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Abstract

In the design of global logistics problems, the solution spaces
are typically extremely large. To demonstrate how these chal-
lenges can be addressed in Answer Set Programming (ASP),
this work investigates a representative industrial use case of
a global logistics problem in the aerospace problem domain.
An exploration of specific areas of the search space is done by
using heuristic-driven solving for the formulation of domain
heuristics that guide the solver to potentially desirable config-
urations. A quantitative evaluation on the Key Performance
Indicators and a qualitative evaluation on the variability of the
models by means of a similarity analysis shows promising re-
sults.

1 Introduction

In the conceptual-design stage of a commercial aircraft and
its manufacturing system, industrial architects must generate
and compare multiple production architectures before any
landmark investment decisions are taken by the senior man-
agement. Multiple scenarios need to be analyzed and op-
timized with regards to some pre-defined key performance
indicators (KPIs), typically recurring production and trans-
portation costs or non-recurring costs of investments (Arista
et al. 2023; Zheng et al. 2024). Domain experts’ knowledge
is crucial in this process as industrial configuration problems
tend to have huge search spaces which cannot be explored
entirely (Falkner et al. 2018).

At Airbus (2025a), the transformation from document-
based to model-based systems engineering and the use of
modeling and simulation including multi-objective analysis
and optimization is an ongoing process (Helle et al. 2008;
Ferrogalini 2019). It aims to provide digital support for sys-
tem architects and managers in making substantial and well-
founded decisions which determine the allocation of huge
investments in infrastructure and technology over the com-
ing decades. In this paper, we focus on the development
of the next generation Airbus single-aisle aircraft. Driven
in part by historical developments and economic consider-
ations, the manufacturing and assembly process of such a
high-tech product includes workloads and technologies that
require a variety of sites (production locations) equipped
with various skills and capabilities distributed throughout
the world (Airbus 2025b). Furthermore, in an environ-
ment defined by dynamic political and economic shifts (e. g.,

new trade agreements, increase in prices of essential com-
modities), the aerospace industry must enhance its resilience
by maintaining numerous commitments to partners. These
commitments involve dozens of major manufacturing sites
worldwide, each responsible for producing or assembling
specific components. The foreseen core (top-level) indus-
trial and logistics system comprises over thirty major pro-
duction and warehouse locations worldwide, along with
more than twenty possible transportation means between
them (Airbus 2025c¢; Airbus 2025d).

The objective that we address in this paper is to find solu-
tions to the problem of identifying valid industrial and logis-
tics setups with Answer Set Programming (ASP) for the next
generation Airbus civil aircraft manufacturing system with
(Pareto) optimal KPIs regarding the multi-objective func-
tions. The problem contains 13 production locations, 17
warehouse locations, 34 parts and 30 transport means. ASP
is one paradigm chosen in research to generate, analyze, and
optimize industrial scenarios for possible implementation as
a standard tool for trade-off analysis. A valid solution in our
context is an answer set that ensures that all required man-
ufacturing steps are passed in the right order and that trans-
portation is performed between every manufacturing step,
finally resulting in the representation of a multi-echelon pro-
duction and a supply chain network, which describes a man-
ufacturing system that is arranged in stages or multiple lay-
ers with materials and products flowing downstream (Sec-
tion 4.1). The structure and behavior of the industrial sys-
tem are significantly influenced by general strategies or as-
sumptions about the supply chain and manufacturing setup,
referred to as industrial scenarios. The topology of the in-
dustrial network is changed by these scenarios, which alters
its properties and behavior. This leads to additional design
constraints and a more complex system, making the associ-
ated problems harder to formulate. Sourcing strategies and
warehouses are possible constraints (or scenarios) to be con-
sidered. The sourcing strategy determines whether a produc-
tion step must be performed by at least one site or by mul-
tiple sites to ensure redundancy, thus potentially increasing
system robustness. This strategy can be applied selectively,
depending on the production stage. Warehouses similarly
contribute to the network’s robustness. They can influence
the reachability of production sites by enabling changing
the transport resources. Moreover, having high variability



among answer sets is required for two reasons: first, to in-
crease confidence that a large amount of the search space
is explored and no better local optimum is missed, and sec-
ond, to provide a variety of solutions that an industrial ar-
chitect can actively explore to learn from unknown solutions
and gain additional knowledge which can support an itera-
tive and incremental product development. This requires an
interactive way-of-working with relatively short optimal an-
swer set solving run-times.

The work in this paper takes the logic programming ap-
proach to global logistics in a co-design environment pre-
sented in (Dietz et al. 2023) as a starting point. The au-
thors detail a co-design strategy using ASP to optimize the
global logistics for aircraft construction. To achieve this,
the relevant requirements are extracted from a knowledge
graph and translated into logic programs. The computed
configurations (answer sets) are visualized for easier eval-
uation. Here, we will analyze the global logistics problem
in a broader context and define additional optimization cri-
teria. Additionally, specific areas of the search space will
be actively explored by defining domain heuristics. This en-
sures that larger fractions of the search space are discovered
and possibly other interesting (local) optima can be found.

The paper is structured as follows. After related work in
Section 2, preliminaries on ASP and model similarities are
introduced in Section 3. Next, the main contributions of this
paper will be presented:

e A general description of the global logistics problem in-
cluding a formalization in ASP (Section 4),

o the formulation of domain knowledge through facts, in-
tegrity constraints and heuristics that guide the solver to
potentially desirable configurations (Section 5), and

e an evaluation with respect to key performance indicators
and model similarities (Section 6).

Section 7 concludes with a summary and future directions.

2 Related Work

Several approaches of heuristics in ASP within an industrial
setting have been proposed. In (Rajaratnam et al. 2023),
the authors describe a warehouse delivery problem which
consists of a set of robots that need to carry out delivery
jobs. The authors develop two encodings, the step-based
and path-based encoding. Although the step-based encod-
ing fails to scale to the required level within the industrial
setting, the path-based encoding seems efficient enough.
Domain heuristics are crucial to reach the required perfor-
mance. The authors emphasize that significant improvement
in the solution quality could be gained relatively easily by
using application-specific constraints. A new language to
facilitate the non-monotonic specification of heuristics on
partial assignments in ASP is presented in (Comploi-Taupe
et al. 2023). The authors demonstrate that their approach
performs well in two practical domains and offers greater
flexibility to define heuristics beyond traditional planning.
Faceted navigation (Alrabbaa, Rudolph, and Schweizer
2018) allows to navigate through the space of answer-sets

in a systematic and interactive way. The weighted naviga-
tion approach (Fichte, Gaggl, and Rusovac 2022) addition-
ally takes into account the change of facets (with respect to
the solution space) to configure the pace of navigation. The
authors in (Bohl and Gaggl 2022; Bohl, Ellmauthaler, and
Gaggl 2024) propose a multi-shot ASP approach (Gebser
et al. 2019b) to identify diverse answer sets, by improving
the collection of answer sets. The diversity measure can be
specified by the user and the result provides a nice overview
on the overall solution space. Similarly (Bohl, Gaggl, and
Rusovac 2023) suggest faceted answer set navigation for ob-
taining ‘representative collections’ of answer sets. A visual
navigation tool for the exploration of solution spaces is pro-
posed in (Dachselt et al. 2022).

The global logistics problem is about the search for inter-
esting product configurations. It would be particularly inter-
esting to see if these methods can be scaled up to our work.

3 Preliminaries

In Section 3.1 we introduce the general notation and termi-
nology and give a brief introduction to ASP (Niemeld 1999;
Gebser et al. 2012) and the stable model semantics (Gel-
fond and Lifschitz 1991). The interested reader is referred
to (Brewka, Eiter, and Truszczynski 2011; Janhunen and
Niemeld 2016) and the Potassco guide (Gebser et al. 2019a).
Section 3.2 provides a method for computing similarities be-
tween models applying the Jaccard coefficient (Salton and
McGill 1983).

3.1 Answer Set Programming

We consider the countable set of terms 7 = {t,...,t,} that
consists only of constants (starting with a lower case letter)
and variables (starting with an upper case letter). An atom is
an expression p(fy,...t,) where p is a predicate, m > 0 and
t1,...t,y € 7. Further, A is a fixed, finite and non-empty
set of atoms. A ground atom is an atom with only constants.
If A is an atom, then L = A is a positive literal and L = not A
is a negative literal, with not being default negation (Reiter
1978; Reiter 1980). A (normal) rule r is of the form

A—Ay,..., Ay, not Ay, ..., not A,.

where A and A;, with 1 < i < n, are atoms. The head of r
is denoted as H(r) = A. The conjunction to the right of
the implication symbol is called body of r and is denoted as
B(r) = {Ay,...,A,,not Apyt,...,not A,}. The set of all
positive literals in B(r) is denoted as B*(r) = {Ay,...,A,}
and the set of all negative literals in B(r) is denoted as
B~ (r) = {not Apy1,...,n0t A,}. A rule is safe if each vari-
able in r occurs in B*(r). A rule is ground if no variable
occurs in r. A fact is a ground rule with empty body, i.e.
n=0.

A logic program P is a (finite) set of rules. For any pro-
gram P, let Cp be the set of all constants appearing in . In
the following, we assume for all # it holds that Cp # 0. The
ground program g% is the set of rules ro- obtained by apply-
ing to each rule r € P, all possible substitutions o from the
variables in r to the elements of Cyp.

The set of all atoms in g is denoted by Ap. An inter-
pretation I of a program % is a mapping of Ap to the set of



truth values {T, L}, where T means true and L means false.
Given a ground rule r, I(r) = T denotes that the interpreta-
tion I maps r to T according to the corresponding logic. An
interpretation / is a model of P where for each rule r occur-
ring in g it holds that I(r) = T. Consider Pex a program
with three facts and one rule:

productionLoc(hh).  productionLoc(tls).  part(tail).
produceableAt(P, L) « part(P), productionLoc(L).

The facts state that Hamburg (hh) and Toulouse (tls) are pro-
duction locations and tail is a (production) part. The rule
states that every part can be produced at any production lo-
cation.

The ground program gP is as follows:

productionLoc(hh).  productionLoc(tls). part(tail).
produceableAt(tail, hh) « part(tail), productionLoc(hh).
produceableAt(tail, tls) « part(tail), productionLoc(tls).

An interpretation I C Ap satisfies a ground rule r iff
H(r)nI # O whenever B*(r) € I and B- NI = (. In-
terpretation / satisfies a ground program P, if each r € P
is satisfied by I. A non-ground rule r (resp. a program P)
is satisfied by an interpretation / if / satisfies all ground in-
stances of r (resp. of gP). [ is an answer set (also called
stable model) of P iff I is the subset-minimal set satisfy-
ing the Gelfond-Lifschitz reduct: P = {H(r) « B*(r) |
INB () = 0,r € gP}. The only answer set of gPcx
is where produceableAt(tail, hh), produceableAt(tail, tIs),
productionLoc(hh), productionLoc(tls) and part(tail) are
mapped to true.

The following two statements are commonly used in ASP.

— Ay, ..., A, not Ay, ..., not A,
HA 1Ay, ..., A, not A4, ...,not A, lu.

They are called integrity constraint and cardinality con-
straint, respectively. Similar as above, A and A; with 1 <i <
n are atoms. Intuitively, an integrity constraint represents an

undesirable situation, i.e. Aq,...,A,, not A1, ..., 00t A,
should be evaluated to false. A cardinality constraint is of
the form l{c;;...; cnlu, with ¢y, . .., ¢, being conditional lit-

erals, [ constituting an optional lower bound, and « an op-
tional upper bound. A conditional literal is of the form
Ly : Ly,...,L,, with Ly,...,L, being literals, and regu-
lates the instantiation of Ly by means of Li,...,L,. In
other words, we can view a conditional literal as the set
{Lo | Ly,...,L,}. Further, cardinality constraints can be used
in both rule bodies and heads. A rule with a cardinality con-
straint as the head is referred to as an (extended) choice rule.
Formally, a choice rule has the form

l{A19 e 9Am}u A Am+1’ e 7An9
not A,s1,...,n0t A,.
withO<m<n<o,A,...,A, being atoms, 0 < [ < u, and
I, u being (optional) lower and upper bounds, respectively.

An example of an integrity constraint and a choice rule are
(icLocation) and (choicePath) in Table 1, respectively.

In contrast to integrity constraints, weak constraints (Buc-
cafurri, Leone, and Rullo 2000) do not necessarily need to
hold in the models of the given program:

~ Al LA not Ay, .., 00t Ay lw@p,ty, . 8]

with weight w and (optional) priority p, where w,p € N,
and terms f, ... 1, that occurin Ay, ... A,,. The optimization
statement

#minimize{w; @p;,t; : Ly,...,w;@p,,t, : L,}
is a short form of the n weak constraints
o~ L[. [Wl@p|,t]] o~ L,,. [W,,@pn,tn].

with t; = 1;,...,1, being terms and L; = Ly,..., L, be-
ing literals, 1 < i < n, and m;,0; € N. The corresponding
#maximize statement is analogously defined with inverted
weights. Examples of optimization statements are (minPC),
(minRC), (minCO2) in Table 1.

Moreover, we make use of aggregates in order to reason
about sums over sets of literals. See (icWorkshare) in Ta-
ble 1 for an example.

Heuristic-driven solving (Gebser et al. 2013) allows one
to include domain knowledge that guides the search for (pos-
sibly) promising models by extending the default heuristic
which decides how to assign the truth value of a ground atom
when solving. A domain-specific heuristic is represented as
follows:

#heuristic Ay : Ay,...,A,,not Ay, ..., n0t A, [w@p, m]

with weight w, (optional) priority p where w,p € N, and
modifier m, which can represent different types of heuristic
information. Six different types of modifiers m are available
in Clingo. Here, we only consider m as having a type of
either true or false, which influences the solver’s preference
when making the decision on the truth value of the atom(s)
in consideration.

3.2 Model Similarities

To accommodate the increased variability of solutions, we
need a robust way to quantify similarities between answer
sets, both within a single optimization run and across runs
under different configurations. Each solution comprises
multiple transportation paths, determined by the choice of
production sites for each part and the transportation means
between sites (see Section 4). A possible metric for compar-
ing such sets of paths is the Jaccard coefficient (Salton and
McGill 1983)

|A N B 0

|AU B
where J is the Jaccard similarity between two sets A and B.

We will apply this measure to the allocation of parts to

production sites and the choice of transportation means be-
tween sites. First, the set with respect to the allocation of a
part p € P tosites s € S for a model is defined as

J(A,B) =

Snodes(p) = {Snodem (p)’ cees Snodes,, (p)}

with S4es,(p) = {(p,s)) | p € P1 < i < n} with
n being the total number of sites s € § producing part
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Figure 1: Illustration of a multi-echeleon network applied to the
production plan of the A320 aircraft where @ and m represent dif-
ferent sites for the produced part. The sub-assembly sites and ele-
mentary part suppliers are shown only for the center fuselage (high-
lighted in gray).

p € P. The corresponding set of all such sets is denoted
as S nodes = {Snodes(p) | p € P}. Likewise, the set of all sets
with respect to all choices of transportation means between
sites for a model (or answer set) is defined as

Sedges ={S edgesys -+ Sedgesm}

with m being the number of all performed transportation ac-
tivities. Accordingly, we compute the Jaccard similarity be-
tween two answer sets m; and m, following Equation 1:

|S nodesy, n Sm)desmz

production =
|S nodes Smy U Snode Sy

|S edges, N Sedgev,,,z

transport =

|
|
|
|S edges,,,] eaﬁgfesm2 |
This measure was identified as the best fit for the global lo-
gistics problem to reflect what are similar solutions when as-
signing parts to production sites (production similarity) and
transportation means to transport routes (transport similar-
ity), which are the main decisions to be taken. Therefore,
we use this measure to evaluate the similarities among mod-
els computed with different heuristics in Section 6.

4 The Global Logistics Problem

This section details the specific global logistics problem sub-
ject to this study. Section 4.1 shows its correspondence to
two classical problems from the literature and, Section 4.2
provides a formalization in ASP.

4.1 Two Problems in One

The global logistics problem consists of two subproblems:
First, we need to guarantee that each site produces at least
one part (or the required work share by site or country),
and second we need to decide on the transportation means

among the production sites. In both cases, we are interested
in ‘good’ (i.e., nearly optimal) solutions. For better visu-
alization of the problems, we consider the representation as
a multi-echelon production network, which is a production
network that is organized in stages that need to be passed
downstream. This will be explained in detail later in this
section.

The first subproblem, where parts are matched with pro-
duction locations, can be regarded as a set multi-cover prob-
lem. The production locations responsible for manufac-
turing specific parts correspond to the nodes of the multi-
echelon industrial and supply chain network. The second
subproblem is about selecting transportation means among
the production sites, which completes the network with its
edges. Optimization inside this network, e.g. minimizing
transportation costs, corresponds to the Shortest path in a
Directed Acyclic Graph Problem. The details are described
below.

Optimal Allocation of Part Production Across Sites A
set of manufacturing sites across the world is involved in the
full manufacturing chain, all with their individual capacities
to produce specific components. As sites can produce multi-
ple parts and parts need to be produced by at least two sites,
this leads to a many-to-many assignment problem. In this
case, we deal with a special case of a Set Multicover Prob-
lem (SMC). A Set Multicover Cover Problem is to cover all
elements of a universe N containing n elements at least a
pre-defined number of times i with a minimum number of
sets. It is a generalization of the Set Cover Problem with the
main difference that elements of the universe may be cov-
ered multiple times (Hua et al. 2010).

To formalize the above problem, let there be a set P =
{p1, P2, ..., pu} of parts to be produced and a set § =
{s1, 52, ..., s} of (production) sites. Each site s € S can pro-
duce a subset P; C P of all parts. Depending on the sourcing
strategy, each part p € P must be produced by i, sites (e. g.
i = 1 for single sourcing, i = 2 for double sourcing, etc.).
Each part p has a fixed workload w), independent from the
site where it is produced. And finally each site s € S has
a dedicated cost factor c; reflecting the specific manufactur-
ing cost level of the location. Let x,, be the decision variable
with

_J1 if part p is produced at site s
P* 710  otherwise

The objective function is
minZch “Wp + Xps
SES peP
accordingly and we have the following constraints:
o Workshare: each site must produce at least one part
Z Xps 2 1VseS
pePs

e Sourcing strategy: each part p must be produced by at
least i, sites

> xpzipVpeP

seS:pePy



o Eligibility: parts can only be assigned to sites when they
are able to produce the part Xps =0 if p g Py,

Optimal Routing Across Production Sites The second
problem is finding the shortest path in a logistics network
which can be regarded as a Multi-Echelon Supply Chain
and Production System. It represents an industrial setup
that is structured in manufacturing stages. Every stage must
be passed downstream and for all stages there might be
multiple sites to fulfill the task. It can typically be repre-
sented as a Directed Acyclic Graph (DAG) (Thulasiraman
and Swamy 2011). The production plan of the A320 aircraft
(see, e. g., (Jirkovsky et al. 2025)) is a multi-echelon network
with four production stages: elementary part, sub-assembly,
assembly, and final assembly, as shown in Figure 1. All need
to be passed downstream in this order to produce a product.
Common challenges in industrial applications are the opti-
mization of such a network with regard to some KPIs, e. g.
production or transportation costs, or analyzing the robust-
ness of the network against disruptions.

Let G be a DAG with G = (V,E) withu € V and V is
partitioned into [ layers V = V| U V, U ... U V; where each
Vi (with i € {1,...,1}) is the set of nodes representing the
possible production sites at echelon i. Edges E C V X V are
directed and can only go from one level i to the next level
i+ 1. Each edge (u;,vi+1) € E has a cost ¢, (u;, viy1) Where
tm is any transportation means that is available between the
nodes u; and v, .

As there are multiple possibilities to select production
sites per echelon, binary decision variables must be intro-
duced for any edge:

1 if u and v and edge(u, v) is selected in the path
Xyy = .
0 otherwise

The optimization problem with regards to any cost ¢, of
a transportation means ¢m at the edge (u;, v;+1) can then be
expressed by:

min Z Ctm(uh Vi+l)
(u;,viv1)EE
Problem formulations that are expressed as shortest path
problems in a DAG with vertices V and edges E can be
solved in linear time with ®(V + E), for instance with a topo-
logical sort method (Cormen et al. 2009).

Regarding the KPIs, the production costs are determined
by the assignment of parts to production sites and therefore
subject to the Set Multicover Problem. Transportation costs
and CO; emissions on the other hand are subject to the rout-
ing problem as they can be represented and computed from
the cost of the edges.

In Figure 1, ® and ® in each rounded rectangle represents
a decision to allocate a produced part to a site, while each
dotted line between sites represents a route across produc-
tion sites. For simplicity, we omit the labels on the lines
with the respective transport means.

4.2 Formalization in ASP

We will first outline the original approach in (Dietz et al.
2023) and then present the novel work in this paper that im-
proves upon it by including additional domain knowledge.

Original Program The rules in Table 1 show the original
program excluding the ~ 30.000 facts about canTransport/8,
productionLoc/1, warehouseLoc/1 and produceableAt/2,
productionPlan/2. More details on the facts can be found
in (Dietz et al. 2023). As discussed in Section 4.1, the
global logistics problem consists of two problems: The
choice rules (choiceLvL1), (choiceLvL2), (choiceLvL3),
(choicelLvL4), in addition to the rules described by (icLo-
cation) in Table 1 specify the allocation of part pro-
duction between sites and its sourcing strategy, while
(directRule), (ruleVial), (ruleVia2), (choicePathFinal),
and (choicePath) specify the routing between production
sites. Optimization in routing between production sites is
formalized in (minRC) and (minCQO2).

Additional Domain Knowledge The search space con-
tains too many ‘irrelevant’ configurations (models) with the
original program and the necessary restrictions (or integrity
constraints) still need to be fully understood and defined.
Industrial architects often notice that the presented con-
figurations (or answer sets) are not adequate in the sense
that they do not account for seemingly obvious informa-
tion. Furthermore, adding such information accelerates the
search process in ASP significantly: As an example consider
(ruleVial) and (ruleVia2) in Table 1: Specifying in the rule
that vial and via2 are warehouses, reduces grounding from
minutes to seconds (Dietz et al. 2023).

First, the original program did not include the KPI on op-
timal part production location allocation. This is now rep-
resented by the optimization statement (minPC) in Table 1,
where costLoc/2 is a fact specifying the production costs at
a given location. In order to avoid ambiguity in the imple-
mentation of the objective functions, explicit priority levels
(@...) have been defined for all minimization statements.

Second, even though the models (or configurations) in
the previous program were valid, they do not seem to be
implementable in the industrial system. For instance, vari-
ability regarding the sourcing strategies at different levels
is necessary, which is expressed by the rules (choiceLvL1),
(choiceL.vL2), (choiceLLvL3), and (choicelLvL4) in Table 1.

Solvers such as clasp (Gebser et al. 2007), which utilize
Conflict-Driven Nogood Learning (CDNL) techniques, rely
on conflicts to prune the search space efficiently. Without
sufficient conflicts, the search space remains largely unex-
plored, preventing the optimizer from converging to an op-
timum (Gebser et al. 2012). We therefore actively searched
for additional domain knowledge that would significantly re-
duce the search space. For instance, models in which one
of the main production sites (or countries) has a very low
work share, are strategically not realistic in the established
environment. Such requirements might be suboptimal from
a purely quantitative perspective with respect to the KPIs,
however they are essential. The rules specified by (icWork-
share) in Table 1 ensure that both Toulouse and Hamburg
(and the respective countries in which they are located in)
will have a work share above a certain threshold. This work
share is computed with help of the fact valAdded/2 specify-
ing the added value of each product.



Program excluding facts Description Label
vial(Part, From, (Vial, To), (TM1, TM2), D, LT, CO2, TC) transport part (ruleVial)

« canTransport(From, Vial, Part, TM1,D1,LT1, CO21, TC1), From! = To, productionLoc(From),

productionLoc(To), warehouseLoc(Vial), canTransport(Vial, To, Part, TM2, D2, LT2, CO22, TC2), via one Warehouse or

D =DI1+D2,LT =LTI +LT2,CO2 = CO21 + CO22,TC = TC1 + TC2
via2(Part, From, ((Vial, Via2), To), (TM1, TM2, TM3), D, LT, CO2, TC) (ruleVia2)

« canTransport(From, Vial, Part, TM1, D1), From! = To, productionLoc(From), warehouseLoc(Vial), via two warehouses

canTransport(Vial, Via2, Part, TM2, D2), Vial! = Via2, productionLoc(To), warehouseLoc(Via2),

canTransport(Via2, To, Part, TM3,D3),D = D1 + D2 + D3,LT = LT1 + LT2 + LT3,

CO2 = C021 + CO22 + CO23,TC = TC1 + TC2 + TC3
« productionLoc(P), not produced(P) at least one part per site (icLocation)
produced(P) « producedAt(_, P) true if P produces a part
1{path(Part, From, To, TM, D) : canTransport(From, To, Part, TM, D, LT, CO2, TC); dil‘ect path, or (ChoicePath)

path(From, Part, (Vial, To), (TM1, TM2), D, LT, CO2, TC) :
vial(Part, From, (Vial, To), (TM1, TM2), D, LT, CO2, TC), path via one site, or
path(Part, From, ((Vial, Via2), To), (TM1, TM2, TM3), D, LT, CO2, TC), ) :

via2(Part, From, ((Vial, Via2), To), (TM1, TM2, TM3), D, LT, CO2, TC), )}1 path via two sites

« producedAt(Part, From), productionPlan(Super, Part), produced At(Super, To)
efproducedAt(Part, P) : produceableAt(Part, P)}e — elementary(Part) depending on its part (choiceLLvL1)
s{producedAt(Part, P) : produceableAt(Part, P)}s « subassembly(Part) each part needS to be (ChOiCCLVLZ)
afproducedAt(Part, P) : produceableAt(Part, P)}a « assembly(Part) produced ate, s,aor f (ChOiceLVL3)
flproducedAt(Part, P) : produceableAt(Part, P)} f « finalProduct(Part) Sites, Wlth e, s, a, f eN (ChoiceLVL4)
« #sum({Value, Part : producedAt(Part, P), valAdded(Part, Value), locatedIn(P, france)} < n Work share fOI' France, (icWorkshare)
« #sum({Value, Part : producedAt(Part, P), valAdded(Part, Value), locatedIn(P, germany)} < n Ger many,
« #sum{Value, Part : producedAt(Part, hh), valAdded(Part, Value)} < m Hambul‘g and
« #sum({Value, Part : producedAt(Part, tls), valAdded(Part, Value)} < m TOUIOUSC Wlth m,n € N
#minimize((Value * Cost)/e @6, Part, P : producedAt(Part, P), valAdded(Part, Value), costLoc(P, Cost)} minimize production COSts (minPC)
#minimize{TC@5, Part, From, To, TM : path(Part, From, To, TM, D, LT, CO2, TC)} minimize transportation costs  (minRC)
#minimize{CO2 @4, Part, From, To, TM : path(Part, From, To, TM, D, LT, CO2, TC)} minimiZe COZ emiSSiOHS (minCOZ)

Table 1: Relevant rules, optimization statements and additional domain knowledge excluding the facts.



5 Heuristics

A first analysis of the models generated by the program pre-
sented in Section 4.2 shows that the variety among these
models is quite low. Industrial architects are not primar-
ily interested in small variations among models (such as
a few changes in transport resources) but rather in models
that are much different to each other while still fulfilling the
specified requirements. For this purpose we will investigate
how such a variety can be expressed through heuristic driven
solving (Gebser et al. 2013) and preferences. In the follow-
ing, we present a baseline program (Section 5.1), and sub-
sequently describe multiple extensions of this program by
means of different heuristics (Sections 5.2-5.5).

5.1 Baseline Program

The baseline program consists of all the rules in Table 1
including the facts about the global logistics. The opti-
mization statements are specified with the following pri-
oritization: 1. production costs (minPC), 2. transportation
costs (minRC) and 3. CO; emissions (minCO2).

5.2 Preferred Production Sites (preferred sites)

The optimization of production costs can be facilitated by
guiding the search through preferred production sites, i.e.,
sites where production costs are lowest:

#heuristic producedAt(Part, p) : part(Part).[w, true] with w € N.

where p is a constant representing a production site.

5.3 Preferred Transport Means (preferred TMs)

Optimization of transportation costs can be facilitated by
guiding the search through preferred transport means, that
is, where transportation costs are the lowest. We define!

#heuristic path(...,TM,...) : truck(TM).[w, true] with w € N.

Transport means that are preferred are trucks with
‘standard sized means’, which 1is expressed by
truck(trLongDist; trShortDist; trGeneral Cargo).

5.4 Hubs Preferred (hubs preferred)

It seems reasonable that parts of the same level are trans-
ported to a possibly close site or to the same site for further
assembly (cf. Fig. 1), the so-called hubs. We specify that
sub-assembly and assembly should be produced at the same
location:

#heuristic producedAt(Part, P) : productionPlan(Super, Part),
producedAt(Super, P), subassembly(Part).[w, true]

with w € N. If the level of the hub should not be specified,

then subassembly(Part) can be omitted.

5.5 Avoid Back-Forth Transport (min back-forth)

Configurations where a part is produced in location A (pre-
vious), then sub-assembled in location B (intermediate), and
then again assembled in location A (next) should be avoided.

! The °...’s abbreviate path in (choicePath) in Table 1.

% of models cost to last (baseline)

Heuristic Production  Transport CO,
last (baseline) 100 100 100
first (baseline) 102 174 128

(preferred sites) 96 66 100
(preferred TMs) 98 110 110
(hubs preferred) 97 104 102
(min back-forth) 110 58 80

(all) 96 63 112

Table 2: The KPI percentages of each heuristic in relation to the
last (baseline) model. The best results are highlighted in gray.

A straightforward translation is to specify that the intermedi-
ate location should not be different to the previous and next
one, when they are the same:
#heuristic producedAt(Super, P2) : producedAt(Part, P1),
productionPlan(SuperS, Super), productionPlan(Super, Part),
producedAt(SuperS, P1), P2! = P1.[w, false] with w € N.

This can be encoded through the minimize statement
#minimize{ 1, Part, SuperS : backForth(part, SuperS)}.
where

backForth(Part, SuperS) « productionPlan(SuperS, Super),
productionPlan(Super, Part), producedAt(Part, P1),
producedAt(Super, P2), producedAt(SuperS, P1), P2! = P1.

Yet the preference can be reformulated by stating that if pre-
vious and next locations are the same, then the intermediate
location should also be the same. Thus, we use

#heuristic producedAt(Super, P) : producedAt(Part, P),
productionPlan(SuperS, Super), productionPlan(Super, Part),
producedAt(SuperS, P).[w, true] with w € N.

An initial evaluation shows that the last encoding seems per-
forms the best and thus will be chosen for the evaluation.

6 Evaluation

The heuristics presented in Section 5 will be evaluated with
respect to the KPIs of the last model?® for each heuristic and
the variations between them. Experiments were carried out
on an AMD EPYC 7443P 24-Core Processor, 64GB RAM
type DDR4-3200. A timeout was set to 60 minutes. Note
that in Figures 2 to 4, only every 100th model is plotted.

6.1 Dataset

The experiments were performed on a real dataset for a fu-
ture aircraft program, with 13 production locations, 17 ware-
house locations, 34 parts and 30 transport means. Overall
there where about ~ 30.000 (logic program) facts.

2By ‘last model’” we refer to the last model that could be com-
puted before the timeout.
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Figure 3: Evolution of production costs and transportation costs.

6.2 Optimization Results

In all cases, grounding took about half a minute and the first
model was found after a few seconds. Table 2 shows the per-
centages of the KPIs (production costs, transportation costs,
CO; costs) for the last model of each heuristic program with
respect to the last model of the baseline program (baseline).
The second row (‘first (baseline)’) shows the percentage of
its first model’s KPIs with respect to its last model’s KPIs. It
shows that the improvement in transportation costs and CO,
costs are the highest: the last model’s transportation costs
and CO, costs are 57% and 78% of the first model’s trans-
portation costs and CO; costs, respectively.

Figure 2 shows how the models’ KPIs evolved over time.
The x-axis refers to the model id (every 100th model) and the
y-axis refers to the respective KPI. Interestingly, (preferred
sites) has the lowest production costs, whereas (min back-
forth) achieves by far the lowest recurring and CO; costs.

With the combined use of all heuristics, good solutions are
generated from the start for production and transportation
costs. Note that ASP forces us to prioritize the KPIs, which
restricts the variability regarding the KPIs’ lower and upper
bound: minimizing production costs has the highest priority
whereas minimizing CO, costs has lowest priority.

The goal of industrial architects is to find Pareto-optimal
models in the industrial system. A Pareto optimization aims
at finding a best solution between two potentially conflicting
objective functions (Martins and Ning 2021).

As Table 2 shows, there is a trade-off between production
and transportation costs. This observation is visualized in
Figure 3, indicating a Pareto front with respect to production
and transportation costs. The figure also shows models of
combined heuristics to make the Pareto front better visible.
The vertical and horizontal lines show an approximation of
lower boundaries for the production costs (yellow line) and
transportation costs (green line) defined as follows: For the
production cost lower boundary we assumed that all parts
are produced at the site with the lowest hourly rate. For the
transportation lower boundary all sites were connected with
the shortest path regarding the distance and transported by
the transportation mean with the lowest cost per distance. It
emphasizes that the results are close or already hitting the
Pareto front.

6.3 Similarity Evolution

The similarity measure, defined in Section 3.2, is applied in
three ways. First, we compare the models of the first and
last model of each heuristic run to determine the internal
variability within a single run. Second, we aim to see the
variability against a reference model to see how much vari-
ability can be achieved overall among different runs with
different heuristic settings. Finally, the heuristics are com-
pared to each other to check whether they produce diverse
answer sets.

Figure 4 shows how the similarity values evolve from the
first model to the last model. The x-axis is the index of the



Heuristic (preferred sites) (preferred TMs) (hubs preferred) (min back-forth) (all)

P t P t P t p t P t
(baseline) 0.22 0.15 0.5 0.23 1 1 0.43 0.21 04 0.17
(preferred sites) 1 1 0.31 0.16 0.22 0.15 0.22 0.16 0.2 0.15
(preferred TMs) 1 1 0.5 0.23 0.42 0.21 0.34 0.17
(hubs preferred) 1 1 0.43 0.21 04 0.17
(min back-forth) 1 1 033 0.18
(all) 1 1

Table 3: Similarity comparison for all heuristics, with respect to the production sites (p) and transportation means (t).
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Figure 4: Evolution of the similarity values for production (yellow)
and transport (green) within the baseline run.

model and the y-axis is the similarity value, which is split
for the production (orange) and transportation (green) sim-
ilarity. The figure shows the according similarity value of
each model compared with the last (best) model.

The first model of the baseline run has similarities with
the last model between 0.21 for transportation and 0.29 for
production similarity. Similarity values steadily go up until
finally reaching 1.0 for both values. This behavior is ob-
served for all heuristic runs. The span of variability within
a run is similar for all heuristics, except the ‘preferred sites’
heuristic, which has a significantly higher similarity for the
production starting at 0.91 already from the first model.

Figure 4 indicates that the similarity values for produc-
tion grow linearly (yellow) while for transportation it al-
most grows exponentially (green). This is an effect result-
ing from the prioritization of the optimization statements.
With the baseline setting, first the production costs are op-
timized, then the transportation costs. Therefore, once the
production value has improved (one iteration), several itera-
tions of improving the transportation cost follow. Secondly,
transportation similarity is production similarity-dependent,
meaning that a transportation link can only be similar when
both nodes (production sites) are already similar.

The matrix in Table 3 finally shows that even among the
heuristics, the variability is high and the different heuristics
produce diverse answers sets. Production similarity lies be-
tween 0.2 and 0.42, while transportation similarity moves
between 0.16 and 0.23 among all heuristics. The variability

for transportation is higher in general than for production.

7 Conclusions and Future Work

We addressed the problem of exploring solution spaces for
global logistics problems. As a representative industrial use
case from the aerospace domain, we considered the devel-
opment of the next generation Airbus single-aisle aircraft.
More precisely, we proposed a characterization of the global
logistics problem, alongside a formalization in ASP. In addi-
tion, we introduced an encoding of essential domain knowl-
edge via facts, integrity constraints and heuristics to direct
the solver toward promising configurations. Further, in an
experimental evaluation, we provided an assessment accord-
ing to the KPIs and an examination of model variability.

This work demonstrates that by means of domain heuris-
tics, diverse answers sets can be produced. Further, we
showed that the incorporation of domain knowledge can pro-
duce more suitable answer sets in a shorter time, e. g., with
(preferred sites), even the first models already exhibited
significantly decreased production costs compared to other
heuristics. The heuristic (min back-forth) leads to answer
sets with the lowest transportation costs while some heuris-
tics can be relatively neutral or counterproductive with re-
gards to the KPIs. The application of multiple heuristics
looks very promising in terms of producing good answer sets
quickly, but consumes more time to find models.

A preliminary assessment with an industrial system de-
signer shows that the produced models are valid, useful and
often desirable. If solutions were undesirable the cause was
tackled with additional knowledge incorporated into the pro-
gram with additional facts or constraints, leading to better
results. This approach is promising for defining require-
ments ad-hoc, which allows for a ‘human in the loop’ ap-
proach. In particular, it can support industrial architects in
the iterative and incremental architecture definition process
by investigating different solutions, gaining new insights and
feeding them back as new knowledge to better configure the
system and receive more favorable solutions.

It would be interesting to exploit existing approaches for
identifying diverse answer sets as discussed in Section 2.
For the future, we aim at performing a user study and assess
the flexibility and expressiveness of the system under work-
ing conditions. In parallel, a search for a variety of optimal
solutions can be performed with an extended timeout to see
if the system can converge to an optimum with the use of
domain knowledge.
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