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Abstract
We introduce initial models for abstract dialectical
frameworks (ADFs) as a notion of minimal justi-
fiable valuations and based on that, generalise the
concept of serialisability of argumentation seman-
tics to ADFs. In particular, we show that the char-
acteristic operator-based semantics for ADFs can
be characterised through serialisation sequences,
which are, essentially, decompositions of a model
into a series of initial models, representing a more
fine-grained view into why a model is acceptable
wrt. the semantics. We also analyse the computa-
tional complexity of tasks related to initial models.

1 Introduction
Ever since its introduction by Dung [1995], abstract argu-
mentation has been an important and growing field in arti-
ficial intelligence in general and within the area of knowl-
edge representation and reasoning in particular. Specifically,
in the context of explainable artificial intelligence, argumen-
tation represents a promising approach with numerous recent
developments [Leofante et al., 2024]. An abstract argumen-
tation framework (AF) is a directed graph, where the nodes
represent abstract arguments and the edges represent attacks
among them. Various extensions of AFs have been proposed
in the literature [Brewka et al., 2014], but abstract dialectical
frameworks (ADF) have emerged as a particularly powerful
generalisation of AFs [Brewka et al., 2013]. In an ADF, the
relations between the arguments are represented by accep-
tance conditions, i. e., (propositional) logical formulae that
specify the conditions under which arguments may be ac-
cepted. This enables the representation of more complex re-
lationships between arguments than simple attacks, such as
collective attacks or support relations.

Formal semantics for both AFs and ADFs are given
through functions that determine admissible sets of argu-
ments, called extensions [Baroni et al., 2018], or, in the case
of ADFs, three-valued models [Brewka et al., 2017]. In par-
ticular, the classical admissibility-based semantics of Dung
have been generalised to ADFs [Brewka et al., 2013].

As the name suggests, ADFs are inspired by dialec-
tics [Brewka et al., 2013]. An important element of dialectics
is procedurality, i. e., the fact that arguments are put forward

and are then followed by counter-arguments [Hage, 2000;
Rescher, 1977]. While this aspect is modelled well on the
syntactic level in ADFs, on the semantical side this aspect is
somewhat lost, just like in the case of AFs [Verheij, 1996].
Consider, for instance, the ADF in Figure 1, where accep-
tance conditions of arguments are placed right above them
(we will provide formal definitions in Section 2). We have
that a and b can only be accepted if the other is rejected,
meaning they form a sort of atomic conflict that must be re-
solved. Only after resolving this conflict, for example by ac-
cepting a and rejecting b, can we turn to the remaining argu-
ments and evaluate them properly. Now, rejecting b directly
implies that c must also be rejected and in turn that we shall
accept d afterwards. On the other hand, if we accept b and
reject a in the initial conflict, that implies that we accept c
and subsequently reject d. If we only consider the resulting
admissible model that assigns the respective truth values, we
disregard this information about the reasoning process of the
argumentation performed to arrive at the conclusion.
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Figure 1: An ADF, the arguments a and b are in a conflict, while b
supports c and the argument d may only be accepted if c is rejected.

An approach to address the above-described problem is the
notion of serialisability for AFs [Thimm, 2022]. It provides a
non-deterministic construction scheme for extensions, where
initial sets of the AF are selected iteratively. An initial set [Xu
and Cayrol, 2018] is thereby defined as a non-empty, mini-
mal admissible set, essentially representing a solution to an
atomic conflict of the AF. An extension can then be repre-
sented by serialisation sequences, i. e., sequences of initial
sets that represent an order in which the corresponding ex-
tension can be build. The serialisation sequences thus lend
themselves well to build explanations for the extension that
they represent inside the AF [Bengel, 2022]. Even more so,
they also induce a very expressive semantical equivalence no-
tion for AFs [Bengel et al., 2024].

In this work, we characterise initial models for ADFs and
generalise the notion of serialisability to ADFs. In particular,
we define initial models as the minimal, non-empty admissi-



ble models with respect to characteristic operator of [Brewka
et al., 2013]. Based on that, we show that initial models co-
incide with the initial sets for those ADFs that correspond di-
rectly to AFs. Furthermore, we generalise the notion of serial-
isation sequences from AFs to ADFs and characterise admis-
sibility as well as the preferred, complete, grounded and two-
valued semantics of [Brewka et al., 2013] in terms of seriali-
sation sequences for ADFs in general. Due to the higher ex-
pressiveness of the three-valued models of ADFs (compared
to extensions), this yields fine-grained serialisation sequences
that make explicit the process of both accepted and rejected
arguments within acceptable models. That means, with our
approach we incorporate the procedural aspect of dialectic ar-
gumentation directly into the semantics of ADFs. Finally, we
also analyse the computational complexity of tasks related to
initial models, which surprisingly turns out to be harder than
the respective tasks for admissible models.

To summarise, the main contributions of this work are:

1. We define the notion of initial models for ADFs and
show that they are a generalisation of initial sets in AFs
(Section 3).

2. We define serialisability and serialisation sequences for
ADFs, and analyse their properties (Section 4).

3. We characterise most admissibility-based semantics for
ADFs via serialisation sequences (Section 5).

4. We provide complexity results for various tasks related
to initial models in ADFs (Section 6).

In Section 2 we introduce the necessary background and Sec-
tion 7 concludes the paper. Omitted proofs for all technical
results can be found in an online appendix1.

2 Preliminaries
In the following, we introduce the necessary background on
abstract argumentation frameworks [Dung, 1995] and ab-
stract dialectical frameworks [Brewka et al., 2013].

2.1 Abstract Argumentation Frameworks
An abstract argumentation framework (AF) is a pair F =
(A,R) where A is a finite set of arguments and R is a relation
R ⊆ A × A. For two arguments a, b ∈ A, the relation aRb
means that argument a attacks b. For a set S ⊆ A we may
write SRa (resp. aRS) iff there is some c ∈ S with cRa
(resp. aRc). We say that a set S ⊆ A is conflict-free iff for
all a, b ∈ S it is not the case that aRb. A set S defends an
argument b ∈ A iff for all a with aRb there is c ∈ S with
cRa. Furthermore, a set S is called admissible (ad) iff it is
conflict-free and S defends all a ∈ S. Let ad(F) denote the
set of admissible sets of F .

Non-empty minimal admissible sets have been coined ini-
tial sets by Xu and Cayrol (2018).

Definition 1. For F = (A,R), a set S ⊆ A with S ̸= ∅ is
called an initial set if S is admissible and there is no admissi-
ble S′ ⊊ S with S′ ̸= ∅.

With is(F) we denote the set of initial sets of the AF F .

1https://doi.org/10.5281/zenodo.15357088

2.2 Abstract Dialectical Frameworks
Let At be a set of propositional atoms and LAt the proposi-
tional language over At closed under the usual connectives ¬,
∨, and ∧. An interpretation υ is a function that assigns to
each atom in At a truth value true or false. Truth evaluation
wrt. an interpretation is extended to arbitrary formulas in the
usual way. If an interpretation υ satisfies a formula ϕ ∈ LAt,
i. e., it assigns true to ϕ, we may also call υ a model of ϕ. If
a formula ϕ has at least one model it is satisfiable. Further-
more, we denote with TAUTAt the set of tautologies and with
UNSATAt the set of unsatisfiable formulae over At.
Definition 2. An abstract dialectical framework (ADF) is a
pair D = (A, C) where A is a set of arguments and C is a
set of propositional formulae {ϕa}a∈A over A, called accep-
tance conditions.2

Reasoning in ADFs is performed via three-valued propo-
sitional interpretations that satisfy all acceptance conditions
called models.
Definition 3. Let D be an ADF and υ : A → {t, f, u} is
three-valued interpretation. For a propositional formula ϕ
over A, we define υ(ϕ) inductively as follows

υ(¬ψ) =


t if υ(ψ) = f

f if υ(ψ) = t

u if υ(ψ) = u

υ(ψ1 ∧ ψ2) =


t if υ(ψ1) = υ(ψ2) = t

f if υ(ψ1) = f or υ(ψ2) = f

u otherwise

υ(ψ1 ∨ ψ2) =


t if υ(ψ1) = t or υ(ψ2) = t

f if υ(ψ1) = υ(ψ2) = f

u otherwise

An interpretation υ is called a (three-valued) model of D, iff
υ(a) = u or υ(a) = υ(ϕa) for all a ∈ A.

We denote with val3(D) the set of three-valued models of
D and with υu the three-valued model that assigns u to all
a ∈ A. We also define the set of all two-valued models of D
as val2(D) = {υ ∈ val3(D) | ∀a ∈ A : υ(a) ̸= u}.

Furthermore, we also consider the inverse function υ−1 :
{t, f, u} → 2A, meaning we denote with υ−1(x) the set argu-
ments assigned the truth value x by the interpretation υ for all
x ∈ {t, f, u}. We will also write a 7→ x instead of υ(a) = x
for readability. a 7→ x will be written in bold if x ̸= u to
highlight ≤i-maximal assignments (see below).

We consider the following partial order ≤i according to
information content: u <i t, u <i f and no other pair in
<i. For a pair of three-valued interpretations υ1, υ2 : A →
{t, f, u} we define

υ1 ≤i υ2 iff υ1(a) ≤i υ2(a) for all a ∈ A.

The consensus operator ⊓ combines two interpretations υ1
and υ2 into a new interpretation υ3, that coincides with υ1

2Note that the original definition of ADFs [Brewka et al., 2013]
includes the links between arguments explicitly, but here we assume
them implicitly given by the acceptance conditions.
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and υ2 wherever both interpretations coincide and assigns u
otherwise. We define υ3 = υ1 ⊓ υ2 as

υ3(a) =


t if υ1(a) = υ2(a) = t

f if υ1(a) = υ2(a) = f

u otherwise
(1)

for all a ∈ A.
For some three-valued interpretation υ, we define the set of

completions [υ]2 as

[υ]2 = {υ′ | υ ≤i υ
′, (υ′)−1(u) = ∅} (2)

The set [υ]2 is then essentially the set of all two-valued inter-
pretations that contain more information than υ.

For the semantic evaluation of an ADF D we then define
the characteristic operator ΓD which computes for a model
υ the consensus of all its completions for every argument.

Definition 4. Let D = (A, C) be an ADF and υ : A →
{t, f, u} be a three-valued interpretation. We define the char-
acteristic operator ΓD as

ΓD(υ)(a) = ⊔{υ′(ϕa) | υ′ ∈ [υ]2}

for all a ∈ A.

Analogous to the characteristic function of AFs, we
utilise the characteristic operator to define the classical
admissibility-based semantics for ADFs.

Definition 5. Let D = (A, C) be an ADF. We define υ0 = υu
and υi = ΓD(υi−1) for all i ∈ N. Let k ∈ N be the smallest
number with υk = υk−1. Then υk is called the grounded
model of D.

Definition 6. Let D = (A, C) be an ADF. An interpretation
υ : A → {t, f, u} is called

• an admissible model of D, iff υ ≤i ΓD(υ),

• a complete model of D, iff υ = ΓD(υ),

• a preferred model of D, iff υ is complete and there is no
complete model υ′ with υ ≤i υ

′.

The stable semantics has been revised in [Brewka et al.,
2013] compared to its original proposal in [Brewka and
Woltran, 2010] and is defined as follows.

Definition 7. Let D = (A, C) be an ADF. A two-valued
model υ of D is a stable model of D, iff υ−1(t) equals
υ−1gr (t) of the grounded model υgr of the reduced ADF
D↓υ = (υ−1(t), C′) such that for all a ∈ υ−1(t) we set
ϕ′a = ϕ

[b/f : υ(b)=f]
a .

With σ(D) we denote the set of σ-models of D for σ ∈
{ad, gr, co, pr, val2, st}.

a

b

b

a ∨ ¬c

c

⊤

d

¬c

Figure 2: The ADF D1 from Example 1.

Example 1. Consider the ADF D1 in Figure 2. The ADF has
the grounded model

υ1 = {a 7→ u, b 7→ u, c 7→ t,d 7→ f},

and two preferred models

υ2 = {a 7→ f, b 7→ f, c 7→ t,d 7→ f},
υ3 = {a 7→ t, b 7→ t, c 7→ t,d 7→ f}.

All three models are complete and the latter two are also two-
valued models. However, only υ2 is a stable model.

For a given argumentation framework F = (A,R), we
define the corresponding ADF DF as follows.

Definition 8. Let F = (A,R) be an AF. Then, we define the
ADF DF = (A, C), where A is the same set of arguments
and C is defined as {ϕa =

∧
b∈a−

¬b}a∈A.

Furthermore, for some ADF DF = (A, C) and a given
interpretation υ of DF , we define the unique extension Eυ

corresponding to υ as

Eυ = υ−1(t). (3)

3 Characterising Initial Models in ADFs
To characterise initial models and serialisability for ADFs we
build on the characteristic operator-based approach to admis-
sibility in ADFs as reviewed in Section 2.2. It should be
noted however that there exist other approaches to admissi-
bility in ADFs, for instance the decisive outing formulation
of [Polberg et al., 2013]. The concept of serialisability for
semantics of AFs is closely related to the characteristic func-
tion [Thimm, 2022], i. e., it can be understood as a generali-
sation of the construction scheme of the grounded extension
via applying the characteristic function iteratively. In other
words, it generalises from iteratively adding unattacked ar-
guments to iteratively adding initial sets as the atomic units.
For that reason, we consider the characteristic operator-based
approach to be the most suitable for defining serialisability.

Before characterising initial models for ADFs, consider
again the translation from a model υ of an ADF DF to an
extension Eυ of the corresponding AF F as defined in Equa-
tion (3). Notably, there are cases where multiple models υ of
DF correspond to the same extension Eυ of F , as shown by
the following example.

Example 2. Consider the ADF D2 in Figure 3. D2 has the
following three admissible models:

υ1 = {a 7→ u, b 7→ u},
υ2 = {a 7→ t, b 7→ u},
υ3 = {a 7→ t, b 7→ f}.

Both υ2 and υ3 correspond to the preferred extension {a} of
the corresponding AF F = ({a, b}, {(a, b)}). However, υ2
is not a complete model of D2 while υ3 is complete and ≤i-
maximal in DF and thus a preferred model.

To obtain a unique correspondence between extensions and
models we define the reverse direction as follows. For some



a⊤
b

¬a

Figure 3: The ADF D2 from Example 2.

conflict-free set of arguments S ⊆ A of F we define the
corresponding interpretation υS of DF via

υS(a) =


t if a ∈ S

f if aRS
u otherwise

(4)

Note that, according to Equation (4) the truth value f is as-
signed only if a attacks S. With that, we deviate, for good
reason, from previous literature where f is assigned to an ar-
gument a if SRa, cf. [Brewka et al., 2017]. Note first that
our translation is well-defined and indeed constructs an ad-
missible model υS iff S is an admissible set of F .
Proposition 1. Let F = (A,R) be an AF and DF is the
corresponding ADF. S ⊆ A is an admissible set of F , if and
only if υS is an admissible model of DF .

Now, the reason for introducing the new translation from
an admissible set to a three-valued model is rooted in the
fundamental idea of initial sets, i. e., the fact that they rep-
resent a minimal resolution to an atomic conflict [Thimm,
2022]. Equation (4) ensures exactly that, i. e., the correspond-
ing model υS will be ≤i-minimal, as we will show in the
proof of Theorem 1 below.
Example 3. We continue Example 2. According to Equa-
tion (4), only the extension {a} corresponds to the unique
admissible model

υ2 = {a 7→ t, b 7→ u}
which is a ≤i-minimal admissible model of D2 (excluding
the trivial model υu).

With that, we now define the initial models of an ADF as
those models that are admissible and minimal wrt. the infor-
mation ordering ≤i, excluding the model υu that assigns u to
all arguments.
Definition 9. Let D = (A, C) be an ADF. An interpretation
υ : A → {t, f, u} is called an initial model of D, iff υ is
admissible with υ ̸= υu and there is no admissible model
υ′ ̸= υu with υ′ <i υ.

We denote with is(D) the initial models of D. It follows
then from Proposition 1 and the fact that Equation (4) indeed
induces a ≤i-minimal model that the initial sets of any ar-
gumentation framework F correspond exactly to the initial
models of the corresponding ADF DF .
Theorem 1. Let F = (A,R) be an AF and DF is the corre-
sponding ADF. Then S ⊆ A is an initial set of F if and only
if υS is an initial model of DF .

Example 4. Consider the ADF D3 in Figure 4. The initial
models of D3 are

υ1 = {a 7→ t, b 7→ u, c 7→ u, d 7→ u, e 7→ u},
υ2 = {a 7→ u, b 7→ u, c 7→ t,d 7→ f, e 7→ u},
υ3 = {a 7→ u, b 7→ u, c 7→ f,d 7→ t, e 7→ u},
υ4 = {a 7→ u, b 7→ f, c 7→ u, d 7→ u, e 7→ t}.

a

⊤

b

¬a ∧ ¬d ∧ ¬e

c¬d
d

¬c
e ¬b

Figure 4: The ADF D3 from Example 4.

They correspond directly to the initial sets {a}, {c}, {d} and
{e} of the associated AF, respectively.

As we can observe in the following example, if we do not
restrict the acceptance conditions to simple attack relations,
the initial models of an ADF can be quite different than the
initial sets in AFs. In particular, we can have initial mod-
els in which only f and u are assigned, i. e., no argument is
accepted, either because of an unsatisfiable acceptance con-
dition or because of cyclic support relations. In fact, the latter
case always leads to two initial models (assuming no further
influences): one where the arguments in the support-cycle are
assigned t and one where they are assigned f.

a

⊥

b

¬a ∨ ¬c

c

f

d
¬e

e
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f

c

Figure 5: The ADF D4 from Example 5.

Example 5. Consider the ADF D4 in Figure 5. The initial
models of D4 are:

υ1 = {a 7→ u, b 7→ u, c 7→ t, d 7→ u, e 7→ u,f 7→ t},
υ2 = {a 7→ u, b 7→ u, c 7→ f, d 7→ u, e 7→ u,f 7→ f},
υ3 = {a 7→ f, b 7→ u, c 7→ u, d 7→ u, e 7→ u, f 7→ u},
υ4 = {a 7→ u, b 7→ u, c 7→ u,d 7→ t, e 7→ f, f 7→ u}.

To better investigate the relation between different models
of an ADF, we introduce a notion of conflict between models.
For two models υ1, υ2 of an ADF D = (A, C), we say that
they are conflicting iff there exists an argument a ∈ A such
that υ1(a) ̸= υ2(a) with υ1(a) ̸= u and υ2(a) ̸= u. With
this notion of conflict we can now distinguish between three
types of initial models for ADFs, similar to how it is done for
AFs [Thimm, 2022].
Definition 10. For D = (A, C) and some initial model υ of
D, we say that

1. υ is unattacked iff for all a ∈ A if υ(a)̸=u, then ϕa ∈
TAUTA ∪ UNSATA,

2. υ is unchallenged iff υ is not unattacked and there is no
initial model υ′ that is conflicting with υ,

3. υ is challenged iff there is some model υ′ that is con-
flicting with υ and υ′ is an initial model.



We denote with is̸←(D), is̸↔(D), and is↔(D) the set of
unattacked, unchallenged, and challenged initial models, re-
spectively. Intuitively, unattacked initial models are not in-
volved in any conflict while (un)challenged initial models are
and the latter even conflicts with some other initial model.

Example 6. We continue Example 4 with the ADF D3 in
Figure 4. We have that υ1 is an unattacked initial model. The
models υ2 and υ3 are challenged initial models, both con-
flicting with each other. Finally, υ4 is an unchallenged initial
model of D3.

Example 7. We continue Example 5 with the ADF D4 in
Figure 5. The models υ1 and υ2 are challenged initial models,
conflicting both on c and f . υ3 is unattacked initial and υ4 is
the only unchallenged initial model of D4.

Analogously to the initial sets in AFs, we have that an
unattacked initial model is always a singleton. There is how-
ever an important difference, while for AFs this singleton
set obviously contains only one accepted argument, in the
unattacked initial models for ADFs we can have that the sin-
gle argument is evaluated to either t or f.

Corollary 1. Let D = (A, C) be an ADF and υ is an
unattacked initial model of D. Then, we have that |{a ∈ A |
υ(a) ̸= u}| = 1.

4 Serialisability in ADFs
We now characterise admissibility for ADFs in terms of seri-
alisation sequences, i. e. sequences of initial models. Before
we consider the notion of a serialisation sequence we gener-
alise the notion of the reduct in the sense of [Baumann et al.,
2020b] to ADFs. For some model υ, we define the υ-reduct
Dυ of D as the ADF where all arguments that are evaluated
to t or f by υ are removed and their occurrence in the accep-
tance condition of some other argument is replaced by ⊤ or
⊥ respectively. The intuition being that the reduct of an ADF
D wrt. some model υ represents the part of the ADF that is
unresolved by υ.

Definition 11. Let D = (A, C) be an ADF and υ : A →
{t, f, u} is a three-valued interpretation. Then we define the
υ-reduct of D as the ADF Dυ = (A′, {ϕ′a}a∈A′) where

A′ = A \ {a ∈ A | υ(a) ̸= u},
C′ = {ϕ′a}a∈A′

with x ∈ {t, f} and ϕ′a = ϕ
[b/x : υ(b)=x]
a .

Example 8. Consider again the ADF D3 in Figure 4 and the
model

υ = {a 7→ t, b 7→ u, c 7→ f,d 7→ t, e 7→ u}.

Then, the reduct wrt. υ is the ADF Dυ
3 = ({b, e}, C′) with

ϕ′b = ⊥ ∧ ¬e and ϕ′e = ¬b.

Notably, while D3 correspond to an AF, the reduct Dυ
3 does

not, because ϕ′b ∈ UNSATA′ .

It should be noted that this new definition of a reduct wrt. a
three-valued model υ is different from the reduct used in the

definition of the stable models in Definition 7. That defini-
tion is used for two-valued models, as the ADF where only
arguments evaluated to t are retained and in the acceptance
conditions all arguments that are evaluated to f are replaced
by their truth value. The intention behind that approach is to
verify whether a two-valued model υ is the grounded model
of this reduct. In contrast to that, in our approach, where the
intent is to obtain the unresolved part of the framework to
iteratively compute a model for the original ADF. Meaning,
using the reduct from Definition 11 with a two-valued model
υ ∈ val2(D) will always yield the empty ADF Dυ = (∅, ∅).

Dual to the consensus operator ⊓, we define the union op-
erator ⊔, which combines two non-conflicting interpretations
υ1 and υ2 into an interpretation υ3 by unifying their value as-
signments. So in case there is no a with {υ1(a), υ2(a)} =
{t, f}, we define υ3 = υ1 ⊔ υ2 as

υ3(a) =


t if υ1(a) = t or υ2(a) = t

f if υ1(a) = f or υ2(a) = f

u otherwise
(5)

for all a ∈ A. If υ1 and υ2 are in conflict (so there is a with
{υ1(a), υ2(a)} = {t, f}) we leave υ1 ⊔ υ2 undefined.

We now define the concept of the serialisation sequence for
ADFs as a series of initial models of the respective reducts.

Definition 12. A serialisation sequence for D = (A, C) is
a sequence Y = (υ1, . . . υn) with υ1 ∈ is(D) and for each
2 ≤ i ≤ n we have that υi ∈ is(Dυ1⊔···⊔υi−1).

As an intermediary result we formulate a generalisation
of Dung’s fundamental lemma for AFs [Dung, 1995], stat-
ing that given non-conflicting admissible models υ1, υ2 of an
ADF D, the union υ1 ⊔ υ2 is itself an admissible model of D.

Lemma 1. Let D = (A, C) be an ADF and υ1, υ2 are admis-
sible models of D. If υ1 and υ2 are not in conflict with each
other, then υ1 ⊔ υ2 is an admissible model of D.

If υ2 is an admissible model of the reduct Dυ1 then υ1
and υ2 are non-conflicting and we can infer in that case that
υ1⊔υ2 is an admissible model of D. The following corollary
formalises this statement and is a generalisation of the modu-
larisation property for AFs from [Baumann et al., 2020a].

Corollary 2. Let D = (A, C) be an ADF and υ1, υ2 are
three-valued models. If υ1 ∈ ad(D) and υ2 ∈ ad(Dυ1) then
υ1 ⊔ υ2 ∈ ad(D).

Note that serialisability is generally more expressive than
(iterative) modularisation, since the former considers initial
sets (resp. models), independently of the semantics [Bengel
and Thimm, 2022]. Based on the above results, we can then
show that the union of all initial models υi in some seriali-
sation sequence Y = (υ1, . . . υn) corresponds directly to an
admissible model. In particular, we can characterise the ad-
missible models for ADFs in this way.

Theorem 2. A serialisation sequence Y = (υ1, . . . υn) in-
duces an admissible model υ = υ1 ⊔ · · · ⊔ υn and for every
admissible model there is at least one such sequence.

Note that, every serialisation sequence corresponds to ex-
actly one admissible model, but an admissible model may



have multiple corresponding serialisation sequences, each
representing one particular order in which the admissible
model can be constructed.

Interestingly, the serialisation sequences for ADFs provide
an even more fine-grained sequence than we can obtain for
AFs. Recall that ADFs enable us to have unattacked initial
models that assign f to one argument and u to all others. In ad-
dition to that, the reduct for ADFs is more cautious and may
contain arguments with an unsatisfiable acceptance condition.
Thus, a serialisation sequence of an ADF not only provides a
sequence of accepted arguments within some model (like in
the case of AFs), but rather a sequence of both accepted and
rejected arguments. This ties in nicely with the procedural
aspect of dialectical argumentation and means that we bring
this aspect to the semantical level of ADFs with our approach.

a

⊤

b

¬a ∧ ¬c

c

¬d

d

¬e

e

¬d

Figure 6: The ADF D5 from Example 9.

Example 9. Consider the ADF D5 in Figure 6. We have for
instance the initial model

υ1 = {a 7→ t, b 7→ u, c 7→ u, d 7→ u, e 7→ u}.
Now, in the reduct Dυ1

5 , we have ϕ′b ∈ UNSATA′ and thus the
unattacked initial model

υ2 = {b 7→ f, c 7→ u, d 7→ u, e 7→ u}.
Note that, in the corresponding AF F b would be removed in
the reduct F{a} since b ∈ a+ and thus the information that
b can be rejected after accepting a would not be explicitly
encoded in the serialisation sequence for the AF.

In the reduct Dυ1⊔υ2
5 we have two initial models

υ3 = {c 7→ u,d 7→ f, e 7→ t},
υ4 = {c 7→ u,d 7→ t, e 7→ f}.

Then, we have that in the reduct Dυ1⊔υ2⊔υ3
5 only the ar-

gument c is left with ϕ′c = ⊤ and thus the initial model
υ5 = {c 7→ t}.

It follows then that (υ1, υ2, υ3, υ5) is an admissible serial-
isation sequence corresponding to the admissible model

υ = {a 7→ t, b 7→ f, c 7→ t,d 7→ f, e 7→ t}.
Intuitively, the sequence then tells us the following. We

can accept a unconditionally and after that rejecting b fol-
lows logically, but not necessarily. On the other hand, when
accepting e we must necessarily reject d in the same step (as
evidenced by υ3). Finally, after rejecting d the argument c
can now be accepted.

With slight abuse of notation, we also have the serialisation
sequence (υ1, υ2, υ4, υ6) with υ6 = {c 7→ f} corresponding
to the admissible model

υ′ = {a 7→ t, b 7→ f, c 7→ f,d 7→ t, e 7→ f}.
Clearly there are many more admissible serialisation se-

quences of D5, for instance (υ3, υ1, υ2), (υ4, υ6) or (υ4).
Notably, this example shows that even for ADFs corre-

sponding to AFs, the serialisation sequences of the ADF are
more expressive than those of the corresponding AF.

5 Characterising Serialisable Semantics
Besides characterising admissible models through serialisa-
tion sequences, we can also characterise other admissibility-
based semantics for ADFs. For that, we utilise the distinction
between initial models introduced in Definition 10. First, we
consider the preferred semantics which can be characterised
by the maximal serialisation sequences, i. e., the serialisation
sequences (υ1, . . . υn) where the final reduct Dυ1⊔···⊔υn pos-
sesses no further initial models.
Theorem 3. Let D = (A, C) be an ADF and υ : A →
{t, f, u} is an interpretation. We have that υ ∈ pr(D) if and
only if there is a serialisation sequence (υ1, . . . υn) of D with
υ = υ1 ⊔ · · · ⊔ υn and it holds that is(Dυ1⊔···⊔υn) = ∅.
Example 10. We continue Example 5 with the ADF D4 in
Figure 5. There is, for instance, the preferred serialisation
sequence (υ3, υ5, υ6, υ7) with

υ3 = {a 7→ f, b 7→ u, c 7→ u, d 7→ u, e 7→ u, f 7→ u},
υ5 = {b 7→ t, c 7→ u, d 7→ u, e 7→ u, f 7→ u},
υ6 = {c 7→ f, d 7→ u, e 7→ u,f 7→ f},
υ7 = {d 7→ f, e 7→ t}.

With slight abuse of notation, we also have the preferred se-
rialisation sequences (υ6, υ5, υ3, υ7) and (υ6, υ5, υ7, υ3), all
corresponding to the same preferred model of D4. We ob-
tain a serialisation sequence for a different preferred model
if we, for example, include the initial model υ8 ∈ Dυ3⊔υ5

4 ,
with υ8 = {d 7→ t, e 7→ f}, i. e., the serialisation sequences
(υ3, υ5, υ8, υ6) or (υ3, υ5, υ6, υ8). Finally, if we consider the
initial model υ9 = {c 7→ t,f 7→ t} (instead of υ6) of D4

and the reduct wrt. different models, we can construct simi-
lar sequences for the two other preferred models of D4, e. g.,
(υ9, υ3, υ5, υ7) or (υ3, υ9, υ5, υ8).

We continue with the complete semantics, which can be
characterised by the serialisation sequences that maximise
only the unattacked initial models. Meaning, a serialisation
sequence (υ1, . . . υn) is only complete iff there does not ex-
ist an unattacked initial model in the final reduct Dυ1⊔···⊔υn .
This nicely generalises the intuition behind the complete se-
mantics that a complete extension should contain every argu-
ment defended by it. So, for ADFs, a complete model should
contain all of the information (in the sense of truth value as-
signments) that is implied by it.
Theorem 4. Let D = (A, C) be an ADF and υ : A →
{t, f, u} is an interpretation. We have that υ ∈ co(D) if and
only if there is a serialisation sequence (υ1, . . . υn) of D with
υ = υ1 ⊔ · · · ⊔ υn and is ̸←(Dυ1⊔···⊔υn) = ∅.

For the grounded semantics, a serialisation sequence is
then comprised only of unattacked initial models and there
must be no further unattacked initial model left. As already
mentioned, there may be multiple serialisation sequences cor-
responding to the unique grounded model of an ADF.
Theorem 5. Let D = (A, C) be an ADF and υ : A →
{t, f, u} is an interpretation. We have that υ ∈ gr(D) if and
only if there is a serialisation sequence (υ1, . . . υn) of D with
υ = υ1 ⊔ · · · ⊔ υn and for all υi, i = 1, . . . , n, it holds that
υi ∈ is̸←(Dυ1⊔···⊔υi−1) and is̸←(Dυ1⊔···⊔υn) = ∅.



Example 11. We continue Example 10 with the ADF D4 in
Figure 5. Besides the preferred serialisation sequences, which
are obviously also complete, there are, for instance, the com-
plete serialisation sequences (υ3, υ5, υ7) and (υ3, υ5, υ8).
Note that, we have is ̸←(Dυ3⊔υ5⊔υ7

4 ) = ∅ since υ6 and υ9 are
challenged initial models. The same holds for Dυ3⊔υ5⊔υ8

4 .
Finally, we obtain the following characterisation for the

two valued models of ADFs.
Theorem 6. Let D = (A, C) be an ADF and υ : A →
{t, f, u} is an interpretation. We have that υ ∈ val2(D) if
and only if there is a serialisation sequence (υ1, . . . υn) of D
with υ = υ1 ⊔ · · · ⊔ υn and it holds that Dυ1⊔···⊔υn = (∅, ∅).

The following result for AF-like ADFs follows then di-
rectly from Theorem 6 and [Brewka et al., 2013].
Corollary 3. Let F = (A,R) be an AF and DF is the cor-
responding ADF. For any interpretation υ : A → {t, f, u} the
following are equivalent:
(1) There is a serialisation sequence (υ1, . . . υn) with

υ = υ1 ⊔ · · · ⊔ υn and Dυ1⊔···⊔υn

F = (∅, ∅),
(2) Eυ ∈ st(F),
(3) υ ∈ st(DF ),
(4) υ ∈ val2(DF ).

It should be noted that, in the general case, Theorem 6 only
characterises the two-valued models and not the stable se-
mantics described in Definition 7. The difference lies in the
handling of self-supporting arguments and it is an open ques-
tion whether the stable semantics of [Brewka et al., 2013] can
be characterised in terms of serialisation sequences.

6 Computational Complexity
We assume familiarity with the basic concepts of compu-
tational complexity, in particular with the basic complexity
classes P, NP and coNP, cf. [Papadimitriou, 1994]. We also
consider the classes ΣP

2 and ΠP
2 . The class ΣP

2 = NPNP

denotes decision problems that are solvable in polynomial
time by a non-deterministic algorithm that has access to an
NP-oracle and ΠP

2 is the complementary class, i. e., ΠP
2 =

coNPNP. Furthermore, we consider the class PNP
∥ whose

problems can be solved by a deterministic polynomial-time
algorithm that can make polynomially many non-adaptive (or
parallel) queries to an NP-oracle [Eiter and Gottlob, 1997].
Note that PNP

∥ is sometimes denoted as ΘP
2 and is equivalent

to PNP[log] [Papadimitriou, 1994].
We consider the following computational tasks, cf. [Strass

and Wallner, 2015]:
VERσ Given D = (A, C) and υ : A → {t, f, u},

decide whether υ ∈ σ(D),
EXISTSσ Given D = (A, C),

decide whether σ(D) ̸= ∅,
EXISTS¬∅σ Given D = (A, C), decide

whether there exists υ ∈ σ(D) with υ ̸= υu,
CREDσ Given D = (A, C) and a ∈ A, decide

whether there exists υ ∈ σ(D) with υ(a) = t,
SKEPTσ Given D = (A, C) and a ∈ A, decide

whether for all υ ∈ σ(D) we have υ(a) = t.

ad(F) is(F) ad(D) is(D)

VERσ in L in P coNP-c in PNP
∥ , coNP-h

EXISTSσ trivial NP-c trivial ΣP
2 -c

EXISTS¬∅
σ NP-c NP-c ΣP

2 -c ΣP
2 -c

CREDσ NP-c NP-c ΣP
2 -c ΣP

2 -c
SKEPTσ trivial coNP-c trivial ΠP

2 -c

Table 1: Complexity of tasks related to initial models in ADFs (right
two columns), in comparison to their respective counterpart for AFs
(left two columns) and to the respective tasks related to ad in AFs
and ADFs, cf. [Thimm, 2022; Dvorák and Dunne, 2017; Strass and
Wallner, 2015]. The last column is the contribution of this work.

Theorem 7 summarises the results of our analysis, with the
exact complexity of VERis still an open problem. Table 1
gives an overview over the complexity results in comparison
to related problems in AFs and ADFs.
Theorem 7.

1. VERis is in PNP
∥ and coNP-hard.

2. EXISTSis and EXISTS¬∅is are ΣP
2 -complete.

3. CREDis is ΣP
2 -complete.

4. SKEPTis is ΠP
2 -complete.

7 Conclusion
In this work, we defined initial models for ADFs as a notion
of minimal acceptable models that resolve atomic conflicts.
We showed that for ADFs that correspond to AFs the initial
models coincide with the initial sets of the AF. Subsequently,
we generalised the principle of serialisability of argumenta-
tion semantics to ADFs. Based on this principle we then char-
acterised all of the characteristic operator-based semantics as
well as the two-valued models for ADFs in terms of seriali-
sation sequences, i. e., sequences of initial models of the re-
spective reducts. These serialisation sequences then provide
a fine-grained view into why the corresponding model is ac-
cepted. We concluded with some results on the computational
complexity of task related to initial models.

In future work, we intend to study in more detail the rela-
tion of serialisability and the approximation fixpoint theory-
based approach to ADF semantics [Strass, 2013; Strass and
Wallner, 2015]. In that approach approximation operators
for the characteristic operator ΓD are analysed, whose fix-
points correspond to admissible models. These operators then
also allow for a step-by-step evaluation of an ADF. There
also exist further semantics for ADFs that can be considered.
A promising candidate is the strongly admissible semantics
of [Keshavarzi Zafarghandi et al., 2022], which is serialisable
for AFs. The stable semantics, as defined in [Brewka et al.,
2013], is a relevant candidate, but its characterisation would
require a new distinction for the initial models to identify and
filter out models that require self-support. Completing the
complexity results for the tasks related to initial sets is left
for future work. For the development of algorithms for com-
puting initial sets, the work on splitting ADFs [Linsbichler,
2014] is of particular interest, as it provides useful results on
partitioning ADFs which helps to limit the search space.
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