithm should be obvious.

Proposition 7. Algorithm IAQ𝑐 is sound and complete.

4.2. Exhaustive extension enumeration

Another straightforward approach is to leverage the fact that Sat solvers usually do not only report on the satisfiability of a given 
formula but also provide a model as a witness. For a model 𝜔 let

𝐶(𝜔) =
⋁

𝜔(𝛼)=true

¬𝛼 ∨
⋁

𝜔(𝛼)=false

𝛼.

One can then enumerate all models of formula 𝜙 by first retrieving any one model 𝜔, then retrieving a model 𝜔′ of 𝜙 ∧ 𝐶(𝜔), then 
a model 𝜔′′ if 𝜙 ∧ 𝐶(𝜔) ∧ 𝐶(𝜔′) and so on. It is clear that all models retrieved this way are models of 𝜙 and that by adding 𝐶(𝜔), 
we avoid retrieving the same model on future calls again. Eventually, the formula becomes unsatisfiable, so we retrieved all the 
models. We can use this strategy to enumerate all complete/stable extensions of an input abstract argumentation framework (using 
observations 2 and 3 of Propositions 5 and 6, respectively). The union of these is then the set Acc𝑐

𝜎
(𝖠𝖥). We denote this algorithm 

3 Note that formulas such as ΨCO
𝖠𝖥

can be easily turned in conjunctive normal form, the standard input format for Sat solvers, with only polynomial overhead, so 
we do not explicitly discuss matters related to this aspect in the following.
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Algorithm 2 Algorithm EEE𝑐 .

Input: 𝖠𝖥 = (𝖠,𝖱), 𝜎 ∈ {CO,ST,PR}
Output: Acc𝑐

𝜎
(𝖠𝖥)

1: 𝑆 ← ∅
2: Ψ←Ψ𝜎

𝖠𝖥
3: while false ≠ 𝜔 = Witness(Ψ) do

4: 𝑆 ← 𝑆 ∪𝐸(𝜔)
5: Ψ←Ψ∧𝐶(𝜔)
6: return 𝑆

Algorithm 3 Algorithm SEE𝑐 .

Input: 𝖠𝖥 = (𝖠,𝖱), 𝜎 ∈ {CO,ST,PR}
Output: Acc𝑐

𝜎
(𝖠𝖥)

1: 𝑆 ← ∅
2: 𝐷←𝖠
3: while false ≠ 𝜔 = Witness(Ψ𝜎

𝖠𝖥
∧
⋁

𝑎∈𝐷 𝚒𝚗𝑎) do

4: 𝑆 ← 𝑆 ∪𝐸(𝜔)
5: 𝐷←𝐷 ⧵𝐸(𝜔)
6: return 𝑆

EEE𝑐 and it is depicted as Algorithm 2. We write Witness(𝜙) for a call to an external Sat solver that evaluates to a model 𝜔 of 𝜙 if 
𝜙 is satisfiable, or false otherwise. 

Example 4. Assuming 𝜎 = CO, let us consider one by one the iterations that the EEE𝑐 algorithm performs on 𝖠𝖥1.

1. 𝐸 = {𝑎1, 𝑎3} is found, so

𝐸(𝜔) = {𝑎1, 𝑎3} 𝑆 = {𝑎1, 𝑎3} 𝐶(𝜔) = {¬𝑎1 ∨ 𝑎2 ∨ ¬𝑎3 ∨ 𝑎4}

2. 𝐸 = {𝑎1} is found, so

𝐸(𝜔) = {𝑎1} 𝑆 = {𝑎1, 𝑎3} 𝐶(𝜔) = {¬𝑎1 ∨ 𝑎2 ∨ 𝑎3 ∨ 𝑎4}

3. 𝐸 = {𝑎1, 𝑎4} is found, so

𝐸(𝜔) = {𝑎1, 𝑎4} 𝑆 = {𝑎1, 𝑎3, 𝑎4} 𝐶(𝜔) = {¬𝑎1 ∨ 𝑎2 ∨ 𝑎3 ∨ ¬𝑎4}

A final iteration is then performed, but Ψ is now unsatisfiable, as no more extensions exist, and therefore Witness(Ψ) = 𝐹𝐴𝐿𝑆𝐸, 
and the algorithm terminates.

The following observation regarding the correctness of the algorithm should be obvious.

Proposition 8. Algorithm EEE𝑐 is sound and complete.

4.3. Selective extension enumeration

We now turn to our proposal of a non-trivial algorithm for computing Acc𝑐
𝜎
(𝖠𝖥). A major drawback of the algorithm EEE𝑐 is that 

an abstract argumentation framework may feature an exponential number of complete/stable extensions and many may overlap to 
a large degree. It may therefore be the case that in many iterations of the main loop in line 3 of Algorithm 2 no new arguments are 
added to 𝑆 . To address this issue, we propose a more selective extension enumeration SEE, implemented in Algorithm 3. 

Differently from Algorithm 2, the algorithm SEE𝑐 constrains the search for further models (line 3) by requiring that at least one 
argument that has not already been classified as accepted, needs to be included. Indeed, at the first iteration (line 3) the Sat solver 
will identify a 𝜎-extension with at least one 𝚒𝚗 argument. The set of 𝚒𝚗 arguments in the obtained extension will then be removed 
from the set 𝐷 of unvisited arguments (line 5). From the second iteration, the Sat solver will then be forced to identify 𝜎-extensions 
that intersect with the unvisited arguments. As we can see in the following example, SEE𝑐 requires one less iteration to identify all 
the acceptable arguments, compared to EEE𝑐 from the previous section.

Example 5. Assuming again 𝜎 = CO, let us consider the iterations that the SEE𝑐 algorithm performs on 𝖠𝖥1.

1. 𝐸 = {𝑎1, 𝑎3} is found, so

𝐸(𝜔) = {𝑎1, 𝑎3} 𝑆 = {𝑎1, 𝑎3} 𝐷 = {𝑎2, 𝑎4}
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Algorithm 4 Algorithm SEEM𝑐 .

Input: 𝖠𝖥 = (𝖠,𝖱), 𝜎 ∈ {CO,ST,PR}
Output: Acc𝑐

𝜎
(𝖠𝖥)

1: 𝑆 ← ∅
2: 𝐷←𝖠
3: while false ≠ 𝜔 = MaxSat({𝚒𝚗𝑎 ∣ 𝑎 ∈𝐷},Ψ𝜎

𝖠𝖥
) do

4: 𝑆 ← 𝑆 ∪𝐸(𝜔)
5: 𝐷←𝐷 ⧵𝐸(𝜔)
6: return 𝑆

2. 𝐸 = {𝑎1, 𝑎4} is found, so

𝐸(𝜔) = {𝑎1, 𝑎4} 𝑆 = {𝑎1, 𝑎3, 𝑎4} 𝐷 = {𝑎2}

Finally, since 𝑎2 cannot be included in any complete extension, the overall formula is unsatisfiable and the execution ends. Observe, in 
particular, that after the algorithm found the extension 𝐸 = {𝑎1, 𝑎3} in the first iteration, it will not consider the extension 𝐸′ = {𝑎1}
in any of the following iterations as it introduces no new arguments.

Proposition 9. Algorithm SEE𝑐 is sound and complete.

4.4. Selective extension enumeration via MaxSat

In (unweighted) MaxSat [12], formulas can be either hard or soft. The solutions of a MaxSat problem are determined among all as-

signments that satisfy all the hard formulas and are those that maximise the number of satisfied soft formulas. We write MaxSat(𝑆,𝐻)
(with a set of formulas 𝑆 and a formula 𝐻) for a call to an external MaxSat solver that evaluates to a model 𝜔 that satisfies 𝐻 and a 
maximal number of formulas in 𝑆 . If 𝐻 is not satisfiable, MaxSat(𝑆,𝐻) evaluates to false. Algorithm 4 shows our final algorithm 
SEEM𝑐 for credulous reasoning. 

The algorithm SEEM𝑐 forces the MaxSat solver to maximise the set of unvisited arguments at each iteration. Given the simplicity 
and the size of the abstract argumentation framework 𝖠𝖥1, in this specific case, the SEEM𝑐 algorithm would perform as SEE𝑐 , so we 
do not give an additional example here.

Proposition 10. Algorithm SEEM𝑐 is sound and complete.

Despite the fact that SEEM𝑐 seems to be the most sophisticated algorithm so far, we will see later (in Section 6) that it is indeed 
outperformed in many cases by the simpler SEE𝑐 version.

5. Algorithms for skeptical reasoning

We will now investigate some algorithms that compute the set Acc𝑠
𝜎
(𝖠𝖥) for 𝜎 ∈ {ST,PR}. We do not consider grounded and 

complete semantics here as Acc𝑠GR(𝖠𝖥) = Acc𝑠CO(𝖠𝖥) can be computed in polynomial time anyway, cf. see Proposition 1.

For stable semantics, we will develop Sat-based algorithms and use the encoding ΨST
𝖠𝖥

from the previous section. For that, we will 
take the following well-known fact about skeptical reasoning wrt. stable semantics and ΨST

𝖠𝖥
.

Proposition 11. Let 𝖠𝖥= (𝖠,𝖱) be an abstract argumentation framework. Then 𝑎∈ Acc𝑠ST(𝖠𝖥) if and only if ΨST
𝖠𝖥

∧ ¬𝚒𝚗𝑎 is unsatisfiable.

For preferred semantics, note that the problem of deciding whether an argument 𝑎 is skeptically accepted is Π𝑃
2 -complete [5]. 

Thus, it cannot be solved by a single Sat-solver call (under standard complexity-theoretic assumptions). To develop similar baseline 
algorithms as before for skeptical reasoning under preferred semantics (in particular skeptical variants of the methods IAQ and EEE), 
we will make use of oracle calls of the form SkepPref(𝖠𝖥, 𝑎) and PrefExts(𝖠𝖥). Here SkepPref(𝖠𝖥, 𝑎) returns true if and only if 
𝑎 is skeptically accepted wrt. preferred semantics in 𝖠𝖥 (and false otherwise) while PrefExts(𝖠𝖥) returns the set of all preferred 
extensions of 𝖠𝖥. These calls can be implemented by solvers capable of solving these problems, such as e.g., 𝜇-toksia [6] or fudge 
[13] (which themselves use iterative calls to a Sat-solver for producing the answers).

5.1. Iterative acceptability queries

As in Section 4.1 for the case of credulous reasoning, a straightforward algorithm for determining Acc𝑠
𝜎
(𝖠𝖥) is to check skeptical 

acceptance for each 𝑎 ∈ 𝖠 individually. We denote this algorithm IAQ𝑠, which is depicted as Algorithm 5. As before, we write Sat(𝜙)
for a call to an external Sat solver that evaluates to true if 𝜙 is satisfiable (and SkepPref(𝖠𝖥, 𝑎) to decide skeptical acceptance wrt. 
preferred semantics). The following observation regarding the correctness of the algorithm should be obvious.

Proposition 12. Algorithm IAQ𝑠 is sound and complete.
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Algorithm 5 Algorithm IAQ𝑠.

Input: 𝖠𝖥 = (𝖠,𝖱), 𝜎 ∈ {ST,PR}
Output: Acc𝑠

𝜎
(𝖠𝖥)

1: 𝑆 ← ∅
2: for 𝑎 ∈ 𝖠 do

3: if 𝜎 = ST then

4: if ¬Sat(ΨST
𝖠𝖥

∧ ¬𝚒𝚗𝑎) then

5: 𝑆 ← 𝑆 ∪ {𝑎}
6: if 𝜎 = PR then

7: if SkepPref(𝖠𝖥, 𝑎) then

8: 𝑆 ← 𝑆 ∪ {𝑎}
9: return 𝑆

Algorithm 6 Algorithm EEE𝑠.

Input: 𝖠𝖥 = (𝖠,𝖱), 𝜎 ∈ {ST,PR}
Output: Acc𝑠

𝜎
(𝖠𝖥)

1: 𝑆 ←𝖠
2: if 𝜎 = ST then

3: Ψ←ΨST
𝖠𝖥

4: while false ≠ 𝜔 = Witness(Ψ) do

5: 𝑆 ← 𝑆 ∩𝐸(𝜔)
6: Ψ←Ψ∧𝐶(𝜔)
7: if 𝜎 = PR then

8: for 𝐸 ∈ PrefExts(𝖠𝖥) do

9: 𝑆 ← 𝑆 ∩𝐸
10: return 𝑆

Algorithm 7 Algorithm SEE𝑠.

Input: 𝖠𝖥 = (𝖠,𝖱)
Output: Acc𝑠ST(𝖠𝖥)
1: 𝑆 ←𝖠
2: while false ≠ 𝜔 = Witness(ΨST

𝖠𝖥
∧
⋁

𝑎∈𝑆 ¬𝚒𝚗𝑎) do

3: 𝑆 ← 𝑆 ∩𝐸(𝜔)
4: return 𝑆

5.2. Exhaustive extension enumeration

As in Section 4.2 for the case of credulous reasoning, another straightforward approach for skeptical reasoning is to exhaustively 
enumerate all extensions and take their intersection. For that, recall

𝐶(𝜔) =
⋁

𝜔(𝛼)=true

¬𝛼 ∨
⋁

𝜔(𝛼)=false

𝛼,

for any model 𝜔. We denote this algorithm EEE𝑠 and it is depicted as Algorithm 6. As before, we write Witness(𝜙) for a call to an 
external Sat solver that evaluates to a model 𝜔 of 𝜙 if 𝜙 is satisfiable, or false otherwise (and we use PrefExts(𝖠𝖥) for a call to 
a solver that enumerates all preferred extensions). The following observation regarding the correctness of the algorithm should be 
obvious.

Proposition 13. Algorithm EEE𝑠 is sound and complete.

5.3. Selective extension enumeration via Sat for skeptical reasoning wrt. stable semantics

In this and the next section, we continue with algorithms that follow the scheme of the algorithms SEE𝑐 and SEEM𝑐 presented in 
Sections 4.3 and 4.4, respectively, but only for skeptical reasoning wrt. stable semantics. Due to the higher computational complexity 
of skeptical reasoning wrt. preferred semantics, those ideas cannot be applied in the same manner.

Again, a major drawback of the algorithm EEE𝑠 (for stable semantics) is that an abstract argumentation framework may feature 
an exponential number of stable extensions and many may overlap to a large degree. So it may be the case that in many iterations 
of the main loop in line 4 of Algorithm 6 no new arguments are added to 𝑆 . To address this, we present in Algorithm 7 the skeptical 
variant of selective extension enumeration SEE𝑠 for stable semantics. 

As one can see, the skeptical variant SEE𝑠 is even a bit simpler than the credulous variant SEE𝑐 (see Algorithm 3). We only 
maintain a set 𝑆 of arguments that will hold the acceptable arguments once the algorithm terminates. This set is initialised with 
all arguments. In each iteration of the algorithm, we constrain the search for further models (line 2) by requiring that at least one 
argument currently assumed to be skeptically accepted must be ¬𝚒𝚗. Then, we take the intersection of the obtained stable extension 
with the set 𝑆 and continue. Once no further model can be found, it is clear that all arguments in 𝑆 must be contained in every stable 
extension.
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Algorithm 8 Algorithm SEEM𝑠.

Input: 𝖠𝖥 = (𝖠,𝖱)
Output: Acc𝑠ST(𝖠𝖥)
1: 𝑆 ←𝖠
2: while false ≠ 𝜔 = MaxSat({¬𝚒𝚗𝑎 ∣ 𝑎 ∈ 𝑆},ΨST

𝖠𝖥
) do

3: 𝑆 ← 𝑆 ∩𝐸(𝜔)
4: return 𝑆

Proposition 14. Algorithm SEE𝑠 is sound and complete.

5.4. Selective extension enumeration via MaxSat for skeptical reasoning wrt. stable semantics

We can apply the same idea when going from SEE𝑐 to SEEM𝑐 for skeptical reasoning wrt. stable semantics as well. Line 2 of 
Algorithm 7 only requires that at least one of the variables 𝚒𝚗𝑎 for 𝑎 ∈ 𝑆 be false. Using a MaxSat solver allows us to maximise the 
number of arguments that can be dismissed in each iteration. Recall that MaxSat(𝑆,𝐻) (with a set of formulas 𝑆 and a formula 𝐻) 
denotes a call to an external MaxSat solver that evaluates to a model 𝜔 that satisfies 𝐻 and a maximal number of formulas in 𝑆 . If 
𝐻 is not satisfiable, MaxSat(𝑆,𝐻) evaluates to false. Algorithm 8 shows our final algorithm SEEM𝑠 for skeptical reasoning. 

Proposition 15. Algorithm SEEM𝑠 is sound and complete.

As for the variant SEEM𝑐 for credulous reasoning and despite the fact that SEEM𝑠 seems to be the most sophisticated algorithm 
so far (for skeptical reasoning), we will see later (in Section 6) that it is indeed outperformed in many cases by the simpler SEE𝑠

version.

6. Experimental evaluation

We performed an extensive experimental evaluation to compare the runtime performance of our new algorithms. We describe the 
setup of this evaluation in Section 6.1 and present the results in Section 6.2. In Section 6.3 we conduct a small ablation study to show 
that the concrete Sat-solver has no influence on the general behaviour of our algorithms.

6.1. Experimental setup

For the experimental evaluation, we considered the following problems

EC-PR Enumerate the acceptable arguments wrt. credulous reasoning with preferred semantics

EC-ST Enumerate the acceptable arguments wrt. credulous reasoning with stable semantics

ES-PR Enumerate the acceptable arguments wrt. skeptical reasoning with preferred semantics

ES-ST Enumerate the acceptable arguments wrt. skeptical reasoning with stable semantics

Again, we do not consider complete semantics since credulous reasoning with complete semantics is equivalent to credulous reason-

ing with preferred semantics, and skeptical reasoning with complete semantics is equivalent to credulous/skeptical reasoning with 
grounded semantics, which can be solved in polynomial time and is also not considered.

For the above problems, we consider the algorithms depicted in Algorithms 1–8. More precisely, the competitors for the individual 
problems are:

• EC-PR: IAQ𝑐 , EEE𝑐 , SEE𝑐 , SEEM𝑐

• EC-ST: IAQ𝑐 , EEE𝑐 , SEE𝑐 , SEEM𝑐

• ES-PR: IAQ𝑠, EEE𝑠

• ES-ST: IAQ𝑠, EEE𝑠, SEE𝑠, SEEM𝑠

Our algorithms were implemented in C++.4 For all calls of the form Sat(⋅), Witness(⋅) and MaxSat(⋅, ⋅) we used the CGSS 
2.2.5 MaxSat-solver [14,15] based on the CaDiCal 1.9.5 Sat-solver [16,17]. For the problem ES-PR, all algorithms do not require 
MaxSat(⋅, ⋅) calls and thus only use CaDiCal 1.9.5. We implemented the function SkepPref(𝖠𝖥, 𝑎) utilised in Algorithm 5 via a 
CEGAR-style approach [18], similar to that of the 𝜇-toksia solver [6]. For Algorithm 6, the function PrefExts(𝖠𝖥) for enumerating 
the preferred extensions has been implemented via the Sat-encoding ΨCO

𝖠𝖥
of the complete semantics and an iterative maximisation of 

all found models [19]. We ran the experiments on a machine running Ubuntu 20.04 with an Intel Xeon E5 3.4 GHz CPU and 192 GB 
of RAM. The evaluation has been conducted via the Probo2 benchmark suite [20]. We considered the benchmark datasets from the 
ICCMA’15 to ICCMA’23 competitions [21–24]. Table 2 gives an overview on features of these datasets. There, #AFs is the number of 

4 https://github.com/aig-hagen/algorithms_for_acceptable_arguments.

https://github.com/aig-hagen/algorithms_for_acceptable_arguments
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Table 2
Statistics for all considered benchmark datasets.

Dataset #AFs Avg. |𝐴| Med. |𝐴| Std. |𝐴| Avg. |𝑅| Avg. 𝐷
ICCMA’15 192 1980 675 2424 105396 68 
ICCMA’17 1050 16638 500 151641 301409 169 
ICCMA’19 326 826 196 1784 97639 239 
ICCMA’21 480 87331 48200 92881 7239611 161 
ICCMA’23 329 29791 796 203719 1002470 299 

Table 3
Results for EC-PR on the ICCMA’15, ICCMA’17, ICCMA’19, ICCMA’21 and 
ICCMA’23 benchmark sets.

ICCMA’15 
No. Algorithm 𝑁 #TO RT PAR10 #VBS 
1 VBS 192 0 2474.12 12.89 -

2 SEE𝑐 192 0 2493.56 12.99 106 
3 EEE𝑐 192 0 2571.85 13.40 43 
4 IAQ𝑐 192 1 2942.53 77.83 10 
5 SEEM𝑐 192 19 11491.34 1247.35 33 
ICCMA’17 
No. Algorithm 𝑁 #TO RT PAR10 #VBS 
1 VBS 1050 223 28450.93 2575.67 -

2 SEE𝑐 1050 232 29529.34 2679.55 239 
3 IAQ𝑐 1050 240 36385.91 2777.51 133 
4 SEEM𝑐 1050 308 31471.52 3549.97 194 
5 EEE𝑐 1050 541 32191.84 6213.52 118 
ICCMA’19 
No. Algorithm 𝑁 #TO RT PAR10 #VBS 
1 VBS 326 0 664.77 2.04 -

2 SEE𝑐 326 0 774.88 2.38 134 
3 EEE𝑐 326 0 946.80 2.90 85 
4 IAQ𝑐 326 0 1004.89 3.08 59 
5 SEEM𝑐 326 4 5437.36 163.92 48 
ICCMA’21 
No. Algorithm 𝑁 #TO RT PAR10 #VBS 
1 VBS 480 347 62511.65 8805.23 -

2 IAQ𝑐 480 349 68501.58 8867.71 106 
3 SEE𝑐 480 390 40434.98 9834.24 27 
4 EEE𝑐 480 480 0.00 12000.00 0 
5 SEEM𝑐 480 480 0.00 12000.00 0 
ICCMA’23 
No. Algorithm 𝑁 #TO RT PAR10 #VBS 
1 VBS 329 59 9806.91 2181.78 -

2 SEE𝑐 329 63 8755.90 2324.49 129 
3 IAQ𝑐 329 68 11353.52 2514.75 53 
4 SEEM𝑐 329 81 10092.91 2985.08 45 
5 EEE𝑐 329 142 7603.76 5202.44 43 

instances in the dataset5; |𝐴| is the number of arguments of an instance, for which Table 2 shows the average, median and standard 
deviation; Avg. |𝑅| is the average number of attacks in the instances of the dataset; Avg. 𝐷 is the average node degree over the whole 
dataset.

Each algorithm was given 20 minutes to compute the solution for every instance (=argumentation framework) and problem. For 
every algorithm and problem, we consider the number of unsolved instances and the runtime of solved instances. We also considered 
the PAR10 (Penalised Average Runtime) score to compare the performance of the algorithms. This score combines runtime and ability 
to solve, as it is calculated by considering runs that did not solve the problem as ten times the cutoff time.

5 Note that the ICCMA’17 purposefully contains duplicate AFs. In total there are 874 unique AFs in the ICCMA’17 dataset.
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Table 4
Results for EC-ST on the ICCMA’15, ICCMA’17, ICCMA’19, ICCMA’21 and ICC-

MA’23 benchmark sets.

ICCMA’15 
No. Algorithm 𝑁 #TO RT PAR10 #VBS 
1 VBS 192 0 1442.36 7.51 -

2 EEE𝑐 192 0 1492.35 7.77 50 
3 SEE𝑐 192 0 1520.09 7.92 95 
4 IAQ𝑐 192 0 2336.67 12.17 25 
5 SEEM𝑐 192 7 10497.84 492.18 22 
ICCMA’17 
No. Algorithm 𝑁 #TO RT PAR10 #VBS 
1 VBS 1050 209 36085.22 2422.94 -

2 SEE𝑐 1050 219 33461.65 2534.73 260 
3 IAQ𝑐 1050 232 35937.57 2685.65 125 
4 SEEM𝑐 1050 279 22751.58 3210.24 133 
5 EEE𝑐 1050 325 41943.91 3754.23 177 
ICCMA’19 
No. Algorithm 𝑁 #TO RT PAR10 #VBS 
1 VBS 326 0 592.56 1.82 -

2 SEE𝑐 326 0 724.18 2.22 131 
3 EEE𝑐 326 0 730.91 2.24 116 
4 IAQ𝑐 326 0 790.67 2.43 43 
5 SEEM𝑐 326 4 3008.31 156.47 36 
ICCMA’21 
No. Algorithm 𝑁 #TO RT PAR10 #VBS 
1 VBS 480 159 99064.08 4181.38 -

2 IAQ𝑐 480 175 107816.26 4599.62 226 
3 SEE𝑐 480 234 87482.91 6032.26 51 
4 SEEM𝑐 480 368 49448.02 9303.02 27 
5 EEE𝑐 480 401 16596.06 10059.58 17 
ICCMA’23 
No. Algorithm 𝑁 #TO RT PAR10 #VBS 
1 VBS 329 38 14796.29 1430.99 -

2 SEE𝑐 329 39 16550.30 1472.80 135 
3 IAQ𝑐 329 49 18408.16 1843.19 42 
4 SEEM𝑐 329 57 13039.01 2118.66 37 
5 EEE𝑐 329 81 13497.44 2995.43 77 

6.2. Results

Tables 3–6 show the performance of the considered algorithms on all benchmarks for the respective problems EC-PR, EC-ST, 
ES-PR, and ES-ST. For each benchmark and problem we also include the virtual best solver (VBS), i.e., the solver that uses per 
instance the best other solver. In each table, 𝑁 is the total number of instances of the benchmark set; #TO gives the number of 
time-outs/errors of each solver on this benchmark set; RT gives the runtime in seconds on all correctly solved benchmarks; PAR10 
gives the average runtime where time-outs count ten times the cutoff-time, i.e., 12,000 seconds; #VBS gives the number of instances 
contributed to the VBS. Algorithms are ranked by the number of unsolved instances (in increasing order). In the case of ties, solvers 
are then ranked by runtime (in increasing order). Figs. 2 and 3 visualise the performance of all approaches on the ICCMA’21 and 
ICCMA’23 benchmark sets (the other benchmark sets are not shown in order to keep the plots readable; their addition would not add 
interesting information).

The first observation when inspecting the results is that out of 15 experiments, where the algorithm SEE𝑐/SEE𝑠 participated (one 
for each pair of benchmark set and problem EC-PR, EC-ST, and ES-ST), it achieved first rank in 12 of them. In particular, SEE𝑐/SEE𝑠

outperforms EEE𝑐/EEE𝑠 in all but one case, namely on the ICCMA’15 data set for EC-ST. However, in that case, both algorithms 
have almost the same performance (no time outs and about 1500s total runtime), so there is indeed no case where EEE𝑐/EEE𝑠 (sig-

nificantly) outperforms SEE𝑐/SEE𝑠. This shows that exhaustive extension enumeration can generally be avoided when determining 
the set of acceptable arguments. SEE𝑐/SEE𝑠 also outperforms IAQ𝑐/IAQ𝑠 in all but two cases, namely EC-PR and EC-ST on the 
ICCMA’21 data set. In both cases, IAQ𝑐 outperforms SEE𝑐 quite significantly. The main difference between the ICCMA’21 data set 
and the others is that it features many large instances, which seems to benefit the IAQ𝑐 approach. Finally, SEE𝑐/SEE𝑠 also outper-

forms the algorithm SEEM𝑐/SEEM𝑠 in all of them. The reason for this is likely that the total number of required Sat-solver calls for 
SEE𝑐/SEE𝑠 is lower than the total number of required Sat-solver calls for SEEM𝑐/SEEM𝑠, since the latter requires a MaxSat-solver 
call for finding each new extension, which results in multiple Sat-solver calls for each such extension. Although the number of found 
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Table 5
Results for ES-PR on the ICCMA’15, ICCMA’17, ICCMA’19, ICCMA’21 and IC-

CMA’23 benchmark sets.

ICCMA’15 
No. Algorithm 𝑁 #TO RT PAR10 #VBS 
1 VBS 192 0 934.68 4.87 -

2 EEE𝑠 192 0 934.68 4.87 192 
3 IAQ𝑠 192 47 22608.66 3055.25 0 
ICCMA’17 
No. Algorithm 𝑁 #TO RT PAR10 #VBS 
1 VBS 1050 299 42531.08 3457.65 -

2 EEE𝑠 1050 343 46995.16 3964.76 461 
3 IAQ𝑠 1050 587 59977.92 6765.69 144 
ICCMA’19 
No. Algorithm 𝑁 #TO RT PAR10 #VBS 
1 VBS 326 0 386.61 1.19 -

2 EEE𝑠 326 0 387.11 1.19 310 
3 IAQ𝑠 326 9 27777.68 416.50 16 
ICCMA’21 
No. Algorithm 𝑁 #TO RT PAR10 #VBS 
1 VBS 480 480 0 12000.00 -

2 EEE𝑠 480 480 0 12000.00 0 
3 IAQ𝑠 480 480 0 12000.00 0 
ICCMA’23 
No. Algorithm 𝑁 #TO RT PAR10 #VBS 
1 VBS 329 81 6544.26 2974.30 -

2 EEE𝑠 329 101 6207.97 3702.76 213 
3 IAQ𝑠 329 136 19856.58 5020.84 35 

Fig. 2. Number of solved instances given the per-instance runtime by each algorithm for credulous reasoning on the ICCMA’21 and ICCMA’23 datasets. 

extensions by SEE𝑐/SEE𝑠 is usually larger than for SEEM𝑐/SEEM𝑠, fewer Sat-solver calls are required for the former. Assuming 
that each Sat-solver call has (roughly) the same time consumption, SEE𝑐/SEE𝑠 can outperform SEEM𝑐/SEEM𝑠.

An anomaly can be observed between 400 and 600 seconds runtime for SEE𝑐 in Fig. 2a, where a couple of instances can be 
identified with similar runtime. Nearly all of these instances are from the ICCMA’21 dataset. In particular, these instances are those 
with the smallest number of arguments in the ICCMA’21 dataset, they have between 9,450 and 12,600 arguments and thus about 8
times less arguments than the dataset average. Comparatively, they also have about 4 fewer attacks than the dataset average. These 
instances are the only instances of the ICCMA’21 dataset that were solved at all by the algorithm SEE𝑐 , all other instances resulted 
in a timeout. In the same instances, EEE𝑐 and SEEM𝑐 produce only timeouts and IAQ𝑐 exhibits no abnormal behaviour. In general, 
this hints that IAQ𝑐 scales better with an increasing number of arguments than the other algorithms.
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Table 6
Results for ES-ST on the ICCMA’15, ICCMA’17, ICCMA’19, ICCMA’21 and ICC-

MA’23 benchmark sets.

ICCMA’15 
No. Algorithm 𝑁 #TO RT PAR10 #VBS 
1 VBS 192 0 1152.76 6.00 -

2 SEE𝑠 192 0 1203.54 6.27 30 
3 EEE𝑠 192 0 1539.26 8.02 38 
4 IAQ𝑠 192 0 1996.11 10.40 10 
5 SEEM𝑠 192 2 4389.96 147.86 114 
ICCMA’17 
No. Algorithm 𝑁 #TO RT PAR10 #VBS 
1 VBS 1050 214 34651.15 2478.72 -

2 SEE𝑠 1050 218 34555.19 2524.34 220 
3 IAQ𝑠 1050 232 38677.18 2688.26 71 
4 SEEM𝑠 1050 245 21924.75 2820.88 261 
5 EEE𝑠 1050 318 40397.99 3672.76 139 
ICCMA’19 
No. Algorithm 𝑁 #TO RT PAR10 #VBS 
1 VBS 326 0 461.20 1.41 -

2 SEE𝑠 326 0 489.73 1.50 83 
3 IAQ𝑠 326 0 679.94 2.09 36 
4 EEE𝑠 326 0 709.62 2.18 67 
5 SEEM𝑠 326 1 2007.56 42.97 140 
ICCMA’21 
No. Algorithm 𝑁 #TO RT PAR10 #VBS 
1 VBS 480 82 99532.77 2257.36 -

2 SEE𝑠 480 82 99801.65 2257.92 350 
3 SEEM𝑠 480 146 110667.28 3880.56 8 
4 IAQ𝑠 480 204 91177.72 5289.95 0 
5 EEE𝑠 480 401 13788.57 10053.73 40 
ICCMA’23 
No. Algorithm 𝑁 #TO RT PAR10 #VBS 
1 VBS 329 34 15216.83 1286.37 -

2 SEE𝑠 329 35 15018.27 1322.24 120 
3 IAQ𝑠 329 43 20851.61 1631.77 27 
4 SEEM𝑠 329 67 13095.07 2483.57 100 
5 EEE𝑠 329 79 14164.20 2924.51 48 

Fig. 3. Number of solved instances given the per-instance runtime by each algorithm for skeptical reasoning on the ICCMA’21 and ICCMA’23 datasets. 
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Table 7
Results for EC-ST on the ICCMA’23 benchmark set for the algorithms IAQ𝑠 , EEE𝑠

and SEE𝑠 executed with three different Sat-solvers.

SEE𝑐

No. Algorithm 𝑁 #TO RT PAR10 
1 SEE𝑐 (CaDiCal) 329 28 10999.14 1054.71 
2 SEE𝑐 (Glucose) 329 40 15929.37 1507.38 
3 SEE𝑐 (CryptoMiniSat) 329 42 16254.35 1581.32 
IAQ𝑐

No. Algorithm 𝑁 #TO RT PAR10 
1 IAQ𝑐 (CaDiCal) 329 34 11726.63 1275.76 
2 IAQ𝑐 (CryptoMiniSat) 329 49 18997.24 1844.98 
3 IAQ𝑐 (Glucose) 329 50 14301.12 1867.18 
EEE𝑐

No. Algorithm 𝑁 #TO RT PAR10 
1 EEE𝑐 (CaDiCal) 329 68 10761.63 2512.95 
2 EEE𝑐 (Glucose) 329 79 15379.40 2928.20 
3 EEE𝑐 (CryptoMiniSat) 329 88 12872.30 3248.85 

As for the results for ES-PR (see Table 5), where only EEE𝑠 and IAQ𝑠 competed, it may come to a surprise that EEE𝑠 consistently 
outperformed IAQ𝑠 (with the exception of the ICCMA’21 data set where neither algorithm could solve any instance; which is again 
likely because the instances of ICCMA’21 are significantly larger than for the other data sets). However, one should recall that solving 
a single query on skeptical acceptance wrt. preferred semantics is a ΠP

2 -complete problem [5] and itself involves multiple Sat-solver 
calls. In contrast, determining (some) preferred extension is a comparably easy task. In the best case, it can be solved by a single 
Sat-solver call (when the search heuristic of the solver favours labelling arguments as accepted). So even if the number of extensions 
is comparably large, solving a series of comparably easier tasks is beneficial to solving fewer but harder tasks (at least in the case of 
skeptical acceptance wrt. preferred semantics).

Another interesting observation can be made on the results for ES-ST, see Table 6. Despite the fact that SEEM𝑠 usually ranks at 
the lower end, it has a significantly large contribution to the virtual best solver. This is particularly apparent for ICCMA’15, ICCMA’17, 
and ICCMA’19, where SEEM𝑠 has the majority share in the virtual best solver. The reason for this is that ICCMA’15 and ICCMA’19 
(and also a large part of ICCMA’17) feature many easy instances that all solvers can solve, but where SEEM𝑠 can solve them quite 
fast. Still, the overhead required for MaxSat-solving in SEEM𝑠 leads to more timeouts for the harder instances, which leads to the 
otherwise low ranking of SEEM𝑠.

6.3. Ablation study wrt. Sat-solvers

To evaluate the impact of the underlying Sat-solver that is used in each algorithm, we conducted a small ablation study, focusing 
only on the ICCMA’23 benchmark set and the problems EC-ST and ES-ST. In addition to the previously used Sat-solver CaDiCal 
1.9.5 [17], we also considered Glucose 4.1 [25] and CryptoMiniSat 5.11.21 [26]. Tables 7 and 8 show the results for the algorithms 
IAQ, EEE and SEE executed with the three different Sat-solvers on the ICCMA’23 benchmark set for the problems EC-ST and ES-ST, 
respectively. As one can see, the choice of the concrete Sat-solver has no influence on the ranking of the three algorithmic approaches. 
However, one can observe that CaDiCal consistently outperforms the other Sat-solvers in this domain.

7. Summary and conclusion

In this paper, we considered the computational task of computing the set of acceptable arguments in abstract argumentation wrt. 
credulous and skeptical reasoning and grounded, complete, stable, and preferred semantics. Our study on computational complexity 
showed that the corresponding decision variants are complete for the DP family of complexity classes, mirroring results for classical 
problems. We presented different Sat-based algorithms for computing the set of accepted arguments wrt. the different semantics and 
reasoning modes, and our evaluation showed that the SEE approach turned out to be the most effective, also generally outperforming 
(quite surprisingly) the approaches based on maximum satisfiability solving.

For future work, both the theoretical as well as the experimental study can be extended to include further semantics such as semi-

stable [27], stage [28], and CF2 semantics [29]. Since the complexity of reasoning with CF2 semantics (NP-complete for credulous 
reasoning and coNP-complete reasoning for skeptical reasoning) is similar to reasoning with stable semantics, see, e.g., [5], we expect 
that this will also be similar to the corresponding problems analysed in this paper for stable semantics (so DP-completeness for all 
variants). Moreover, since skeptical reasoning with semi-stable and stage semantics is ΠP

2 -complete, we expect that the result for 
ACC𝑠

PR carries over as well (namely DP2-completeness). Since credulous reasoning with semi-stable/stage semantics is ΣP
2 -complete, 

a more challenging analysis and development of algorithmic approaches is expected for this case. 
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Table 8
Results for ES-ST on the ICCMA’23 benchmark set for the algorithms IAQ𝑠 , EEE𝑠

and SEE𝑠 executed with three different Sat-solvers.

SEE𝑠

No. Algorithm 𝑁 #TO RT PAR10 
1 SEE𝑠 (CaDiCal) 329 27 11339.43 1019.27 
2 SEE𝑠 (Glucose) 329 35 11705.36 1312.17 
3 SEE𝑠 (CryptoMiniSat) 329 40 15033.60 1504.66 
IAQ𝑠

No. Algorithm 𝑁 #TO RT PAR10 
1 IAQ𝑠 (CaDiCal) 329 34 11810.67 1276.02 
2 IAQ𝑠 (Glucose) 329 41 20346.03 1557.28 
3 IAQ𝑠 (CryptoMiniSat) 329 53 16891.78 1984.47 
EEE𝑠

No. Algorithm 𝑁 #TO RT PAR10 
1 EEE𝑠 (CaDiCal) 329 68 11510.70 2515.23 
2 EEE𝑠 (Glucose) 329 77 13078.14 2848.26 
3 EEE𝑠 (CryptoMiniSat) 329 86 17660.49 3190.46 

Another avenue for future work are improvements on the algorithms. In particular, algorithms IAQ, EEE, and SEE (for both 
credulous and skeptical reasoning) are based on iterative calls to a SAT solver. The order of these calls (in particular when using 
iterative SAT solving techniques) can influence overall runtime and approaches such as [30] could be used to decrease the number of 
required SAT solver calls. Also approaches to algorithm selection [31] or portfolio-based approaches [32] could be used to combine 
the advantages of the individual algorithms.
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Appendix A. Proofs of technical results

Proposition 1. ACC𝑠
GR, ACC𝑐

GR, and ACC𝑠
CO are in P.

Proof. Observe first that the problems ACC𝑠
GR, ACC𝑐

GR, and ACC𝑠
CO are actually identical as there is exactly one grounded extension 

and it is equal to the intersection of all complete extensions. Furthermore, as determining the grounded extension 𝐸𝑔𝑟 is in P [5], we 
can first compute it and then compare it to the input 𝐸 in linear time. □

Proposition 2. ACC𝑐
CO, ACC𝑐

PR, and ACC𝑐
ST are DP-complete.

Proof. Observe first that the problems ACC𝑐
CO and ACC𝑐

PR are identical. Recall also that verifying whether a given set 𝐸 is a complete 
or stable extension can be done in polynomial time [5].
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In order to show DP membership of ACC𝑐
𝜎

(with 𝜎 being either complete or stable semantics), we first define the two languages 
𝐿1 and 𝐿2 as follows

𝐿1 = {(𝐸1,𝖠 ⧵𝐸1) ∈ 𝖠 ×𝖠 ∣𝐸1 ⊆ Acc𝑥
𝜎
(𝖠𝖥)}

𝐿2 = {(𝖠 ⧵𝐸2,𝐸2) ∈ 𝖠 ×𝖠 ∣𝐸2 ∩ Acc𝑥
𝜎
(𝖠𝖥) = ∅}

Observe that 𝐿1 ∈ NP: on instance (𝐸1,𝐸2) we guess for each 𝑎 ∈ 𝐸1 a set 𝐹 with 𝑎 ∈ 𝐹 and verify in polynomial time whether it 
is indeed a complete/stable extension. Furthermore, 𝐿2 ∈ coNP: if an instance (𝐸1,𝐸2) is not in 𝐿2, we can guess a set 𝐹 for some 
𝑎 ∈𝐸2 (with 𝑎 ∈ 𝐹 ) and verify in polynomial time whether it is a complete/stable extension. Finally, 𝐿1 ∩𝐿2 is equivalent to ACC𝑐

𝜎

by projecting on the first component of the instances, showing its DP-membership.

For DP-hardness, we reduce the problem Sat-Unsat to ACC𝑐
𝜎
, which is known to be DP-complete [8]. An instance (𝜙,𝜓), with 

two propositional formulas 𝜙, 𝜓 in conjunctive normal form with exactly three literals per clause (3-CNF), belongs to Sat-Unsat 
iff 𝜙 is satisfiable and 𝜓 is not satisfiable. We make use of the standard reduction of 3-CNF to abstract argumentation frameworks 
(see Reduction 3.6. in [5]). For a formula 𝜙 = 𝑐1 ∧…∧ 𝑐𝑛 with 𝑐𝑖 = 𝑙1,𝑖 ∨ 𝑙2,𝑖 ∨ 𝑙3,𝑖 over the alphabet 𝑉𝜙 = {𝑣1,… , 𝑣𝑚},6 we denote by 
𝐹𝜙 = (𝖠𝜙,𝖱𝜙) the abstract argumentation framework defined via

𝖠𝜙 = {𝑎𝜙, 𝑎𝜙,𝑐1 ,… , 𝑎𝜙,𝑐𝑛
, 𝑣1,… , 𝑣𝑚,¬𝑣1,… ,¬𝑣𝑚}

𝖱𝜙 = {(𝑎𝜙,𝑐1 , 𝑎𝜙),… , (𝑎𝜙,𝑐𝑛 , 𝑎𝜙)}∪

{(𝑣, 𝑎𝜙,𝑐𝑖 ) ∣ 𝑣 ∈ 𝑐𝑖, 𝑖 = 1,… , 𝑛}∪

{(𝑣1,¬𝑣1), (¬𝑣1, 𝑣1),… , (𝑣𝑚,¬𝑣𝑚), (¬𝑣𝑚, 𝑣𝑚)}

For an Sat-Unsat instance (𝜙,𝜓) we require two additional assumptions: no clause 𝑐 appearing in either 𝜙 or 𝜓 is a tautology, 
i.e., contains both 𝑣 and ¬𝑣 for some atom 𝑣 (the clause could be removed from the formula anyway), and 𝜙 and 𝜓 have disjoint 
vocabularies (can be realised by renaming of atoms). Upon instance (𝜙,𝜓) we construct the framework 𝖠𝖥 = (𝖠𝜙 ∪𝖠𝜓 ,𝖱𝜙 ∪ 𝖱𝜓 ) and 
ask whether

𝐸 = 𝖠𝜙 ∪𝖠𝜓 ⧵ {𝑎𝜓}

is exactly the set of credulously accepted arguments wrt. complete/stable semantics. This is the case if and only if (𝜙,𝜓) is a positive 
instance of Sat-Unsat. To see this, assume that (𝜙,𝜓) is a positive instance and observe first that stable extensions exist in 𝖠𝖥 for 
every instance (there is no odd loop in 𝖠𝖥). Furthermore, every 𝑣 and ¬𝑣 is accepted as it defends itself against its only attacker, so 
there is always a complete/stable extension including it. As every clause 𝑐𝑖 in either 𝜙 or 𝜓 is not a tautology, the set {𝑙1,𝑖, 𝑙2,𝑖, 𝑙3,𝑖} (with 
overlining indicating the complement literal) is conflict-free and defends 𝑐𝑖 , therefore 𝑐𝑖 can be credulously accepted. Furthermore, 
if 𝜙 is satisfiable there is a stable/complete extension containing 𝑎𝜙 [5]. Finally, if 𝜓 is not satisfiable, 𝑎𝜓 cannot be credulously 
accepted (as the only argument of 𝖠𝖥). So if 𝐸 is the set of credulously accepted arguments wrt. complete/stable semantics then 
(𝜙,𝜓) is a positive instance of Sat-Unsat. The reverse direction is analogous. □

Proposition 3. ACC𝑠
ST is DP-complete.

Proof. The proof is similar to the proof of Proposition 2. For DP-membership we define two languages

𝐿1 = {(𝐸1,𝖠 ⧵𝐸1) ∈ 𝖠 ×𝖠 ∣𝐸1 ⊆ Acc𝑠ST(𝖠𝖥)}

𝐿2 = {(𝖠 ⧵𝐸2,𝐸2) ∈ 𝖠 ×𝖠 ∣𝐸2 ∩ Acc𝑠ST(𝖠𝖥) = ∅}

Observe that 𝐿1 is in coNP: if an instance (𝐸1,𝐸2) is not in 𝐿1 we guess a set 𝐸 with 𝐸1 ⧵𝐸 ≠ ∅ and verify in polynomial time that 
𝐸 is stable (meaning that there is at least one argument in 𝐸1 that cannot be skeptically accepted). Furthermore, 𝐿2 is in NP: for 
each argument 𝑎 ∈𝐸2 we can guess a set 𝐸 with 𝑎 ∉𝐸 and verify in polynomial time that 𝐸 is stable. Finally, 𝐿1 ∩𝐿2 is equivalent 
to ACC𝑠

ST by projecting on the first component of the instances, showing its DP-membership (the reader may also verify that the 
verification still works for the case of an abstract argumentation framework without stable extensions where Acc𝑠ST(𝖠𝖥) = 𝖠).

For DP-hardness, we use the same reduction as in the proof of Proposition 2, but include two new arguments 𝑥𝜙 , 𝑥𝜓 , and attacks 
(𝑎𝜙,𝑥𝜙), (𝑎𝜓 ,𝑥𝜓 ). Then 𝐸 = {𝑥𝜓} is exactly the set of skeptically accepted arguments wrt. stable semantics if and only if (𝜙,𝜓) is 
a positive instance of Sat-Unsat. Assume that (𝜙,𝜓) is a positive instance of Sat-Unsat, then no argument 𝑣 or ¬𝑣 is skeptically 
accepted as there is always a stable extension including its only attacker. Furthermore, no 𝑐𝑖 is skeptically accepted as there is always 
a stable extension including one of its attackers (as every clause is satisfiable). Furthermore, as 𝜙 is satisfiable, 𝑥𝜙 is not included 
in the extension containing 𝑎𝜙, which must exist [5]. As 𝜙 is also not tautological (this can only be the case if all its clauses are 
tautological), there must also be a stable extension not including 𝑎𝜙 . As 𝜓 is not satisfiable 𝑥𝜓 must be contained in every stable 
extension and 𝑎𝜓 is in no stable extension. This shows that 𝐸 = {𝑥𝜓} is exactly the set of skeptically accepted arguments wrt. stable 
semantics. The reverse direction is analogous. □

6 The argument 𝜙 can be interpreted as “the formula 𝜙 is true,” while the argument 𝑐𝑖 can be read as “clause 𝑐𝑖 is not satisfied” [5].



International Journal of Approximate Reasoning 185 (2025) 109478

17

L. Bengel, M. Thimm, F. Cerutti et al. 

Proposition 4. ACC𝑠
PR is DP2-complete.

Proof. In order to show DP2 membership of ACC𝑠
PR we first define the two languages 𝐿1 and 𝐿2 as follows

𝐿1 = {(𝐸1,𝖠 ⧵𝐸1) ∈ 𝖠 ×𝖠 ∣𝐸1 ⊆ Acc𝑠PR(𝖠𝖥)}

𝐿2 = {(𝖠 ⧵𝐸2,𝐸2) ∈ 𝖠 ×𝖠 ∣𝐸2 ∩ Acc𝑠PR(𝖠𝖥) = ∅}

Observe that 𝐿1 is in coNPNP: if an instance (𝐸1,𝐸2) is not in 𝐿1 we guess a set 𝐸 with 𝐸1 ⧵ 𝐸 ≠ ∅ and verify that 𝐸 is preferred 
(meaning that there is at least one argument in 𝐸1 that cannot be skeptically accepted). The latter problem is in coNP [5] and an 
NP-oracle call is equivalent to an coNP-oracle call. Furthermore, 𝐿2 is in NPcoNP: for each argument 𝑎 ∈𝐸2 we can guess a set 𝐸 with 
𝑎 ∉ 𝐸 and verify that 𝐸 is preferred. Finally, 𝐿1 ∩𝐿2 is equivalent to ACC𝑠

PR by projecting on the first component of the instances, 
showing its DP2-membership.

For DP2-hardness, we reduce the DP2-complete problem ∀∃QBF2 [33] to ACC𝑠
PR. Here, an instance is a pair (𝜙,𝜓) of quantified 

Boolean formulæ of the form

𝜙 = ∀𝑌 ∃𝑍 ∶ 𝜇(𝑌 ,𝑍)

𝜓 = ∀𝑌 ′∃𝑍′ ∶ 𝜇′(𝑌 ′,𝑍′)

where 𝜇(𝑌 ,𝑍) and 𝜇′(𝑌 ′,𝑍′) are propositional formulæ over the variables 𝑌 ∪𝑍 , 𝑌 ′ ∪𝑍′, respectively. The pair (𝜙,𝜓) is a “yes” 
instance of ∀∃QBF2 if 𝜙 evaluates to true and 𝜓 evaluates to false.

First, we define a generalisation of Reduction 3.7 of [5] to compile a QBF of the form

𝜙 = ∀𝑦1,… , 𝑦𝑛∃𝑧1,… , 𝑧𝑚 ∶ 𝜇(𝑦1,… , 𝑦𝑛, 𝑧1,… , 𝑧𝑚) (A.1)

to abstract argumentation frameworks that works for arbitrary propositional formulæ 𝜇(𝑦1 ,… , 𝑦𝑛, 𝑧1,… , 𝑧𝑚) (not just CNF-formulæ). 
For that, we inductively define a transformation from a propositional formula 𝜇 (we now omit mentioning the variables explicitly) 
to an AF, i.e., 𝖠𝖥𝜇 = (𝖠𝜇,𝖱𝜇), via

1. If 𝜇 = 𝑣 for some 𝑣 ∈ {𝑦1,… , 𝑦𝑛, 𝑧1,… , 𝑧𝑚} define

𝖠𝑦𝑖
= {𝑝𝑣, 𝑝𝑣}

𝖱𝑦𝑖 = {(𝑝𝑣, 𝑝𝑣), (𝑝𝑣, 𝑝𝑣)}

2. If 𝜇 = ¬𝜇′ define

𝖠¬𝜇′ = 𝖠𝜇′ ∪ {𝑝¬𝜇′ }

𝖱¬𝜇′ = 𝖱𝜇′ ∪ {(𝑝𝜇′ , 𝑝¬𝜇′ )}

3. If 𝜇 = 𝜇′ ∧ 𝜇′′ define

𝖠𝜇′∧𝜇′′ = 𝖠𝜇′ ∪𝖠𝜇′′ ∪ {ℎ1
𝜇′∧𝜇′′ , ℎ

2
𝜇′∧𝜇′′ , 𝑝𝜇′∧𝜇′′ }

𝖱𝜇′∧𝜇′′ = 𝖱𝜇′ ∪ 𝖱𝜇′ ∪ {(𝑝𝜇′ , ℎ1𝜇′∧𝜇′′ ), (𝑝𝜇′′ , ℎ
2
𝜇′∧𝜇′′ ), (ℎ

1
𝜇′∧𝜇′′ , 𝑝𝜇′∧𝜇′′ ),

(ℎ2
𝜇′∧𝜇′′ , 𝑝𝜇′∧𝜇′′ )}

4. If 𝜇 = 𝜇′ ∨ 𝜇′′ define

𝖠𝜇′∨𝜇′′ = 𝖠𝜇′ ∪𝖠𝜇′′ ∪ {ℎ𝜇′∨𝜇′′ , 𝑝𝜇′∨𝜇′′ }

𝖱𝜇′∨𝜇′′ = 𝖱𝜇′ ∪ 𝖱𝜇′ ∪ {(𝑝𝜇′ , ℎ𝜇′∨𝜇′′ ), (𝑝𝜇′′ , ℎ𝜇′∨𝜇′′ ), (ℎ𝜇′∨𝜇′′ , 𝑝𝜇′∨𝜇′′ )}

To complete the reduction, similarly to [5], we define for a QBF of the form (A.1) the AF 𝖠𝖥𝜙 = (𝖠
𝜙
,𝖱

𝜙
) with

𝖠𝜙 = 𝖠𝜇 ∪ {𝑝𝜇}

𝖱𝜙 = 𝖱𝜇 ∪ {(𝑝𝜇, 𝑝𝜇), (𝑝𝜇, 𝑝𝜇)} ∪ {(𝑝𝜇, 𝑧1),… , (𝑝𝜇, 𝑧𝑚)}

Fig. A.4 shows an example of the reduction. Observe that the QBF 𝜙 evaluates to true iff 𝑝𝜇 is skeptically accepted in 𝖠𝖥𝜙 wrt. 
preferred semantics [5]. However, note that 𝑝𝜇 may not be the only argument that is skeptically accepted (for example, in Fig. A.4, 𝑝𝛼3
is skeptically accepted as well). In order for our aimed reduction to ACC𝑠

PR to work, we need to have a clearly defined status for each 
argument. We address this by a process we call cloning. Each argument 𝑎 ∈ 𝖠𝜙 ⧵ {𝑝𝜇, 𝑝𝜇} is cloned yielding an additional argument 
�̂�. For each attack (𝑎, 𝑏) ∈ 𝖱𝜙 ⧵ {(𝑎′, 𝑏′) ∣ 𝑎′, 𝑏′ ∉ {𝑝𝜇, 𝑝𝜇}} we add attacks (𝑎, �̂�), (�̂�, 𝑏), (�̂�, �̂�). Furthermore, for each attack (𝑎, 𝑝𝜇) we 
add the attack (�̂�, 𝑝𝜇) and for each attack (𝑝𝜇, 𝑎) we add (𝑝𝜇, �̂�). We abbreviate the new argumentation framework by 𝖠𝖥𝜙 = (�̂�

𝜙
, �̂�

𝜙
). 
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𝑝𝑦1 𝑝𝑦1 𝑝𝑧1 𝑝𝑧1 𝑝𝑧2 𝑝𝑧2

𝑝𝛼1 ℎ1
𝛼2

ℎ2
𝛼2

𝑝𝛼2

𝑝¬𝛼2

ℎ𝛼3

𝑝𝛼3

ℎ1
𝜇

ℎ2
𝜇

𝑝𝜇 𝑝𝜇

Fig. A.4. Abstract argumentation framework 𝖠𝖥𝜙 for the QBF 𝜙 = ∀𝑦1 ∶ ∃𝑧1, 𝑧2 ∶ 𝜇 with 𝜇 = (¬𝑦1 ∨ 𝑧1) ∧ ¬(𝑧1 ∧ 𝑧2). We abbreviate 𝛼1 = ¬𝑦1 , 𝛼2 = 𝑧1 ∧ 𝑧2 , and 
𝛼3 = ¬𝑦1 ∨ 𝑧1 .

𝑝𝑥 𝑝𝑥 𝑝𝑦 𝑝𝑦

ℎ

𝑝𝜇 𝑝𝜇

Fig. A.5. Abstract argumentation framework 𝖠𝖥𝜙 for the QBF 𝜙= ∀𝑥 ∶ ∃𝑦 ∶ 𝑥 ∨ 𝑦. 

Figs. A.5 and A.6 show an example of the cloning process. Observe that every preferred extension 𝐸 of 𝖠𝖥𝜙 is also a preferred 
extension of 𝖠𝖥𝜙. Furthermore, if one removes any number of arguments (except 𝑝𝜇 and 𝑝𝜇) in a preferred extension of 𝖠𝖥𝜙 and 
replaces them with their clones, one again obtains a preferred extension of 𝖠𝖥𝜙. Finally, observe that every preferred extension of 
𝖠𝖥𝜙 is of that form (i.e., it cannot be the case that both an argument and its clone are not in a preferred extension, even if all their 
respective attackers are not in the extension; as a preferred extension is a maximal admissible set, one of them has to be included in 
that case). It follows, that 𝑝𝜇 is the only skeptically accepted argument in 𝖠𝖥𝜙.

Now back to the reduction from ∀∃QBF2 to ACC𝑠
PR. For an instance (𝜙,𝜓)—we assume that 𝜙 and 𝜓 are defined on disjoint 

vocabularies—we construct the abstract argumentation framework 𝖠𝖥(𝜙,𝜓) = (𝖠(𝜙,𝜓),𝖱(𝜙,𝜓)) defined via

𝖠(𝜙,𝜓) = �̂�𝜙 ∪ �̂�𝜓

𝖱(𝜙,𝜓) = �̂�𝜙 ∪ �̂�𝜓

Then (𝜙,𝜓) is a positive instance of ∀∃QBF2 if and only if Acc𝑠PR(𝖠𝖥(𝜙,𝜓)) = {𝑝𝜙} by construction. □
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𝑝𝑥 𝑝𝑥 𝑝𝑦 𝑝𝑦�̂�𝑥 �̂�𝑥 �̂�𝑦 �̂�𝑦

ℎ ℎ̂

𝑝𝜇 𝑝𝜇

Fig. A.6. Cloned abstract argumentation framework 𝖠𝖥𝜙 for the QBF 𝜙= ∀𝑥 ∶ ∃𝑦 ∶ 𝑥 ∨ 𝑦. 

Corollary 2. Let 𝖠𝖥 be an abstract argumentation framework.

1. The problems EnumACCGR
𝑠

, EnumACCGR
𝑐

, EnumACCCO
𝑠

are in FP, respectively.

2. The problems EnumACC𝐶𝑂
𝑐

, EnumACCPR
𝑐

, EnumACCST
𝑐

, EnumACCST
𝑠

are in FNPDP[1], respectively.

3. The problem EnumACCPR
𝑠

is in FNPDP2[1].

Proof. The cases in 1) follow from Proposition 1. For the other two cases, we can non-deterministically guess a set 𝐸 and then verify 
that 𝐸 = Acc𝑥

𝜎
(𝖠𝖥) in DP, DP2, respectively, yielding algorithms in FNPDP[1] and FNPDP2[1], respectively. □

Proposition 5. Let 𝖠𝖥= (𝖠,𝖱) be an abstract argumentation framework.

1. If 𝜔 ∈ Mod(ΨCO
𝖠𝖥

) then 𝐸(𝜔) is a complete extension of 𝖠𝖥.

2. If 𝐸 is a complete extension of 𝖠𝖥 then there is 𝜔∈ Mod(ΨCO
𝖠𝖥

) with 𝐸(𝜔) =𝐸.

3. 𝑎 ∈ Acc𝑐CO(𝖠𝖥) if and only if ΨCO
𝖠𝖥

∧ 𝚒𝚗𝑎 is satisfiable.

Proof. Let 𝖠𝖥 = (𝖠,𝖱) be an abstract argumentation framework.

1. Let 𝜔 ∈ Mod(ΨCO
𝖠𝖥

) and define

𝐸(𝜔) = {𝑎 ∣ 𝜔(𝚒𝚗𝑎) = true}

In order to show that 𝐸(𝜔) is a complete extension, we have to show that 𝐸(𝜔) is conflict-free, admissible, and contains all 
arguments it defends:

(a) Suppose 𝐸(𝜔) is not conflict-free. Then there are 𝑎, 𝑏 ∈𝐸(𝜔) such that 𝑏 ∈ 𝑎−. Due to 𝑏 ∈𝐸(𝜔) we have 𝜔(𝚒𝚗𝑏) = true and 
due to 𝜔 ∈ Mod(ΨCO

𝖠𝖥
) we have 𝜔(𝚘𝚞𝚝𝑎) = true (due to the part 

(
𝚘𝚞𝚝𝑎 ⇔

⋁
𝑏∈𝑎− 𝚒𝚗𝑏

)
of ΨCO

𝖠𝖥
). Due to the part (¬𝚒𝚗𝑎 ∨¬𝚘𝚞𝚝𝑎)

of ΨCO
𝖠𝖥

we have 𝜔(𝚒𝚗𝑎) = false, in contradiction to the assumption 𝑎 ∈𝐸(𝜔). So 𝐸(𝜔) is conflict-free.

(b) Suppose 𝐸(𝜔) is not admissible. Since 𝐸(𝜔) is conflict-free (see above), it follows that there is 𝑎 ∈ 𝐸(𝜔) such that there is 
𝑏 ∈ 𝑎− and there is no 𝑐 ∈ 𝑏− with 𝑐 ∈𝐸(𝜔). Due to 𝑎∈𝐸(𝜔), we have 𝜔(𝚒𝚗𝑎) = true and due to the part 

(
𝚒𝚗𝑎 ⇔

⋀
𝑏∈𝑎− 𝚘𝚞𝚝𝑏

)
of ΨCO

𝖠𝖥
it follows 𝜔(𝚘𝚞𝚝𝑏) = true. Then due to 

(
𝚘𝚞𝚝𝑎 ⇔

⋁
𝑏∈𝑎− 𝚒𝚗𝑏

)
(with 𝑏 taking the role of 𝑎) there must be 𝑐′ ∈ 𝑏− with 

𝜔(𝚒𝚗𝑐′ ) = true and therefore 𝑐′ ∈𝐸(𝜔).
(c) Due to 

(
𝚒𝚗𝑎 ⇔

⋀
𝑏∈𝑎− 𝚘𝚞𝚝𝑏

)
∧, for every 𝑎 that is attacked only by arguments 𝑏 with 𝜔(𝚘𝚞𝚝𝑏) = true, we have 𝜔(𝚒𝚗𝑎) = true

and therefore 𝑎 ∈𝐸(𝜔). It follows that 𝐸(𝜔) contains all arguments it defends.

2. Let 𝐸 be a complete extension and define 𝜔 via

𝜔(𝚒𝚗𝑎) = true 𝜔(𝚘𝚞𝚝𝑎) = 𝜔(𝚞𝚗𝚍𝚎𝚌𝑎) = false

for all 𝑎 ∈𝐸 and

𝜔(𝚘𝚞𝚝𝑏) = true 𝜔(𝚒𝚗𝑏) = 𝜔(𝚞𝚗𝚍𝚎𝚌𝑏) = false
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for all 𝑏 ∈𝐸− and

𝜔(𝚞𝚗𝚍𝚎𝚌𝑐) = true 𝜔(𝚒𝚗𝑐) = 𝜔(𝚘𝚞𝚝𝑐) = false

for all remaining arguments 𝑐 ∈ 𝖠 ⧵ (𝐸 ∪𝐸−). It should be clear that 𝜔 is a model of ΨCO
𝖠𝖥

.

3. Due to 1 and 2, ΨCO
𝖠𝖥

∧𝚒𝚗𝑎 is satisfiable iff there is a complete extension 𝐸 with 𝑎 ∈𝐸, which is equivalent to 𝑎 ∈ Acc𝑐CO(𝖠𝖥). □

Proposition 6. Let 𝖠𝖥= (𝖠,𝖱) be an abstract argumentation framework.

1. If 𝜔 ∈ Mod(ΨST
𝖠𝖥
) then 𝐸(𝜔) is a stable extension of 𝖠𝖥.

2. If 𝐸 is a stable extension of 𝖠𝖥 then there is 𝜔∈ Mod(ΨST
𝖠𝖥
) with 𝐸(𝜔) =𝐸.

3. 𝑎 ∈ Acc𝑐ST(𝖠𝖥) if and only if ΨST
𝖠𝖥

∧ 𝚒𝚗𝑎 is satisfiable.

Proof. Let 𝖠𝖥 = (𝖠,𝖱) be an abstract argumentation framework.

1. Let 𝜔 ∈ Mod(ΨST
𝖠𝖥
) and define

𝐸(𝜔) = {𝑎 ∣ 𝜔(𝚒𝚗𝑎) = true}

In order to show that 𝐸(𝜔) is a stable extension, we have to show that 𝐸(𝜔) is conflict-free and attacks all arguments it does not 
contain:

(a) Suppose 𝐸(𝜔) is not conflict-free. Then there are 𝑎, 𝑏 ∈ 𝐸(𝜔) such that 𝑏 ∈ 𝑎−. Due to 𝑏 ∈ 𝐸(𝜔) we have 𝜔(𝚒𝚗𝑏) = true

and due to 𝜔 ∈ Mod(ΨST
𝖠𝖥
) we have 𝜔(𝚒𝚗𝑎) = false (due to the part 

(
¬𝚒𝚗𝑎 ⇔

⋁
𝑏∈𝑎− 𝚒𝚗𝑏

)
of ΨST

𝖠𝖥
). It follows 𝑎 ∉ 𝐸(𝜔), in 

contradiction to the assumption 𝑎 ∈𝐸(𝜔). So 𝐸(𝜔) is conflict-free.

(b) For 𝑎∉𝐸(𝜔) we have 𝜔(𝚒𝚗𝑎) = false and due to 
(
¬𝚒𝚗𝑎 ⇔

⋁
𝑏∈𝑎− 𝚒𝚗𝑏

)
there must be 𝑏 ∈ 𝑎− with 𝜔(𝚒𝚗𝑏) = true, so 𝑏∈𝐸(𝜔).

2. Analogous to the proof of 2 of Proposition 5.

3. Analogous to the proof of 3 of Proposition 5. □

Proposition 7. Algorithm IAQ𝑐 is sound and complete.

Proof. Observe that 𝑆 is initialised with the empty set in line 1 and only arguments 𝑎 for which Ψ𝜎
𝖠𝖥

∧𝚒𝚗𝑎 is satisfiable (so arguments 
𝑎 for which there is an extension 𝐸 with 𝑎 ∈𝐸) are added to 𝑆 in line 4. So upon termination, 𝑆 contains exactly the set of credulously 
accepted arguments. □

Proposition 8. Algorithm EEE𝑐 is sound and complete.

Proof. Observe that 𝑆 is initialised with the empty set in line 1. In line 4, the set 𝐸(𝜔) is guaranteed to be an extension of 𝖠𝖥
(see Propositions 5 and 6) and added to 𝑆 . So upon termination (line 6), 𝑆 only contains credulously accepted arguments (showing 
soundness). Assume there is credulously accepted 𝑎 with 𝑎 ∉ 𝑆 upon termination (towards showing completeness). Then an extension 
𝐸 with 𝑎 ∈ 𝑆 yields a model 𝜔𝐸 of Ψ in line 3 (due to items 2 of Propositions 5 and 6) since all 𝐶(𝜔) are satisfied due to 𝑎 ∉ 𝑆

and therefore 𝜔(𝚒𝚗𝑎) = false for all such 𝜔. This is in conflict with the termination criterion in line 3 and therefore 𝑎 ∈ 𝑆 upon 
termination. □

Proposition 9. Algorithm SEE𝑐 is sound and complete.

Proof. Let 𝖠𝖥 = (𝖠,𝖱), 𝜎 ∈ {CO,ST,PR} and 𝑆 = SEE𝑐(𝖠𝖥, 𝜎).
For soundness, let 𝑎∈ 𝑆 . Then (due to line 4) there is 𝜔 with 𝑎 ∈𝐸(𝜔) and 𝜔= Witness(Ψ𝜎

𝖠𝖥
∧
⋁

𝑎∈𝐷 𝚒𝚗𝑎). Due to Proposition 5
(resp. Proposition 6), the set 𝐸(𝜔) is a complete (resp. stable) extension of 𝖠𝖥, showing that 𝑎 is indeed credulously acceptable wrt. 
complete/preferred (resp. stable) semantics.

For completeness, let 𝑎 ∈ Acc𝑐
𝜎
(𝖠𝖥) and assume 𝑎 ∉ 𝑆 . Let �̂� be the set 𝐷 in the final iteration of line 3, i.e., we have Witness(Ψ𝜎

𝖠𝖥
∧⋁

𝑎∈�̂� 𝚒𝚗𝑎) = false. Due to 𝑎 ∉ 𝑆 we have 𝑎 ∈ �̂� and since 𝑎 ∈ Acc𝑐
𝜎
(𝖠𝖥), the formula Ψ𝜎

𝖠𝖥
∧
⋁

𝑎∈�̂� 𝚒𝚗𝑎) is satisfiable, contradicting 
Witness(Ψ𝜎

𝖠𝖥
∧
⋁

𝑎∈�̂� 𝚒𝚗𝑎) = false. □

Proposition 10. Algorithm SEEM𝑐 is sound and complete.

Proof. Let 𝖠𝖥 = (𝖠,𝖱), 𝜎 ∈ {CO,ST,PR} and 𝑆 = SEEM𝑐(𝖠𝖥, 𝜎).
For soundness, let 𝑎 ∈ 𝑆 . Then (due to line 4) there is 𝜔 with 𝑎 ∈ 𝐸(𝜔) and 𝜔 = MaxSat({𝚒𝚗𝑎 ∣ 𝑎 ∈ 𝐷},Ψ𝜎

𝖠𝖥
). In particular, 𝜔

is a model of Ψ𝜎
𝖠𝖥

which assigns true to 𝚒𝚗𝑎. Due to Proposition 5 (resp. Proposition 6), the set 𝐸(𝜔) is a complete (resp. stable) 
extension of 𝖠𝖥, showing that 𝑎 is indeed credulously acceptable wrt. complete/preferred (resp. stable) semantics.
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For completeness, let 𝑎 ∈ Acc𝑐
𝜎
(𝖠𝖥) and assume 𝑎 ∉ 𝑆 . Let �̂� be the set 𝐷 in the final iteration of line 3, i.e., we have MaxSat({𝚒𝚗𝑎 ∣

𝑎 ∈ �̂�},Ψ𝜎
𝖠𝖥
) = false. Due to 𝑎 ∉ 𝑆 we have 𝑎 ∈ �̂� and since 𝑎 ∈ Acc𝑐

𝜎
(𝖠𝖥), the formula Ψ𝜎

𝖠𝖥
∧ 𝚒𝚗𝑎 is satisfiable, contradicting 

MaxSat({𝚒𝚗𝑎 ∣ 𝑎 ∈ �̂�},Ψ𝜎
𝖠𝖥
) = false. □

Proposition 11. Let 𝖠𝖥= (𝖠,𝖱) be an abstract argumentation framework. Then 𝑎∈ Acc𝑠ST(𝖠𝖥) if and only if ΨST
𝖠𝖥

∧ ¬𝚒𝚗𝑎 is unsatisfiable.

Proof. ΨST
𝖠𝖥

∧ ¬𝚒𝚗𝑎 is unsatisfiable if and only if there is no stable extension 𝐸 of 𝖠𝖥 with 𝑎 ∉ 𝐸, which is equivalent to 𝑎 being 
skeptically accepted, so 𝑎 ∈ Acc𝑠ST(𝖠𝖥). □

Proposition 12. Algorithm IAQ𝑠 is sound and complete.

Proof. Observe that 𝑆 is initialised with the empty set in line 1 and only arguments 𝑎 that are skeptically accepted are added to 𝑆
in lines 5 and 8 respectively. So upon termination, 𝑆 contains exactly the set of skeptically accepted arguments. □

Proposition 13. Algorithm EEE𝑠 is sound and complete.

Proof. Observe that 𝑆 is initialised with all arguments in line 1. In lines 5 and 9, respectively, the sets 𝐸(𝜔) (respectively 𝐸) is 
guaranteed to be an extension of 𝖠𝖥 and all arguments not contained in 𝐸 are removed from 𝑆 . So upon termination (line 10), 𝑆
contains all skeptically accepted arguments (showing completeness). Assume there is an argument 𝑎 that is not skeptically accepted 
but 𝑎 ∈ 𝑆 upon termination (towards showing soundness). Then there must exist an extension 𝐸 with 𝑎 ∉ 𝑆 and this extension (or 
another one with 𝑎 ∉ 𝑆) satisfies lines 4 or 8, respectively (or more precisely for line 4, there is a corresponding model 𝜔 for 𝐸). This 
is in conflict with the termination criterion in lines 4 and 8, respectively and therefore 𝑎 ∉ 𝑆 upon termination. □

Proposition 14. Algorithm SEE𝑠 is sound and complete.

Proof. Let 𝖠𝖥 = (𝖠,𝖱) and 𝑆 = SEE𝑠(𝖠𝖥).
For soundness, let 𝑎 ∈ 𝑆 . Then (due to line 3) for all 𝜔 with 𝜔 = Witness(ΨST

𝖠𝖥
∧
⋁

𝑎∈𝑆 𝚘𝚞𝚝𝑎) we have 𝑎 ∈ 𝐸(𝜔) (and due to 
Proposition 6 these sets 𝐸(𝜔) are stable extensions of 𝖠𝖥). In the final iteration of line 2 we have false = Witness(ΨST

𝖠𝖥
∧
⋁

𝑎∈𝑆 𝚘𝚞𝚝𝑎), 
i.e., there is no stable extension of 𝖠𝖥 that does not include some argument of 𝑆 . It follows that 𝑎 is skeptically accepted wrt. stable 
semantics.

For completeness, let 𝑎 ∈ Acc𝑠ST(𝖠𝖥) and assume 𝑎 ∉ 𝑆 . First, consider the case that 𝖠𝖥 has no stable extensions. Then we have 
𝑆 = 𝖠 due to line 1 and it follows 𝑎 ∈ 𝑆 . We, therefore, assume that 𝖠𝖥 has at least one stable extension. Since 𝑎 ∈ Acc𝑠ST(𝖠𝖥), 𝑎 must 
belong to every stable extension, in particular 𝑎 ∈𝐸(𝜔) for every 𝜔 in line 3. It follows 𝑎 ∈ 𝑆 , in contradiction to the assumption. □

Proposition 15. Algorithm SEEM𝑠 is sound and complete.

Proof. Let 𝖠𝖥 = (𝖠,𝖱) and 𝑆 = SEEM𝑠(𝖠𝖥).
For soundness, let 𝑎 ∈ 𝑆 . Then (due to line 3) for all 𝜔 with 𝜔 = MaxSat({𝚘𝚞𝚝𝑎 ∣ 𝑎 ∈ 𝑆},ΨST

𝖠𝖥
) we have 𝑎 ∈ 𝐸(𝜔) (and due to 

Proposition 6 these sets 𝐸(𝜔) are stable extensions of 𝖠𝖥). In the final iteration of line 2 we have false = MaxSat({𝚘𝚞𝚝𝑎 ∣ 𝑎 ∈
𝑆},ΨST

𝖠𝖥
), i.e., there is no stable extension of 𝖠𝖥 that does not include some argument of 𝑆 . It follows that 𝑎 is skeptically accepted 

wrt. stable semantics.

For completeness, let 𝑎 ∈ Acc𝑠ST(𝖠𝖥) and assume 𝑎 ∉ 𝑆 . First, consider the case that 𝖠𝖥 has no stable extensions. Then we have 
𝑆 = 𝖠 due to line 1 and it follows 𝑎 ∈ 𝑆 . We, therefore, assume that 𝖠𝖥 has at least one stable extension. Since 𝑎 ∈ Acc𝑠ST(𝖠𝖥), 𝑎 must 
belong to every stable extension, in particular 𝑎 ∈𝐸(𝜔) for every 𝜔 in line 3. It follows 𝑎 ∈ 𝑆 , in contradiction to the assumption. □

Data availability

All used data sets are freely available and links can be found in the paper.
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