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Abstract

Inconsistency is a core problem in fields such as AI and data-intensive sys-
tems. In this work, we address the problem of measuring inconsistency in
declarative process specifications, with an emphasis on linear temporal logic
(LTL). As we will show, existing inconsistency measures for classical logic
cannot provide a meaningful assessment of inconsistency in LTL in general,
as they cannot adequately handle the temporal operators. We therefore pro-
pose a novel paraconsistent semantics for LTL over fixed traces (LTL↵) as
a framework for time-sensitive inconsistency measurement. We develop and
implement novel approaches for (element-based) inconsistency measurement,
and propose a novel semantics for reasoning in LTL↵ in the presence of pref-
erence relations between formulas. We implement our approach for inconsis-
tency measurement with Answer Set Programming and evaluate our results
with real-life data sets from the Business Process Intelligence Challenge.

Keywords: Declarative Process Specifications, LTLf , Inconsistency
Measurement

1. Introduction

Linear temporal logic (LTL) is an important logic for specifying the (tem-
poral) behavior of business processes in the form of declarative process spec-
ifications [1, 2]. The underlying idea is that time is represented as a linear
sequence of states T = (t0, ..., tm), where t0 is the designated starting point.
At every state, some statements may be true. Temporal operators specify
properties that must hold over the sequence of states. For example, the
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operator X (next) means that a certain formula holds at the next state.
Likewise, the operator G (globally) means that a certain formula will hold
for all following states.

Traditionally, model checking has been used to verify that a particular
model—that is, the assignment of truth values for statements over the time
sequence—satisfies the requirements. However, a problem in this use-case
arises if the set of formulas is inconsistent, i. e., contains contradictory spec-
ifications. This is a core problem for data-intensive systems, where inconsis-
tencies can easily arise, e. g., due to (modeling) errors within the collected
data [3, 4]. For example, consider the two sets of LTL formulas K1 and K2:

K1 = {Xa,X¬a} K2 = {Ga,G¬a}

Both K1 and K2 are inconsistent, as they demand that both a and ¬a hold
in (some) following state, which is unsatisfiable. In such a case, the set of
specifications cannot be applied for its intended purpose of process verifica-
tion. This calls for the analysis of such inconsistencies, to provide insights
for inconsistency resolution.

In classical logic, all inconsistent sets are equally bad. However, consid-
ering again the two sets, intuitively, K2 is “more” inconsistent than K1: The
inconsistency in K1 only a↵ects the next state, while the inconsistency in K2

a↵ects all following states. This is an important insight that could prove use-
ful for debugging or re-modeling LTL specifications. While there have been
some recent works that can identify inconsistent sets in declarative process
specifications [4, 5, 3], those works cannot look “into” those sets or compare
them. In this work, we therefore show how to distinguish the severity of
inconsistencies in LTL, specifically, a variant of LTL which we coin linear
temporal logic on fixed traces (LTL↵).

The scientific field geared towards the quantitative assessment of inconsis-
tency in knowledge representation formalisms is inconsistency measurement
[6, 7]. Inconsistency measurement studies measures that aim to assess a de-
gree of inconsistency with a numerical value. The intuition here is that a
higher value represents a higher degree of inconsistency. Such measures can
provide valuable insights for debugging inconsistent specifications, e. g., to de-
termine whether certain sets of formulas are more inconsistent than others, or
pin-pointing those formulas highly responsible for the overall inconsistency.
As we will show, existing measures are currently not geared towards LTL
and temporal operators, and therefore cannot provide a meaningful analysis.
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Therefore, the main goal of this work is to develop new means for measuring
inconsistency in linear temporal logic.

In a previous work [8], we have presented an initial paraconsistent se-
mantics for LTL↵, as well as two baseline inconsistency measures. These
results are outlined in Section 3), in particular, we motivate the need for
time-sensitive inconsistency measurement (by means of a novel rationality
postulate) and define a paraconsistent semantics for LTL↵. Our additional
contributions for the present work are as follows.

• In Section 4, we first revisit baseline approaches for measuring incon-
sistency in LTL↵, including also an evaluation of formal aspects of the
introduced measures such as expressivity, i. e., the number of distinct
values a measure can attain w.r.t. m time points. Then we extend
the formalism of LTL↵ to be able to consider preference relations. In
essence, these are relations among the set of formulas, expressing that
certain formulas may be preferred over others. As we will show, being
able to express preferences can be very valuable for modellers to define
exceptions, however, it directly a↵ects the notion of what should be
considered as a “consistent” set of formulas. For example, if we con-
sider {G¬a,Xa} and assume Xa overrules G¬a, then this specification
should be viewed as consistent (Xa is seen as an exception to G¬a).
To enable such forms of reasoning, we develop a new model-theoretic
semantics for defeasible LTL↵ based on taggings. We show how this
semantics can be used to reason over LTL↵ with preference relations,
and propose initial analysis measures for knowledge bases with pref-
erence relations, e. g., by assessing the number of time points where
exceptions occur.

• As an extension to inconsistency measures that assess knowledge bases
as a whole, we develop element-based measures that can be used for pin-
pointing the concrete formulas responsible for the overall inconsistency.
This provides valuable insights in the scope of inconsistency resolution,
e. g., as a basis for re-modeling inconsistent specifications. To guide the
development of such measures, we propose a time-sensitivity postulate
for element-based measures and show that a Shapley-based approach to
element-based measurement satisfies (amongst others) this postulate.
Also, we propose new element-based measures for analyzing individual
preference relations, e. g., assessing the impact of deleting individual
preferences on the overall inconsistency.
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• As an application example, in Section 5, we show how our approach
can be applied for measuring inconsistency in declarative process spec-
ifications, in particular, for the Declare modeling standard. We discuss
how our semantics can be applied to the “simple trace” notion in De-
clare, and present concrete usage examples of our results, in particular,
also introducing and extended definition of declarative process models
including preference information among constraints, which allows to
model exceptions in Declare in a flexible manner.

• Finally, in Section 6, we discuss algorithmic aspects of measuring in-
consistency in LTL and implement our approach. Furthermore, we
evaluate these implemented results with real-life data sets of the Busi-
ness Process Intelligence Challenge1 in Section 7. Our implementation
is made available open-source2 and can be used to assess or compare
inconsistency in declarative process specifications. In the context of
evaluation, we also investigate the computational complexity of central
aspects regarding inconsistency measurement in LTL↵.

Our investigation is based on preliminaries in Section 2 and is concluded
in Section 8. Proofs for all technical results can be found in the appendix.

As stated above, an earlier version of this work has already been published
in [9]. This work is a direct extension, where we contribute the contents
outlined above. Parts of Sections 2 and 3 are taken from [9].

2. Preliminaries

The traditional setting for inconsistency measurement is that of propo-
sitional logic. For that, let At be some fixed propositional signature, i. e.,
a (possibly infinite) set of propositions, and let L(At) be the corresponding
propositional language constructed using the usual connectives ^ (conjunc-
tion), _ (disjunction), and ¬ (negation). A literal is a proposition p or
negated proposition ¬p.

Definition 1. A knowledge base K is a finite set of formulas K ⇢ L(At).
Let K be the set of all knowledge bases.

1https://icpmconference.org/2020/bpi-challenge/
2https://github.com/aig-hagen/inconsistency-measurement-LTL
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For a set of formulas X we denote the set of propositions in X by At(X).
The semantics for a propositional language is given by interpretations where
an interpretation ! on At is a function ! : At ! {0, 1} (where 0 stands for
false and 1 stands for true). Let ⌦(At) denote the set of all interpretations for
At. An interpretation ! satisfies (or is a model of) an atom a 2 At, denoted
by ! |= a, if and only if !(a) = 1. The satisfaction relation |= is extended to
formulas in the usual way. For � ✓ L(At) we also define ! |= � if and only
if ! |= � for every � 2 �. Furthermore, for every set of formulas X, the set
of models is Mod(X) = {! 2 ⌦(At) | ! |= X}. Define X |= Y for (sets of)
formulas X and Y if ! |= X implies ! |= Y for all !.

Let > denote any tautology and ? any contradiction. If Mod(X) = ; we
write X |=? and say that X is inconsistent.

2.1. Inconsistency Measurement

Inconsistency as defined above is a binary concept. To provide more fine-
grained insights on inconsistency beyond such a binary classification, the field
of inconsistency measurement [7] has evolved. The main objects of study
in this field are inconsistency measures, which are quantitative measures
that assess the degree of inconsistency for a knowledge base K with a non-
negative numerical value. Intuitively, a higher value reflects a higher degree,
or severity, of inconsistency. This can be useful for determining if one set
of formulas is “more” inconsistent than another. Let R1

�0
be the set of non-

negative real values including 1. Then, an inconsistency measure is defined
as follows.

Definition 2. An inconsistency measure I is any function I : K! R1
�0
.

To constrain the desired behavior of concrete inconsistency measures,
several properties, called rationality postulates, have been proposed. A well-
agreed upon property is that of consistency, which states that an inconsis-
tency measure should return a value of 0 i↵ there is no inconsistency.

Consistency (CO) I(K) = 0 if and only if K is consistent.

In the following, we consider only inconsistency measures that satisfy CO.
But even CO, by itself, is too weak to characterize functions that intuitively
measure inconsistency. Further important postulates introduced in [10] are
monotony, dominance and free-formula independence, which we will define
below. For that, we need some further notation.
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First, a set M ✓ K is called a minimal inconsistent subset (MIS) of
K if M |=? and there is no M 0 ⇢ M with M 0 |=?. Let MI(K) be the
set of all MISs of K. Second, a formula ↵ 2 K is called a free formula if
↵ /2

S
MI(K). Let Free(K) be the set of all free formulas of K. Similarly, we

call ↵ 2 K problematic if ↵ 2
S
MI(K), and denote Problematic(K) as the

set of all problematic formulas. For example, if K = {a, b,¬b, c,¬c, d _ e}
then MI(K) = {{b,¬b}, {c,¬c}}, Free(K) = {a, d_ e}, and Problematic(K) =
{b,¬b, c,¬c}.

For the remainder of this section, let I be an inconsistency measure,
K,K0 2 K, and ↵, � 2 L(At). Then, the basic postulates from [10] are
defined as follows.

Monotony (MO) If K ✓ K0 then I(K)  I(K0).

Free-formula independence (IN) If ↵ 2 Free(K) then
I(K) = I(K \ {↵}).

Dominance (DO) If ↵ 6|=? and ↵ |= � then I(K [ {↵}) � I(K [ {�}).

MO states that adding formulas to the knowledge base cannot decrease the
inconsistency value. IN means that removing free formulas from the knowl-
edge base does not change the inconsistency value. DO consists of several
cases, depending on the presence or absence of ↵ or � in K: the idea is that
substituting a consistent formula ↵ by a weaker formula � cannot increase
the inconsistency.

Numerous inconsistency measures have been proposed (see [11] for a sur-
vey), many of which di↵er in regard to their compliance w.r.t. the intro-
duced postulates. In this work, we will consider six measures as defined
below. In order to define the contension measure Ic [12] we need some ad-
ditional background on Priest’s three-valued semantics [13]. A three-valued
interpretation is a function ⌫ : At ! {0, 1,B}, which assigns to every atom
either 0, 1 or B, where 0 and 1 correspond to false and true, respectively,
and B (standing for both) denotes a conflict. Assuming the truth order �T

with 0 �T B �T 1, the function ⌫ can be extended to arbitrary formulas
as follows: ⌫(↵ ^ �) = min�T (⌫(↵), ⌫(�)), ⌫(↵ _ �) = max�T (⌫(↵), ⌫(�)),
⌫(¬↵) = 1 if ⌫(↵) = 0, ⌫(¬↵) = 0 if ⌫(↵) = 1, and ⌫(¬↵) = B if ⌫(↵) = B.
We say that an interpretation ⌫ satisfies a formula ↵, denoted by ⌫ |=3 ↵, i↵
⌫(↵) = 1 or ⌫(↵) = B.

We will now define the measures used in this work.
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Definition 3. Let the measures Id, IMI, Ip, Ir, Ic, and Iat be defined as
follows:

Id(K) =

⇢
1 if K |=?
0 otherwise

IMI(K) = |MI(K)|

Ip(K) = |Problematic(K)|

Ir(K) = min{|X| | X ✓ K and K \X 6|=?}

Ic(K) = min{|⌫�1(B) \ At| | ⌫ |=3 K}

Iat(K) = |
[

M2MI(K)

At(M)|

A baseline approach is the drastic inconsistency measure Id [14], which
only di↵erentiates between inconsistent and consistent knowledge bases. The
MI-inconsistency measure IMI [14] counts the number of minimal inconsistent
subsets. A similar version is the problematic inconsistency measure Ip [12],
which counts the number of distinct formulas appearing in any inconsistent
subset. The repair measure Ir counts the smallest number of formulas that
must be removed in order to restore consistency. The contension measure
Ic [12] quantifies inconsistency by seeking a three-valued interpretation that
assigns B to a minimal number of propositions. We will formally define
three-valued interpretations for LTL↵ in the next subsection. The di↵erence
is that the propositional case is much simpler because there is no issue about
states. Finally, the Iat measure counts the number of atoms in the non-free
formulas.

We conclude this section with a small example illustrating the behavior
of the considered inconsistency measures.

Example 1. Consider K3, defined via

K3 = {a,¬a, b,¬b ^ c ^ d,¬a _ ¬b}

Then we have that

MI(K3) = {{a,¬a}, {b,¬b ^ c ^ d}, {a,¬a _ ¬b, b}}
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Thus

Id(K3) = 1 IMI(K3) = 3 Ip(K3) = 5

Ir(K3) = 2 Ic(K3) = 2 Iat(K3) = 4

The main focus of study in inconsistency measurement, and the intro-
duced measures, has been on propositional logic. In this work, our aim is to
apply inconsistency measures for linear time logic, which we introduce now.

2.2. Linear Temporal Logic on Fixed Traces

In this work, we consider a specific variant of LTLf that we coin linear
temporal logic on fixed traces (LTL↵). We consider a linear sequence of
states t0, . . . , tm, where every ti is the state at instant i. We assume that
m > 1 to avoid the trivial case. Note that the di↵erence with LTLf—where
interpretations can vary in their length as long as they are finite—is that we
keep the length of this sequence finite and fixed across all interpretations.
This variant of LTLf is introduced mainly to discuss matters of inconsis-
tency measurement, as here, the inconsistency value is computed in regard
to a comparable length for all formulas. For example, if no fixed bound is
assumed, and two sets of formulas over some finite traces of length n1, n2

are assessed to a↵ect n1 states, and n2 states, respectively, it is not possible
to ensure that this is due to the nature of the operators (such as G), i. e.,
what we call “time-sensitive” inconsistency measurement, see Section 3. In
practice, the length of traces can be naturally bounded by some (very) large
integer, since all processes in a real company must be finished in some finite
amount of time. However, the ideas presented in the next sections can be
extended to LTLf [15] in a straightforward manner by considering a sequence
of increasing values for m and the limit. Furthermore, we will show below
that a minimal lengthm for a set of formulas can be computed by considering
the so-called depth of the formulas. We will discuss this further in Section
3.2. Note that the move to LTL is not as immediate, as some formulas might
be sensitive to infinity [16]. We do not deal with LTL over infinite traces in
this work.

The syntax of LTL↵ is the same as the syntax of LTL and LTLf [17].
Formulas are built from a set of propositional symbols At and are closed
under the Boolean connectives, the unary operator X (next), and the binary
operator U (until). Formally, any formula ' of LTL↵ is built using the
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grammar rule

' ::= a|(¬')|('1 ^ '2)|('1 _ '2)|(X')|('1U'2).

with a 2 At. Intuitively, X' denotes that ' will hold at the next state
and ('1U'2) denotes that '1 will hold until the state when '2 holds. Let
d(') 2 N denote the maximal number of nested temporal operators in '.3

From the basic operators, some useful abbreviations can be derived, in-
cluding F' (defined as >U'), which denotes that ' will hold eventually over
the linear sequence (possibly including the current state) and G' (defined
as ¬F¬'), which denotes that ' will hold for all (following) states including
the current one. Here > is any tautology and ? is any contradiction.

An LTL↵-interpretation !̂ w.r.t. At is a function mapping each state and
proposition to 0 or 1, meaning that !̂(t, a) = 1 if proposition a is assigned 1
(true) in state t.4 Then the satisfaction of a formula � by an interpretation
!̂, denoted by !̂ |= �, is defined via

!̂ |= � , !̂, t0 |= �

where !̂, ti |= � for any interpretation !̂ as above and for every ti 2 {t0, . . . , tm}
is inductively defined as follows:

!̂, ti |= a i↵ !̂(ti, a) = 1 for a 2 At

!̂, ti |= ¬' i↵ !̂, ti 6|= '

!̂, ti |= '1 ^ '2 i↵ !̂, ti |= '1 and !̂, ti |= '2

!̂, ti |= '1 _ '2 i↵ !̂, ti |= '1 or !̂, ti |= '2

!̂, ti |= X' i↵ i < m and !̂, ti+1 |= '

!̂, ti |= '1U'2 i↵ either !̂, ti |= '1 ^ '2 or

(!̂, tj |= '2 for some j 2 {i+ 1, . . . ,m}
and !̂, tk |= '1 for all k 2 {i, . . . , j � 1})

An interpretation !̂ satisfies a set of formulas K i↵ !̂ |= � for all � 2 K. A
set K is consistent i↵ there exists !̂ such that !̂ |= K (Otherwise, we say

3d(') is inductively defined via d(a) = 0 for a 2 At, d(¬�) = d(�), d(�1 ^ �2) =

d(�1_�2) = max{d(�1), d(�2)}, d(X�) = 1+d(�), and d(�1U�2) = 1+max{d(�1), d(�2)}.
4
Recall that we assume time of a fixed length t0, . . . , tm and interpretations only vary

in what is true at each state.
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K is inconsistent). Define X |= Y for (sets of) formulas X and Y if !̂ |= X
implies !̂ |= Y for all !̂.

2.3. Related Work and Contributions

The topic of the present work is related to several fields and aspects of
inconsistency diagnosis in LTL, inconsistency measurement, defeasible rea-
soning, and answer set programming, that we discuss in the following.

Inconsistency Diagnosis in LTL. The core focus of this work is related to
consistency and model checking in declarative process specifications, see e. g.
[18, 19, 20]. For the general task of diagnosis of LTL-based specifications,
there have been some works that allow to diagnose satisfiability, or compute
inconsistent cores (e. g., sets of formulas) [3, 21, 4, 22]. In this regard, our
approach extends recent works [4, 5, 3, 20] on the identification of inconsistent
sets in declarative process specifications by allowing to look “into” those
sets and leverage inconsistency resolution with quantitative insights. For
example, existing resolution approaches mainly try to minimize the number
of deleted formulas [4, 5, 23]. This, however, completely leaves aside the
semantics of those formulas or their impact on any corresponding process, in
particular, how many points in time are a↵ected by a formula. Given this
motivation, it is useful to consider also the degree to which certain formulas
a↵ect the following behavior. In this work, we coin such an analysis as time
sensitive inconsistency measurement.

Approaches for Handling Inconsistent Information. While the field of incon-
sistency measurement has brought forward various approaches for handling
inconsistency in propositional logic formalisms, results on measuring incon-
sistency in logics with modal operators such as time are still rare. This paper
is related to [24] which presents several, what we call time sensitive, incon-
sistency measures for branching time logics (BTL). However, in this work we
are able to avoid the complicated overload of branching time as the process
specifications are provided in linear time logic. Using branching time logic
adds a layer of complexity that is unnecessary when dealing with a linear
time situation. Just to take one example, consider the set {Xa,X¬a}. In
linear time logic, this gives one conflict at the next state. But in the case of
branching time logic, this highly depends on additional quantification opera-
tors. If only considering “some next state”, then the set is consistent because
a and ¬a may hold in di↵erent next states. If considering “all next states”,
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then it is inconsistent but how inconsistent depends on the number of next
states. We avoid such issues by dealing only with linear temporal logic. Note
also that BTL takes a di↵erent view on time than LTLf as studied in this
paper and is therefore expressively incomparable (cf. [25]).

As a framework for measuring inconsistency in declarative specifications,
we develop a paraconsistent semantics. Paraconsistent reasoning [13] in gen-
eral can be useful for reasoning about knowledge bases in a meaningful way
even in the presence of contradictions. To this extent, we lift the existing
results on paraconsistent semantics for propositional logics (and the corre-
sponding approaches for measuring inconsistency based on these semantics)
to the setting of LTL. Paraconsistent semantics for LTL has already been
studied, as shown in [26] and [27]. The emphasis in those works is to de-
velop a sound and complete proof theory for several paraconsistent versions
of LTL. Both the bounded and unbounded versions of LTL are considered.
Connections are shown with intuitionistic logic as well as a paraconsistent
4-valued logic. For our paper we use the simplest 3-valued paraconsistent
logic that serves our purpose in measuring inconsistency.

Defeasible Reasoning. The approach of paraconsistent reasoning, or incon-
sistency-tolerant reasoning, is also connected to defeasible reasoning [28]. In
defeasible logic, beliefs can be overruled by others, e. g., to model explicit
exceptions (in this sense, di↵erent formulas of the knowledge base can be
said to have a di↵erent priority). As the ability to model exceptions may
be important in settings of declarative process specifications, we extend the
paraconsistent semantics to be able to consider preference relations between
formulas. In this way, modellers have the ability to express default rules and
exceptions, e. g, “generally ¬� should hold in all states, but in the first state,
� may hold”. To the best of our knowledge, results on preference relations in
declarative process specification are still very underdeveloped, which is why
we believe this to be a valuable extension to current research, e. g., mod-
elling exceptions in Declare specifications by means of modelling priorities.
This could be very valuable in settings where data is also considered (e. g.
“generally some rule should be true unless certain data attributes such as
resources are observed”), or in settings where there might be some notion of
“uncertainty” in regard to the specific formulas of a specification. In [29],
a semantics for defeasible LTL has been proposed; however, those authors
propose novel modal operators such as “defeasibly X”. This means that
such an approach is not directly applicable for settings of declarative process
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specifications, e. g., for Declare specifications, as the modeller would need
to redesign the Declare language to be built over these defeasible operators.
Instead, in this work, we propose to add preference relations, which o↵ers
a decoupled and less obstrusive way of facilitating defeasible reasoning in
declarative process specifications. Also, in [30], the authors discuss a variant
of defeasible logic with temporal operators, however, the rule formalism there
is very di↵erent in which all rules have a fixed start and end point, which is
not the case in our setting, e. g., due to the use of implications.

A work which can be considered slightly related here is that on probabilis-
tic Declare [31, 32], i. e., for declarative constraints over uncertain informa-
tion. However, while this allows for capturing the quantitative priorisation, it
does not allow for modeling explicit relations such as exceptions. This, how-
ever, is possible in our work, as we introduce an explicit preference relation
between formulas.

For reasoning about specification in the presence of preference relations,
we develop a new semantics. For example, if we consider {G¬a,Xa} and
assume Xa overrules G¬a, then this specification should be viewed as con-
sistent (Xa is seen as an exception to G¬a). To enable such semantics, we
utilize the concept of taggings as suggested by [28, 33]. In essence, a tagging
is a meta-statement about an element of a knowledge base, stating whether
this element should or should not hold. Note however, that in [28, 33], the
formalism considered is of a logic program form, meaning that all the rules
consist only of literals in conjunctive form. This enables those authors to
define taggings for individual literals. In our setting, this is not su�cient,
as the literals can be connected via arbitrary boolean connectors, and we
include modal operators. Therefore, we will present a new tagging system
which allows the assignment of tags to formulas of the knowledge base (which
in turn allows for inferring which formulas should hold, and which may be
overruled by others).

Note also that inconsistency measurement in settings where individual
formulas can have di↵erent priorities has also been addressed in the context of
stratified knowledge bases [34]. However, in [34], all elements can be ordered
into di↵erent strata (or layers) of a knowledge base, such that all elements
from a higher layer are seen as more important than those of lower layers.
In our setting, this is di↵erent, as we only have a partial ordering based on
individual preferences. Also, a distinction of our approach (defeasible logic)
to stratified knowledge bases is that in our approach, default rules and their
exceptions can be defined, which is di↵erent from a stratified approach, where
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formulas are ordered by priority, but no exception relations can me modelled
individually.

Answer Set Programming. To implement our results, we develop encodings of
the proposed LTL semantics in answer set programming (ASP).5 We adapt
this approach as this declarative programming paradigm has proven itself
for the task of computing (paraconsistent) interpretations (in propositional
logic) [35], which is our basis for measuring inconsistency. In this work, we
present a novel encoding to handle the temporal operators of LTL. A re-
lated work, [36], also presents an ASP-based encoding for LTLf. However,
those authors define the semantics of LTLf via finite state automata, which
also means that, for encoding formulas, a transformation of the formulas
into an automaton representation is required in advance. As such operations
introduce a computational burden [4], in this work, we aim to implement
the semantics directly within ASP. Next to the computational aspect, a fur-
ther distinction is that the approach in [36] is “optimized” for the Declare
modeling language, meaning that only a predefined set of Declare constraint
types is supported. In our approach, as we implement the semantics of LTL
directly; this allows to support arbitrary formulas, which is currently not
possible out-of-the-box in [36].

Another related work is by Heljanko and Niemelä [37], who proposed an
ASP approach for bounded model checking in LTL. Similarly to our approach,
the authors encode LTL semantics directly. However, in order to tackle
the problem of inconsistency measurement, we need to encode a di↵erent,
three-valued semantics for LTL, which requires more intricate encodings, in
particular for the U operator.

3. A Framework for Inconsistency Measurement in LTL↵

In this section, we introduce a framework for measuring inconsistency
in LTL↵. As we will show, existing inconsistency measures cannot provide
meaningful insights when dealing with temporal logic. Therefore, we develop
a novel paraconsistent semantics as a framework for handling inconsistency
in LTL↵.

5
An additional introduction to ASP can be found in Appendix B.
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3.1. Motivation for Inconsistency Measures for LTL↵

We recall the sets of LTL↵ formulas K1 and K2:

K1 = {Xa,X¬a} K2 = {Ga,G¬a}

The knowledge base K1 states that a is both true and false in the next state
while K2 states that a is both true and false in all future states. Obviously,
both knowledge bases are inconsistent. Yet, the inconsistencies are di↵erent
in regard to the number of states they a↵ect. For K1 the number is 1 and
for K2 the number is m > 1. It would therefore be desirable for an inconsis-
tency measure to take this information into account and assign K2 a larger
inconsistency value.

In order to capture LTL↵ by the inconsistency measurement framework
of Section 2.1, from now on a knowledge base K (Definition 1) will be a
finite set of LTL↵ formulas and K is the set of all LTL↵ knowledge bases.
So we can apply the introduced inconsistency measures for K1 and K2 in a
straightforward manner.

Example 2. Consider K1 and K2. Then we have that

Id(K1) = 1 Id(K2) = 1

IMI(K1) = 1 IMI(K2) = 1

Ip(K1) = 2 Ip(K2) = 2

Ir(K1) = 1 Ir(K2) = 1

Ic(K1) = 1 Ic(K2) = 1

Iat(K1) = 1 Iat(K2) = 1

Note that all six inconsistency measures give identical values for K1 and
K2, because they, or for that matter, any other propositional logic inconsis-
tency measure, cannot distinguish between X and G. But intuitively K2 is
more inconsistent than K1 because the inconsistency persists through all fu-
ture states in K2 as opposed to the single state in K1. Thus, we believe that
a proper inconsistency measure for LTL↵ should distinguish between these
operators. Therefore, we propose a new rationality postulate.

Time Sensitivity (TS) For all formulas ' of propositional logic,
I({G',G¬'}) > I({X',X¬'}).
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In other words, the number of a↵ected states should be reflected in the incon-
sistency value, i. e., inconsistency measures for LTL↵ should be time sensitive.

Proposition 1. Id, IMI, Ip, Ir, Ic, Iat violate TS.

Following Proposition 1, the existing measures that we have from propo-
sitional logic cannot capture the desired behavior. Therefore, we introduce
a novel approach to measure inconsistency in LTL↵.

3.2. A Paraconsistent Semantics for LTL↵

Our framework for measuring inconsistency in LTL↵ is an LTL↵-variant
of the three-valued semantics of [13]. A three-valued interpretation ⌫̂ for
LTL↵ is a function mapping each state and proposition to 0, 1 or B, that is,
⌫̂ : {t0, t1, . . . tm}⇥At! {0, 1,B} where as before 0 and 1 correspond to the
classic logical false and true, respectively, and B (standing for both) denotes
a conflict. We then assign

⌫̂(�) = ⌫̂(t0,�)

where ⌫̂(ti,�), for any interpretation ⌫̂ as above and state ti 2 {t0, . . . , tm},
is inductively defined as follows:
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⌫̂(ti, a) = ⌫̂(ti, a) for a 2 At

⌫̂(ti,¬�) =

8
<

:

1 if ⌫̂(ti,�) = 0
0 if ⌫̂(ti,�) = 1
B if ⌫̂(ti,�) = B

⌫̂(ti,'1 ^ '2) =

8
<

:

1 if ⌫̂(ti,'1) = ⌫̂(ti,'2) = 1
0 if ⌫̂(ti,'1) = 0 or ⌫̂(ti,'2) = 0
B otherwise

⌫̂(ti,'1 _ '2) =

8
<

:

1 if ⌫̂(ti,'1) = 1 or ⌫̂(ti,'2) = 1
0 if ⌫̂(ti,'1) = ⌫̂(ti,'2) = 0
B otherwise

⌫̂(ti,X') =

⇢
⌫̂(ti+1,') if i < m
0 otherwise

⌫̂(ti,'1U'2) =

8
>>>>>>>><

>>>>>>>>:

1 if either ⌫̂(ti,�1 ^ �2) = 1 or there is
j 2 {i+ 1, . . . ,m} with ⌫̂(tj,�2) = 1 and
⌫̂(ti,�1) = . . . ⌫̂(tj�1,�1) = 1, otherwise:

B if either ⌫̂(ti,�2) = B or there is
j 2 {i+ 1, . . . ,m} with ⌫̂(tj,�2) 2 {1, B} and
{⌫̂(ti,�1), . . . , ⌫̂(tj�1,�1)} ✓ {1, B}

0 otherwise

Some comments on the above definition are in order. First, note that the
evaluation of the classical Boolean connectives is the same as for propositional
three-valued semantics (see Section 2.1). Furthermore, the evaluation of X�
is simply the truth value of � at the next state, or, if there is no next state,
0 (as for the classical semantics of LTL↵). The main new feature, however,
is the three-valued evaluation of a formula of the form '1U'2. This formula
evaluates to 1 if �2 evaluates to 1 in state ti or in some future state and �1

evaluates to 1 in between. Otherwise, we evaluate '1U'2 to B if �2 evaluates
to B in state ti or to 1 or B in some future state and �1 evaluates to 1 or
B in between (so at least one of these evaluations must be to B). If neither
case holds, then '1U'2 evaluates to 0, i. e., if either �2 always evaluates to
0 in the future or in-between '1 evaluates at least once to 0.

A three-valued LTL↵ interpretation ⌫̂ satisfies a formula �, denoted by
⌫̂ |=3 �, i↵ ⌫̂(t0,�) 2 {1,B}. A three-valued interpretation ⌫̂ satisfies a set
of formulas K i↵ ⌫̂ |=3 � for all � 2 K.
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Example 3. Let At = {a, b} and assume m = 2. Consider the knowledge
base K4, defined via

K4 = {X¬a, aUb}

and the three-valued interpretation ⌫̂ defined via

⌫̂(t0, a) = 1 ⌫̂(t0, b) = 0

⌫̂(t1, a) = B ⌫̂(t1, b) = 0

⌫̂(t2, a) = 0 ⌫̂(t2, b) = 1

Then we have ⌫̂(t0, aUb) = B as b evaluates to 1 in t2 and a evaluates to B
in t1. Moreover, we have ⌫̂(t0,X¬a) = B and therefore ⌫̂ |=3 K.

Define X |=3 Y for formulas X and Y if ⌫̂ |= X implies ⌫̂ |= Y for all ⌫̂.

Example 4. Let At = {a, b, c}. Consider the knowledge base K5, defined via

K5 = {G¬a,G¬b, aUb,Gc}

Note that K5 is inconsistent under classical LTL↵ semantics for every m > 1
(the first three formulas require a and b to be always false and that a has to
hold until b holds), so we have K5 |= � for every � of LTL↵ (in classical
two-valued semantics, LTL↵ conforms to the principle of explosion.). In
particular, we have K5 |= Gc and K5 |= ¬Gc, contrary to intuition since
Gc is explicitly part of K5 and “not involved” in the inconsistency in K5.
Using our three-valued semantics, we obtain K5 |=3 Gc and K5 6|=3 ¬Gc as
desired.

In the propositional logic case, |=3 is a faithful extension of |=, meaning
that ! |= � if and only if ! |=3 � for every two-valued interpretation ! and
every �. Our LTL↵ extension of the three-valued semantics enjoys the same
property (note that every two-valued interpretation is also a three-valued
interpretation that does not use the value B).

Proposition 2. For every (two-valued) LTL↵ interpretation !̂ and LTL↵

formula �, !̂ |= � if and only if !̂ |=3 �.

The three-valued semantics of [13] has another nice property in proposi-
tional logic, namely the non-existence of inconsistency: every propositional
formula is trivially satisfiable by the interpretation that assigns B to all
propositions. In general, an LTL↵ formula may become unsatisfiable w.r.t.
to the three-valued semantics if it a↵ects a state “beyond” tm. However, for
other formulas we obtain the following result regarding satisfiability.
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Proposition 3. For any LTL↵ formula � with d(�)  m there is ⌫̂ with
⌫̂ |=3 �.

The semantics presented in this section allows for inconsistency-tolerant
reasoning in LTL↵ (and it can straightforwardly be adapted for LTLf and
LTL). In particular, via Proposition 3, m can be set to the depth of the
conjunction of all formulas in a knowledge base K. Then, this ensures an
interpretation exists. It directly follows that if an inconsistency a↵ects n < m
states, it is never possible that all states will be a↵ected. In this case, if one
wants to support loops, the concrete number of a↵ected states would only
grow constantly with the number of loops (so setting m to the depth su�ces
in this case). In Section 7.3, we will also show how–in case the inconsistency
a↵ects exactly m states–it can easily be approximated that this holds for any
m, should m be increased.

4. Approaches for Time Sensitive Inconsistency Measurement in

LTL↵

In the following, we present approaches for measuring (overall) inconsis-
tency, measuring inconsistency in the presence of preference relations, and
measuring element-based inconsistency.

4.1. Baseline Measures

We will now exploit our three-valued semantics for LTL↵ to define incon-
sistency measures. We do this similarly as for propositional logic by assessing
the amount of usage of the paraconsistent truth value B in models of an LTL↵

knowledge base K but refine it by two di↵erent levels of granularity. This
yields two new inconsistency measures.

Our first approach measures the number of states a↵ected by inconsis-
tency. For any three-valued interpretation ⌫̂, define

A↵ectedStates(⌫̂) = {t | 9a : ⌫̂(t, a) = B}

In other words, A↵ectedStates(⌫̂) is the set of states where ⌫̂ assigns B to at
least one proposition. We can define an inconsistency measure by considering
those 3-valued models of the knowledge base that a↵ect the minimal number
of states.
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Definition 4 (LTL time measure). Let K be a set of formulas. Then, the
LTL time measure is defined via

ILTL
d (K) = min

⌫̂|=3K
|A↵ectedStates(⌫̂)|

if there is ⌫̂ with ⌫̂ |=3 K and ILTL
d (K) =1 otherwise.

This measure counts the number of states for which the knowledge base
is inconsistent. It is, in fact, the extension of the drastic measure, Id, in that
for each state it adds 1 if there is an inconsistency and 0 otherwise. This
measure can be used to distinguish the knowledge bases K1 and K2, i. e., it
is time sensitive.

Example 5. We recall the knowledge bases K1 = {Xa,X¬a} and K2 =
{Ga,G¬a}. Then we have

ILTL
d (K1) = 1 ILTL

d (K2) = m

As an example where there is no ⌫̂ s.t. ⌫̂ |=3 K, consider the formula
XXXa. This formula cannot be satisfied for m = 2, so ILTL

d would return
1 here.

Example 5 shows that the proposed measure ILTL
d can already provide

meaningful (i. e., time-sensitive) insights for measuring inconsistency in LTL.
But a potential limitation is that it can only distinguish inconsistency in in-
dividual states in a binary manner. For example, ILTL

d cannot distinguish
the knowledge base K6 = {Xa,X¬a,Xb,X¬b} from K1 because all inconsis-
tencies occur at one state, namely t1. For this reason we believe it is useful
to be able to look inside states for inconsistency. In order to do so, given a
three-valued interpretation ⌫̂, define

ConflictBase(⌫̂) = {(t, a) | ⌫̂(t, a) = B}

Then, define the LTL contension measure as follows.

Definition 5 (LTL contension measure). Let K be a set of formulas and

ILTL
c (K) = min

⌫̂|=3K
|ConflictBase(⌫̂)|

if there is ⌫̂ with ⌫̂ |=3 K and ILTL
c (K) =1 otherwise.
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ILTL
c seeks an interpretation that assigns B to a minimal number of propo-

sitions individually over all the states and uses this number for the inconsis-
tency measure. This is an extension of ILTL

d , and for that matter, of Ic as it
calculates ILTL

c for each state and sums the numbers obtained this way.

Example 6. We recall the knowledge bases K1 = {Xa,X¬a}, K6 = {Xa,X¬a,
Xb,X¬b}, and consider K7 = {Ga,G¬a,Gb,G¬b}. If m = 3, then we have

ILTL
d (K1) = 1 ILTL

d (K6) = 1 ILTL
d (K7) = 3

ILTL
c (K1) = 1 ILTL

c (K6) = 2 ILTL
c (K7) = 6

As can be seen in Example 6, the two inconsistency measures proposed in
this work can, contrary to previously existing measures, be used to provide
meaningful insights into inconsistency in linear temporal logic, i. e., they are
in fact time sensitive. As the two measures have a di↵erent granularity in
regard to time, selecting which of the two to use depends on the intended use
case. More specifically, the proposed measures have a di↵erent expressivity
[38] with respect to the number of states. That is, ILTL

d and ILTL
c have a

di↵erent number of inconsistency values they can get for a given number of
states, as we now show.

Definition 6. Let I be an inconsistency measure. Then, define the expres-
sivity of I for m as C(I,m) = |{I(K) | K 2 K}|, for a sequence of states
t0, ..., tm.

In other words, C(I,m) denotes the number of di↵erent inconsistency
values I assigns to knowledge bases, assuming (at most) a sequence of
states t0, ..., tm. For any interpretation, we have that any number of states
t0, . . . , tm, or no states at all can be a↵ected. This naturally limits the max-
imum number of A↵ectedStates. The size of the ConflictBase can grow to
infinity (due to the possibility of arbitrarily large signatures), as all conflicts
for each state are considered.

Proposition 4. C(ILTL
d ,m) = m+ 2 and C(ILTL

c ,m) =1.

Intuitively, it would be possible to devise further time-sensitive inconsis-
tency measures for LTL↵. We will however leave this discussion for future
work. Importantly, the aim of this paper is to show that traditional incon-
sistency measures cannot be plausibly applied to temporal logics, and to
present means for time sensitive inconsistency measurement. In this regard,
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I CO MO IN DO TS

Id 3 3 3 3 7
IMI 3 3 3 7 7
Ip 3 3 3 7 7
Ir 3 3 3 7 7
Ic 3 3 7 3 7
Iat 3 7 7 7 7
ILTL
d 3 3 3 3 3

ILTL
c 3 3 7 3 3

Table 1: Compliance of inconsistency measures with rationality postulates.

the measures proposed in this work can be used as a baseline for measuring
inconsistency in LTL. Also, they (broadly) satisfy other desirable properties
and can therefore be seen as strictly better (w.r.t. the considered postulates)
than their propositional logic “counterpart”, i. e., Id for ILTL

d , respectively
Ic for ILTL

c . The results of this section are summarized in Table 1.

Proposition 5. The compliance of the inconsistency measures Id, IMI, Ip,
Ir, Ic, Iat, ILTL

d and ILTL
c with the postulates CO, MO, IN, DO and TS is

as shown in Table 1.

Note that only the measures we introduced satisfy TS. Note also that ILTL
c

does not satisfy IN due to the problem of iceberg inconsistencies, explained
in the proof given in the Appendix.

4.2. Measuring Inconsistency in LTL↵ with Preferences

So far, we have considered LTL knowledge bases consisting of a set of
(equally valid) formulas. In this sense, the considered formalism is mono-
tonic, i. e., for two sets of formulas X, Y over At, if X |= � then we have
that X [ Y |= �. However, in practical settings, this form of monotonicity
may be too strict. For example, a modeller of a process specification may
need to specify exceptions. Take for example the formula G¬a, which states
that the task a should never occur at any point in time. In a monotonic
setting, it is not possible to refute this. However, it may be necessary to
model the exception that a should still be allowed to occur in the first time
point. Importantly, if one models such an exception, the formulas of the
knowledge base should not be viewed as inconsistent, as the specification
that (1) a should generally never occur, but (2) as an exception, a is allowed
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to occur in the first instant is explicitly desired. Intuitively, (2) overrules
(1). So preference relations are closely connected to the inconsistency of the
specification.

There are many use-cases in which modellers may want to decide for mod-
elling preferences between formulas, instead of rewriting (multiple) formulas
to incorporate the exception – many of which are related to belief revision or
dynamic epistemic behavior in general. First, knowledge might be modelled
over time and can evolve, so having the ability to model preferences can be
helpful to model exceptions in a flexible manner without the need to rework
the original formulas. Furthermore, there might be settings where knowledge
comes from di↵erent sources or considers di↵erent data perspectives. Here,
being able to model explicit relations between di↵erent pieces of knowledge
can help in the human comprehension of the di↵erent aspects that need to
be considered. We will provide further examples on how preference relations
can be useful for Declare in Section 5.

In general, the notion of a preference relation is strongly connected to de-
feasible reasoning [28], where beliefs can be modelled as defeasible, meaning
that they can be “overruled” by other beliefs, as illustrated in the exam-
ple. To incorporate this aspect in our framework, we propose the following
extension including preference relations.

Definition 7 (Knowledge base with a preference relation). Let K be a knowl-
edge base over At as before. A knowledge base with a preference relation K>

is a pair K> = (K, >), where > ✓ K ⇥ K is a preference relation between
elements in K. Let K> be the set of all such knowledge bases.

For readability, we still refer to such knowledge bases with a preference
relation simply as “knowledge bases” and mark them as K>. If (�1,�2) 2>,
we say that �1 is preferred to �2 (see also below for semantics). For read-
ability, we add an identifier fi : to every formula, and denote a preference
(f1 : �1, f2 : �2) as f1 > f2.

Example 7. Consider the knowledge base Kx
>, defined via

Kx
> = {f1 :G¬a, f2 :Xa, f2 > f1}.

Then Kx
> is “consistent” (Intuitively, any interpretation that assigns a = 1

in t1 and a = 0 otherwise is a model of Kx
>).
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The example shows how knowledge bases with preference relations are
non-monotonic in that they preserve justification: Even if it is justified that
� should hold based on a set of formulas X, there might be a set of formu-
las Y such that when taking X [ Y , it is no longer justified that � should
hold [28]. Use-cases for such non-monotonic reasoning for declarative process
specifications are many, for example, modelling exceptions/preferences, rea-
soning over formulas from di↵erent sources (possible with di↵erent priority)
[39], or reasoning over probabilistic LTL specifications, resp., specifications
with uncertainty [31, 40]. In the following, we extend our paraconsistent
semantics to be able to consider preferences.

As a first step, we want to establish which formulas should or should
not hold, according to the preference relation. For any formula �, this is
concluded by means of a tag. Following the four-valued approach in [33, 41]
this tag can have one of the following forms:

• +��, which is meant to indicate that � is undisputed and should there-
fore hold. This is the case if there are no preferences somehow overrul-
ing �.

• ���, which is meant to indicate that � is not undisputed.

• +��, which is meant to indicate that � might be disputed but should
still hold as it is defeasibly supported. This is for example the case
when a preference r that tries to overrule � is itself overruled by a
further preference r0.

• ���, which is meant to indicate that � is definitely overruled/defeated
and should not hold. For example, in Example 7, f1 is definitely over-
ruled by f2, as f2 is undisputed and f2 > f1.

Especially for +��, the following observation is in order. Following the
proposed semantics for defeasible logic byNute [28], the formulas of a knowl-
edge base and the corresponding preferences can be viewed as a graph (cf.
Definition 7), which we denote as a preference graph. Here we apply two
assumptions over K:

1. The preference graph is acyclic.
2. For every preference f1 > f2, there is a set of formulas � ✓ K that

is consistent under the classical semantics such that � [ {f1, f2} is
inconsistent.
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Point 1 is necessary to avoid unresolvable loops between preferences. For
example, if we add {f1 > f2} to the knowledge base in Example 7, Kx

>

becomes inconsistent again, as we would have a contradictory preference
relation {f1 > f2, f2 > f1}.

Point 2 is necessary to avoid “unnecessary” preferences, e. g., for a set of
formulas {f1 : a, f2 :Xb, f1 > f2}, the preference would have no e↵ect.

Before we define the inference rules for the introduced taggings, we intro-
duce the following notation.

A formula � is undisputed i↵ there exist no f1, f2 2 K s.t. f2 : � and
(f1, f2) 2 > (analogously for “disputed” if there exist such a relation). In
the latter case where f2 is disputed, we say that f1 is a disputer of f2.
However, if a disputer f1 of f2 is itself disputed by a formula f0, we say
that f2 is defended. Importantly, in line with the semantics proposed in
[28], a formula is only tagged +� if all its disputers are successfully defended
by other formulas which are either undisputed or themselves successfully
defended from all their disputers.

For a knowledge base K> = (K,>), the inference rules for these taggings
are then defined as follows.

+� : � is tagged +�� if

� is undisputed

�� : � is tagged ��� if

� is disputed

+ � : � is tagged + �� if

(1) +��, or

(2)8disputers ' of �:

9⇢ 2 K s.t. ⇢ defends � and + �⇢

� � : � is tagged � �� if

9' s.t. ' disputes � and +�'

As an Example, recall Kx
> = {f1 :G¬a, f2 :Xa, f2 > f1} from Exam-

ple 7, with the taggings +�f2 and ��f1, as via the preference relation, f2 is
undisputed and f1 is disputed and not defended.
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Example 8. Consider the knowledge base Ka
>, with

Ka
> = {f1 : a, f2 :¬a, f3 : a ^ b, f2 > f1, f3 > f2}

Then +�a ^ b,��¬a,+�a.

The introduced inference rules now allow us to extend the definition of
satisfaction of a knowledge base as follows. For this, a three-valued LTL↵

interpretation ⌫̂ satisfies a formula � as before, i. e., i↵ ⌫̂(�, t0) 2 {1,B}.
Also, for a three-valued interpretation ⌫̂ and set of formulas K, let ⇧(K)
denote the minimal number of changes in truth value assignments from 0 or
1 needed s.t. ⌫̂ |=3 K. Then:

Definition 8. A three-valued interpretation ⌫̂ satisfies a set of formulas K
i↵

1. ⌫̂ |=3 � for all � 2 K with +��, and
2. For the set � of all formulas {' 2 K|� �'}, it holds that ⇧(�) cannot

be decreased while 1. still holds, i. e., there cannot exist a di↵erent as-
signment (swapping only 1 to 0, or 0 to 1) s.t. ⇧(�) could be decreased
and 1. still holds.

The notion of a model is correspondingly extended w.r.t. Definition 8.

Example 9. We recall Kx
> = {f1 :G¬a, f2 :Xa, f2 > f1}. Then we have

that +�Xa and ��G¬a. Consider the following interpretations:

⌫̂1 : ⌫̂1(t0, a) = B ⌫̂1(t1, a) = B

⌫̂2 : ⌫̂2(t0, a) = B ⌫̂2(t1, a) = 0

⌫̂3 : ⌫̂3(t0, a) = B ⌫̂3(t1, a) = 1

⌫̂4 : ⌫̂4(t0, a) = 1 ⌫̂4(t1, a) = B

⌫̂5 : ⌫̂5(t0, a) = 1 ⌫̂5(t1, a) = 0

⌫̂6 : ⌫̂6(t0, a) = 1 ⌫̂6(t1, a) = 1

⌫̂7 : ⌫̂7(t0, a) = 0 ⌫̂7(t1, a) = B

⌫̂8 : ⌫̂8(t0, a) = 0 ⌫̂8(t1, a) = 0

⌫̂9 : ⌫̂9(t0, a) = 0 ⌫̂9(t1, a) = 1

In light of Definition 8, we have the following:
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1. ⌫̂1 is a model as Xa is satisfied and there is nothing to change from 0
or 1.

2. ⌫̂2 is not a model as Xa is not satisfied.
3. ⌫̂3 is a model as Xa is satisfied. Also, if ⌫̂3(t1, a) is swapped to 0, Xa

is not satisfied anymore.
4. ⌫̂4 is not a model. While Xa is satisfied, we can change the assignment

in t0 to 0 which would reduce ⇧({f1}) by 1. This holds analogously for
⌫̂5 and ⌫̂6 (⌫̂5 also does not satisfy Xa).

5. ⌫̂7 and ⌫̂9 are models as Xa is satisfied and there can be no assignment
swap of 0 or 1 s.t. we reduce ⇧({f1}) (while also maintaining that Xa
is still satisfied, c.f. ⌫̂9(t1, a)). ⌫̂8 is not a model as Xa is not satisfied.

Example 10. We recall Ka
> = {f1 : a, f2 :¬a, f3 : a ^ b, f2 > f1, f3 > f2},

with +�a ^ b,��¬a,+�a. Then

⌫̂1 : ⌫̂1(t0, a) = 1 ⌫̂1(t0, b) = 1

⌫̂2 : ⌫̂2(t0, a) = B ⌫̂2(t0, b) = 1

⌫̂3 : ⌫̂3(t0, a) = 1 ⌫̂3(t0, b) = B

are models, but

⌫̂4 : ⌫̂4(t0, a) = 0 ⌫̂4(t0, b) = B

is not a model.

Some important observations of our defined tagging-based models are
given in the following. For this, let � 2 K be a formula as before.

Proposition 6 (Coherence). For any K: @� 2 K s.t. +�� and ���.
Proposition 7 (Soundness). If +�� then K |= �.

We can now leverage the proposed framework to measure inconsistency
in process specifications with preferences.

Example 11. We recall Kx
> and the corresponding models discussed above.

As our measures are based on finding interpretations that are models and as-
sign B to a minimum number of states, for m > 0, we have that ILTL

d (Kx
>) =

0 as expected, as Xa is a desired exception to Ga. Note that for cases where
there are multiple inconsistent—but undisputed—formulas, ILTL

d would be
> 0, because of the unresolved conflicts.
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One observation is that for the semantics with preferences proposed in
Definition 8, ILTL

d and ILTL
c do not satisfy MO anymore, as this is not ap-

plicable for the considered non-monotonic setting (as evidenced in the above
examples, adding a preference relation can lower the degree of inconsistency).

Given a time-sensitive inconsistency measure, various projections can also
be used to gain fine-grained insights about the inconsistency w.r.t. prefer-
ences. In the following, we propose two such measures using ILTL

d .
First, we can measure inconsistency in the set of undisputed formulas only.

This provides insights into conflicts between formulas that should always
hold. This insight could be useful to discover such conflicts as a basis for
modelling further preferences.

Definition 9. For a knowledge base K>, define the number of open conflict-
ing states as

#openConflictingStates(K>) = ILTL
d ({� 2 K> | +��})

Example 12. We recall Kx
>,Ka

>, then, for ILTL
d , we have

#openConflictingStates(Kx
>) = 0 and #openConflictingStates(Ka

>) = 0.

For a value > 0, this insight could suggest that there are still inherently
conflicting (however, (still) undisputed) formulas, and therefore a modeller
could consider revising the specification.

A further interesting detail is how often exceptions actually trigger. This,
in a sense, characterizes how “strong” the preference relations are over the
sequence of time points. For example, consider again Kx

> with

Kx
> = {f1 :G¬a, f2 :Xa, f2 > f1}

and consider

Kx2
> = {f1 :G¬a, f2 :Ga, f2 > f1}.

For Kx
> the preference relation models an exception that applies to one time

point (as otherwise G¬a should hold). This can be considered as sensible,
e. g., the larger m, the exceptions plays an increasingly minor role. However,
in Kx2

> , the exception occurs in every state. This could indicate that the
specification may need to be revised, as the formula f1 is e↵ectively useless
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(Kx2
> could be equivalently rewritten simply as Ga). A further aspect is that

modellers might want to keep the number of states in which exceptions can
occur lower, as understanding which rule should hold could be more confusing
if exceptions occur in many states.

Definition 10. For a knowledge base K> = (K,>), the number of exception
states is defined as

#exceptionStates(K>) = ILTL
d (K>)� ILTL

d (K>\ >)

Example 13. We recall Kx
> and Kx2

> . For anym > 0, #exceptionStates(Kx
>) =

1 and #exceptionStates(Kx2
> ) = m.

It is worth noting that for the number of exceptions, although not time-
sensitive, it could also make sense to follow a formula-based approach, e. g.,
counting the number of problematic formulas before and after removing the
preferences. For example, recalling Ka

> = {f1 : a, f2 :¬a, f3 : a ^ b, f2 >
f1, f3 > f2}, we see that #exceptionStates(Ka

>) = 1, but the number of prob-
lematic formulas after removing the preference relation is 3, which provides a
more granular picture in this case. The choice of a specific approach depends
on the use-case; both approaches can be used to assess the importance, or
strength, of the contained preferences.

4.3. Element-Based Time-Sensitive Inconsistency Measurement

In the previous subsections, we proposed time-sensitive inconsistency
measures for sets of LTL↵ formulas. In this subsection we show how to
measure the contribution of each formula individually to the inconsistency
of the set. Let F be the set of all formulas of LTL↵. Here, we are looking
for a culpability function C, where C : K ⇥ F ! [0,1). There are several
reasonable ways of measuring the culpability of a formula in a set and we
will consider several of these in this section.

Consider K8 = {G(a ^ ¬a);Xb;X¬b}. Consider also the “classical” cul-
pability measure C# [14], which counts the number of minimal inconsistent
subsets a formula is contained in. For K8, we have that MI(K8) = {{G(a ^
¬a)}, {Xb,X¬b}}. So C#(K8,G(a^¬a)) = C#(K8,Xb) = C#(K8,X¬b) = 1.
In the example, all three formulas obtain the same blame value. But for
larger m, we see that G(a ^ ¬a) a↵ects many more states (and the other
formulas a↵ect only one state). This shows that the discussed measure C#
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is again not—as we call it—“time-sensitive”. Ideally, for element-based as-
sessments of LTL↵ formulas, we would also like to be able to distinguish
the blame they carry in the context of the overall inconsistency in a time-
sensitive way. We therefore propose the following postulates for culpability
measures in our setting, the first two adapted from [42], and the third being
a variant of time-sensitivity defined for culpability measures. For this, let C
be a culpability measure, K a knowledge base, and �,' 2 K.

ConsistencyC (COC) If K 6|=?, then C(K,�) = 0 for all � 2 K.

BlameC(BLC) C(K,�) > 0 for all � 2 Problematic(K).

Time SensitivityC(TSC) If (ILTL
d (K) � ILTL

d (K \ {�})) > (ILTL
d (K) �

ILTL
d (K \ {'})), then C(K,�) > C(K,').

A naive culpability measure in our setting would be to take the marginal
contribution each formula has on the value of ILTL

d , i. e., for a knowledge
base K and � 2 K, define CMC via

CMC(K,�) = ILTL
d (K)� ILTL

d (K \ �)

Example 14. We recall K8 = {G(a ^ ¬a);Xb;X¬b} and the introduced
measures C#, CMC. Then we see that for m > 0 we have

C#(K8,G(a ^ ¬a)) = 1 C#(K8,Xa) = 1 C#(K8,X¬a) = 1

CMC(K8,G(a ^ ¬a)) = m CMC(K8,Xa) = 0 CMC(K8,X¬a) = 0

While the example shows that CMC is time-sensitive (while as established
C# is not), we see that CMC does not satisfy BL. This is due to the basis
on atoms, and not on formulas. Even if one would define a similar version
CMC0(K,�) = ILTL

c (K) � ILTL
c (K \ �) over ILTL

c , this would still not be
granular enough, e. g., for Kx = {a ^ ¬a; a ^ ¬a ^ b}, we would still get that
both formulas would be assigned a value of 0. In turn, both approaches of
minimal inconsistent subsets (C#) and simple marginal contribution (CMC)
are not good culpability measures in our setting. In the following, we show
how a better culpability measure can be defined using Shapley inconsistency
values [10].

Shapley values [43] were introduced originally in game theory where
coalitions of players can obtain various payo↵s. If there are n players,
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N = {1, 2, . . . , n} and the payo↵ for every coalition C, that is subset of
N , is known as p(C), then the Shapley value for each player is its average
marginal contribution over all possible coalitions. A commonly used formula
for the Shapley value of player i is

S(i) =
X

C✓N

(|C|� 1)!(n� |C|)!
n!

(p(C)� p(C \ {i}))

where C is an arbitrary nonempty subset of N .
Shapley values have nice properties and have been used in various fields

including economics and machine learning. In our case we are given a set
of formulas and want to know the contribution of each formula to the in-
consistency measure of the set. Note that in many cases each formula by
itself is consistent, and hence has inconsistency measure 0 by itself, and yet
in combination with other formulas causes inconsistencies.

We continue by considering the motivational example for time-sensitive,
element-based measurement from the beginning of this section. We will use
both time sensitive measures we have defined: ILTL

d and ILTL
c . Instead

of using i for the ith player, we write the Shapley value of formula � as
S(�) (for the inconsistency measure under consideration). To indicate the
Shapley value for a formula � using a specific inconsistency measure I, we
write S(�, I). So given a knowledge base K, we obtain for � 2 K

S(�, I) =
X

K0✓K

(|K0|� 1)!(|K|� |K0|)!
|K|! (I(K0)� I(K0 \ {�}))

where K0 is an arbitrary nonempty subset of K.

Example 15. Recall K8 = {G(a ^ ¬a);Xb,X¬b}. Here,
S(G(a^¬a), ILTL

d ) = 0!⇥2!

3!
⇥m+ 1!⇥1!

3!
⇥m+ 1!⇥1!

3!
⇥m+ 2!⇥0!

3!
⇥(m�1) = m� 1

3
,

S(Xb, ILTL
d ) = S(X¬b, ILTL

d ) = 1!⇥1!

3!
⇥ 1 + 2!⇥0!

3!
⇥ 0 = 1

6
.

The sum of the Shapley values is m.
For ILTL

c we obtain the Shapley values as
S(G(a ^ ¬a), ILTL

c ) = 0!⇥2!

3!
⇥m+ 1!⇥1!

3!
⇥m+ 1!⇥1!

3!
⇥m+ 2!⇥0!

3!
⇥m = m,

S(Xb, ILTL
c ) = S(X¬b, ILTL

c ) = 1!⇥1!

3!
⇥ 1 + 2!⇥0!

3!
⇥ 1 = 1

2
.

Note how the sum of the inconsistency measures of the formulas adds up to
the inconsistency measure of the set, a feature of the Shapley value, as it
distributes the inconsistency measure of the set to the formulas individually.
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So we see that the Shapley approach allows the distribution of the over-
all “blame” obtained via the time-sensitive inconsistency measures among
all formulas of the knowledge base. This allows for reasoning about highly
problematic formulas from the perspective of “time-sensitivity”, e. g., in the
example we see that G(a^¬a) is correctly assigned a much higher culpability
value than both Xb and X¬b, which reflects the notion of the number of af-
fected states. Here, the distribution via the Shapley approach also correctly
transfers the intuition of the introduced time sensitivity postulate, which we
show with the following concluding example.

Example 16. We recall our main example K1 = {Xa,X¬a} and K2 =
{Ga,G¬a}. Then we have S(Xa, ILTL

d ) = S(X¬a, ILTL
d ) = 1

2!
(0+0+1) = 1

2
,

and S(Ga, ILTL
c ) = S(G¬a, ILTL

c ) = 1

2!
(0+0+m) = m

2
(the same for ILTL

c ).

The following example illustrates Shapley values in a case where the in-
consistency measure is infinity.

Example 17. Let K = {X(a^¬a),XXb,X . . .X ¬b} where by X . . .X ¬b,
which rewrite as �, we mean m + 1 Xs in front of ¬b. According to our
definition, ILTL

c ({�}) = ILTL
d ({�}) =1. Then we have

S(X(a^¬a), ILTL
d ) = S(X(a^¬a), ILTL

c ) = 0!⇥2!

3!
⇥ 1+ 1!⇥1!

3!
⇥ 1+0+0 = 1

2
,

S(XXb, ILTL
d ) = S(XXb, ILTL

c ) = 0 and using the fact that any positive
number times infinity is infinity and the sum of infinities is infinity, we ob-
tain S(�, ILTL

d ) = S(�, ILTL
c ) =1.

The sum of all the Shapley values is 1 + 1

2
=1 which is the inconsistency

value of K. Note also that even in this case where one formula has inconsis-
tency value infinity, the Shapley value distinguishes the inconsistent formula
a ^ ¬a from the free formula XXb.

Consider now the case where we add a second formula whose inconsistency
is also infinity. Let K0 = {X(a^¬a),XXb,X . . .X ¬b,X . . .XX ¬b}. So the
new formula is X�. Again, ILTL

c ({X�}) = ILTL
d ({X�}) =1. Then we have

S(X(a^¬a), ILTL
d ) = S(X(a^¬a), ILTL

c ) = 0!⇥3!

4!
⇥1+ 1!⇥1!

4!
⇥1+0+0 = 7

24
.

S(XXb, ILTL
d ) = S(XXb, ILTL

c ) = 0, as before. Note how with the ex-
tra formula, the Shapley value of a ^ ¬a became smaller. The other thing
that is di↵erent now is that in the computation of S(�, ILTL

d ), S(�, ILTL
c ),

S(X�, ILTL
d ), and S(X�, ILTL

c ), we have cases of 1 � 1, such as when
we compute ILTL

d ({�,X�}) � ILTL
d ({X�}). But the value we give to the

subtraction of infinities makes no di↵erence; it can be any number, such as
0. The reason is that ILTL

d ({�}) � ILTL
d (;) = 1, and that is part of the
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computation of S(�, ILTL
d ). The same holds for S(�, ILTL

c ), S(X�, ILTL
d ),

and S(X�, ILTL
c ). So we obtain S(�, ILTL

d ) = S(�, ILTL
c ) = S(X�, ILTL

d ) =
S(X�, ILTL

c ) =1.

Proposition 8. Let I be an inconsistency measure that satisfies CO and TS.
Then S(�, I) satisfies COC, BLC, and TSC.

While we have focused on measures for individual formulas, the introduc-
tion of a preference relation also gives rise to some element-based questions
w.r.t. it. For example, if the modeller could be provided with measures to
assess the importance of individual preferences, this could be useful in the
scope of re-modelling, e. g., for assessing the possible impact of deleting a
preference. We propose some ideas for such element-based measures in the
following.

First, for any formula � in the knowledge base that might be overruled by
other formulas, the modeller might want to know by how many exceptions
� is actually overruled. This could be useful for assessing how disputed an
individual formula is, or, whether a formula will always hold. Note that
this is not necessarily equal to the number of preferences related to �, as
one has to take possible defenders into account to (i. e., a formula which is
successfully defended against all its disputees would have a value of 0).

Definition 11. For a knowledge base K> = (K,>) and � 2 K, the number
of disputees is defined via

#disputees(K>,�) = min{|X| | X ✓> and + �� for (K,> \X)}

The intuition of #disputees is that a higher value reflects a higher dispute
of a formula �, i. e., more preference relations/exceptions would need to be
deleted for � to be assumed to hold. A formula that is undisputed would
have a minimal value of 0. From the opposite viewpoint, it could be useful to
analyze for a formula � (which may currently be assumed to hold) how many
defending preference relations must be deleted such that � will be tagged
��. The intuition would be that a higher value would indicate a higher
robustness of the formula, e. g., a formula would be more robust if it has
more defenders. In case a formula is undisputed, it is assigned1, indicating
maximal robustness, as it must hold in any case and even without preference
information.
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Definition 12. For a knowledge base K> = (K,>) and � 2 K, the robustness
of � is defined via

robustness(K>,�) = min{|X| | X ✓> and � �� for (K,> \X)},
or 1 if +��

From the perspective of modeling preferences, it would also be useful
to assess how many inconsistencies will be introduced, should a preference
be deleted. This would be useful for assessing the importance of individual
preferences.

Definition 13. For a knowledge base K> = (K,>) and r 2>, the number
of new a↵ected states (due to deletion of r) is defined via

#newA↵ectedStates(K>, r) = ILTL
d (K> \ {r})� ILTL

d (K>)

Example 18. Consider the knowledge base Kb
>, defined via

Kb
> = {f1 :Xa, f2 :G¬a, f3 :Gb, f4 :G¬b, f1 > f2, f3 > f4}.

First, we see that f1, f3 are maximally robust (1), and f2, f4 each have 1
disputee. Furthermore, by deleting r = f1 > f2, #newA↵ectedStates(K>, r)
would be 1, however, for r0 = f3 > f4, #newA↵ectedStates(K>, r0) = m. So
we see that deleting f3 > f4 would have a larger, what we call time-sensitive,
impact than for f1 > f2.

An analogous measure could be defined for how many inconsistent states
are resolved after adding a specific preference, e.g., to assess the e↵ectiveness
of a possible addition to the set of preferences.

5. Application to Declarative Process Models

A common application scenario for LTLf is that of declarative process
models [44], which are sets of (LTLf-based) constraints. For such declarative
process models, the issue of inconsistency is equally as problematic, as any
inconsistencies between the constraints make the declarative process model
unsatisfiable. We therefore show how our results can be applied in use-
cases relying on such declarative process models, in particular, the Declare
standard [44].
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Note that while there have been some of works addressing the issue of
inconsistency in declarative process models in general [4, 23, 5], those works
however do not allow looking “into” (minimally) inconsistent sets or assess
their severity. The means presented in this work therefore extend the existing
results and allow for a direct application to declarative process models, which
we present in the following.

An important distinction is that some variants of Declare implement in-
terpretations as “simple traces”. In our terms, these are essentially interpre-
tations where at every point in time only one atom may be set to true. This
can make sense in many real-life domains, such as business process manage-
ment, where activities may be assumed to occur in an ordered manner. As
an abbreviation, sequences such as “abc” are often used to denote a simple
trace, in this case meaning that a holds in t0, b holds in t1, and c holds in t2.
Formally, the only di↵erence of using simple traces as opposed to classical
interpretations (as we have used them) is that the set of models is restricted
by an additional constraint. This does not change the definition of the in-
troduced measures in any way. An aspect to keep in mind however is that
knowledge bases such as {Xa,Xb} would always be inconsistent over simple
traces (which is not the case for the classical interpretations as used in this
work where multiple statements may hold at the same point in time). Note
also that this does not a↵ect Proposition 3, as (given the length assumptions
via Proposition 3) setting the assignment of all atoms to B still satisfies all
formulas, even under the “simple trace” view.

5.1. Inconsistency Measurement in Declarative Process Models

A declarative process model consists of a set of constraints. Typically,
these constraints are constructed using predefined templates, i. e., predicates,
that are specified relative to a set of propositions (e. g., company activities).

Definition 14 (Declarative Process Model). A declarative process model is a
tuple M = (A,T,C), where A is a set of propositions, T is a set of constraint
types, and C is the set of constraints, which instantiate the template elements
in T with activities in A.6

In this work, we consider the declarative modeling language Declare [44],
which o↵ers a set of “standard” templates. We will use the selection of

6
For readability, we will denote declarative process models as a set of constraints (C)
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templates shown in Table 2. We refer the reader to [4] for an overview of
other Declare template types and the corresponding semantics.

Template LTL↵ Semantics

Init(a) a
End(a) G(a _ Fa)
Response(a, b) G(a! Fb)
NotResponse(a, b) G(a! ¬Fb)
ChainResponse(a, b) G(a! Xb)
NotChainResponse(a, b) G(a! ¬Xb)
AtLeast(a,n) F(a ^X(atLeast(a, n-1))),

atLeast(a, 1) = F(a)
AtMost(a,n) G(¬a _X(atMost(a, n � 1))),

atMost(a, 0) = G(¬a)

Table 2: LTL↵ Semantics for a selection of Declare templates.

By viewing the constraints of a declarative process model as equivalent
LTL↵ formulas (see above), our approach for measuring inconsistency in LTL↵

can be applied to Declare in a straightforward manner. In the following
examples, we will show the results both for ILTL

c and ILTL
d and observe how,

in some cases, ILTL
c makes a finer distinction than ILTL

d .

Example 19. Consider the sets of constraints Ca and Cb, defined via

Ca = {Init(a),Response(a, b),NotResponse(a, b)}
(, {a,G(a! Fb),G(a! ¬Fb)})

Cb = {Init(a),Response(a, b),NotResponse(a, b),

Response(a, c),NotResponse(a, c)}
(, {a,G(a! Fb),G(a! ¬Fb),G(a! Fc),G(a! ¬Fc)}).

We obtain ILTL
c (Ca) = ILTL

d (Ca) = 1, while ILTL
c (Cb) = 2 but ILTL

d (Cb) = 1
(for any m > 0).

Due to the recursive definition of some “existence” constraints (cf. Ta-
ble 2), note that also inconsistencies concerned with cardinalities can be
assessed correctly.
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Example 20. Consider the sets of constraints Cc and Cd, defined via7

Cc = {AtMost(a, 1), AtLeast(a, 2)} and
Cd = {AtMost(a, 1), AtLeast(a, 100)}, assuming that m � 99. Then
ILTL
c (Cc) = ILTL

d (Cc) = 1 < ILTL
c (Cd) = ILTL

d (Cd) = 99.

As a border case, note that any inconsistency referring to a point in
time beyond the assumed sequence of states will return a value of 1 per
definition, as we cannot assess any error that leaves the boundaries of our
logical framework.

Example 21. Let Ce = {End(a),ChainResponse(a, b)}. In this case
ILTL
c (Ce) = ILTL

d (Ce) =1.

In addition to inconsistency measurement, a central contribution of Sec-
tion 4 was the introduction of defeasible reasoning capabilities. To apply
this to Declare, we extend the Definition of a declarative process model as
follows.

Definition 15 (Declarative Process Model with Preferences). A declarative
process model with preferences is a tuple M = (A,T,C, >), where A is
a set of propositions, T is a set of constraint types, and C is the set of
constraints, which instantiate the template elements in T with activities in
A, and >✓ C⇥C is a preference relation.

This allows for the incorporation of the results presented on inconsistency
measurement with preferences to Declare. As stated, there can be many
use-cases for this, in particular, any setting where knowledge can change
over time, or where potential conflicts among declarative constraints must
be handled in a flexible manner. For instance, it is a widely acknowledged
problem that current declarative discovery techniques may yield sets of con-
straints that can be conflicting w.r.t. to certain traces (or even inconsistent),
as state-of-the-art discovery techniques are mostly based on the support of
individual constraints and fail to consider all interrelations of constraints
[4]. Here, preferences can be used to model exceptions without the need
to remodel any constraints themselves. Also, in case data perspectives are
also considered, e. g., MP-Declare [45], preferences allow for modeling default
rules and exceptions depending on context data.

7
The equivalent LTL↵ formulas can be constructed as shown in Table 2 by recursively

nesting the“AtLeast” constraint (n-times) until its end condition AtLeast(a, 1) = Fa. The
concrete formula is omitted here due to excessive length.
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Example 22. Consider the set of constraints Cf with

Cf = {Response(a, c),NotResponse(b, c)},

and assume the preference Response(a, c) > NotResponse(b, c). The pro-
vided preference can be applied to specify an exception of the second con-
straint, here, whenever a occurs before b (without being resolved by c before-
hand). To clarify, consider the following interpretation ⌫̂1:

⌫̂1(t0, a) = 1 ⌫̂1(t0, b) = 1 ⌫̂1(t0, c) = 0

⌫̂1(t1, a) = 0 ⌫̂1(t1, b) = 0 ⌫̂1(t1, c) = 1

Here, the preference information allows us to correctly reason that ⌫̂1 satisfies
Cf , as the NotResponse(b, c) is overruled. In terms of “simple traces”, this
would be comparable to allowing the trace “abc” (which, without the preference
information, would not be accepted by Cf).

5.2. Element-Based Inconsistency Measurement in Declarative Process Mod-
els

Our proposed results on element-based measurement can also be applied
for Declare, e. g., for pin-pointing highly problematic elements. In the fol-
lowing, we highlight some concrete use-cases for element-based analysis in
Declare.

As an initial example, consider again Ca = {Init(a), Response(a, b),
NotResponse(a, b)}. In this case all three constraints are needed for the
inconsistency. This means that the Shapley value must allocate the incon-
sistency measure 1 equally to the three constraints. Thus, S(Init(a), ILTL

c ) =
S(Response(a, b), ILTL

c ) = S(NotResponse(a, b), ILTL
c ) = S(Init(a), ILTL

d )
= S(Response(a, b), ILTL

d ) = S(NotResponse(a, b), ILTL
d ) = 1

3
. As we

next show, in more complex examples, our approach yields a more fine-
grained insight.

Example 23. We recall the constraint set Cb:

Cb = {Init(a),Response(a, b),NotResponse(a, b),

Response(a, c),NotResponse(a, c)}
(, {a,G(a! Fb),G(a! ¬Fb),G(a! Fc),G(a! ¬Fc)})

We start with the computation for ILTL
c . Recall that ILTL

c (Cb) = 2. We
obtain S(Init(a), ILTL

c ) = 2⇥4+4⇥6+2⇥24

120
= 2

3
. It is clear that the other
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four constraints play equivalent roles and must have the same Shapley val-
ues. In fact, S(Response(a, b), ILTL

c ) = S(NotResponse(a, b), ILTL
c ) =

S(Response(a, c), ILTL
c ) = S(NotResponse(a, c), ILTL

c ) = 1⇥4+2⇥6+24

120
=

1

3
.
Next we consider ILTL

d for this example, recalling that ILTL
d (Cb) = 1.

We obtain S(Init(a), ILTL
d ) = 2⇥4+4⇥6+24

120
= 7

15
. Again, the other four con-

straints have the same Shapley values: S(Response(a, b), ILTL
d ) =

S(NotResponse(a, b), ILTL
d ) = S(Response(a, c), ILTL

d ) =
S(NotResponse(a, c), ILTL

d ) = 4+2⇥6

120
= 2

15
. It is interesting to note that

for ILTL
c , Init(a) has twice the Shapley value of each of the other four con-

straints, while for ILTL
d , Init(a) gets almost half of the total inconsistency

measure.

So we can correctly infer that Init(a) carries the highest blame. For
this example, the same holds for an MI-based approach (e. g., C#). The
next example shows that our time-sensitive inconsistency measures give more
appropriate values in some cases.

Example 24. Consider the constraint set Cf , defined via

Cf = {AtMost(a, 1),AtLeast(a, 10),AtMost(b, 1),AtLeast(b, 2)}

Here we have that

MI(Cf ) = {{AtMost(a, 1),AtLeast(a, 10)},
{AtMost(b, 1),AtLeast(b, 2)}}

With an MI-based approach such as C#, we would have that

C#(AtMost(a, 1)) = 1 C#(AtLeast(a, 10)) = 1

C#(AtMost(b, 1)) = 1 C#(AtLeast(b, 2)) = 1.

Thus the blame of these formulas is not distinguishable in this case. Now we
show that our approach can distinguish between the blame of the constraints.
Assume that m � 9. Then we obtain ILTL

c (Cf ) = 10, while ILTL
d (Cf ) =

9. Next we compute the Shapley values. In this case, AtMost(a, 1) and
AtLeast(a, 10) have the same Shapley values. In the same way, AtMost(b, 1)
and AtLeast(b, 2) also have the same Shapley values. We obtain

S(AtMost(a, 1), ILTL
c ) = S(AtLeast(a, 10), ILTL

c ) =
9

12
+

18

12
+

9

4
= 4.5.

S(AtMost(b, 1), ILTL
c ) = S(AtLeast(b, 2), ILTL

c ) =
1

12
+

2

12
+

1

4
= 0.5.
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S(AtMost(a, 1), ILTL
d ) = S(AtLeast(a, 10), ILTL

d ) =
9

12
+

18

12
+

8

4
= 4.25.

S(AtMost(b, 1), ILTL
d ) = S(AtLeast(b, 2), ILTL

d ) =
1

12
+

2

12
= 0.25.

In both cases, the first two formulas are much more problematic than the last
two formulas.

These examples show that our approach can provide detailed insights on
the severity of inconsistency in declarative process models. Such insights
can prove useful for prioritizing or re-modeling di↵erent issues of the process
specification. In this context, it seems intuitive that conflicts a↵ecting only
the next state (X) should be considered as less severe than conflicts a↵ecting
multiple following states (G), i. e., for any LTL↵ formula ', I({G',G¬'}) >
I({X',X¬'}).

6. Algorithmic Approaches

In the following, we present approaches based on Answer Set Program-
ming (ASP) for solving the problem of retrieving the value for the presented
inconsistency measures wrt. a given knowledge base K. The implementation
can be found online8. As shown in Section 4.3, the presented element-based
measures can be obtained by a straightforward extension building on the
corresponding inconsistency measures. Therefore, in the following, we focus
on the core problem of retrieving the values for the underlying inconsistency
measures, i. e., ILTL

d , and ILTL
c .

ASP has already been applied to compute inconsistency values in propo-
sitional logic. In particular, the contension inconsistency measure has been
addressed in previous work by the authors [46, 35, 47, 48]. We therefore use
the ASP encoding for the contension measure proposed in [47] as a basis for
encoding ILTL

c and ILTL
d .

To begin with, we need to represent the given knowledge base K itself.
We first add a fact for each formula ' 2 K:

kbElement('). (B1)

Note that the ' in K and the ' in kbElement/1 are not formally the same.
In K, it is an LTL formula, and in kbElement/1 it is an ASP constant

8https://github.com/aig-hagen/inconsistency-measurement-LTL
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representing that formula. Each ' 2 K is “translated” to such a (uniquely
defined) constant, i. e., a string starting with a lowercase letter. For instance,
a formula '1 could be represented as phi 1 in the corresponding ASP encod-
ing. This concept is extended to subformulas, atoms, and truth values. For
example, every conjunction ' = '1 ^ '2 is represented as

conjunction(','1,'2). (B2)

In the same fashion, we define for each disjunction ' = '1 _ '2 a fact
disjunction(','1,'2) (B3), and for each negated formula ' = ¬'1 a
fact negation(','1) (B4). In addition, we need to represent those formulas
which contain LTL↵-specific operators. Formulas including the next operator,
i. e., formulas of the form ' = X'1, are encoded as

next(','1). (B5)

Occurrences of the until operator, i. e., formulas of the form ' = '1U'2, are
encoded as

until(','1,'2). (B6)

Although not strictly necessary, we also encode the globally operator and the
eventually operator.

Hence, a formula ' = G'1 is represented as

globally(','1). (B7)

and a formula ' = F'1 is represented as

eventually(','1). (B8)

Further, we need to encode (sub)formulas which consist of individual
atoms. Hence, for each formula ', which is equal to an atom x, we define

formulaIsAtom(',x). (B9)

Moreover, each atom a 2 At(K) is modeled as

atom(a). (B10)
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Additionally, we need to model the truth values of three-valued logic:

tv(t;f;b). (B11)

By now, we modeled the formulas of the given knowledge base in ASP;
however, we still need to represent the sequence of states T = (t0, . . . , tm).
To achieve this, we first represent the final state m as

finalState(m). (B12)

and then define each individual state as follows:

state(0..M) :- finalState(M). (B13)

The “..” is an interval operator indicating that each number between 0 and
M represents a state. Thus, state t0 corresponds to 0, state t1 to 1, and so
forth.

In order to encode the evaluation of formulas, we first need to model that
each atom is evaluated to one truth value per state. A cardinality constraint
with both the lower and the upper bound set to 1 is used to represent that
exactly one truth value must be selected per atom and state:

1{truthValue(A,S,T) : tv(T)}1 :- atom(A), state(S). (B14)

The above rule is essentially the same as rule (A8) from [47], however, since
we are dealing with LTL↵, we need to additionally refer to a state S. The
same applies to the rule modeling formulas consisting of individual atoms
as well as the rules modeling the classical connectives (^, _, ¬)—they each
correspond to a rule from [47], but additionally contain a connection to a
state. Thus, in case a (sub-)formula consists of only a single atom, it must
have the same truth value in a given state:

truthValue(F,S,T) :- formulaIsAtom(F,G),

state(S),

truthValue(G,S,T),

tv(T). (B15)

In order for a conjunction to be true in a state, both of its conjuncts have
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to be true:

truthValue(F,S,t) :- conjunction(F,G,H),

state(S),

truthValue(G,S,t),

truthValue(H,S,t). (B16)

For a conjunction to be false, it is su�cient if only one of its conjuncts is
false:

truthValue(F,S,f) :- conjunction(F,G,H),

state(S),

1{truthValue(G,S,f);
truthValue(H,S,f)}. (B17)

Finally, a conjunction is both if it is neither true nor false:

truthValue(F,S,b) :- conjunction(F, , ),

state(S),

not truthValue(F,S,t),

not truthValue(F,S,f). (B18)

In the same fashion, we can define that a disjunction is false if both of its
disjuncts are false (B19), and true if at least one of its disjuncts is true
(B20). Again, if a disjunction is neither true nor false, it must be both
(B21). Furthermore, a negation is true in a state in three-valued logic if
its base formula is false (B22). Analogously, a negation is false if its base
formula is true (B23), and a negation is both if its base formula is both as
well (B24).

Next, we describe the LTL↵-specific operators. As per Section 3.2, a
formula ' = X'1 evaluates to the same truth value in ti as '1 in ti+1 if
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i < m:

truthValue(F,S i,T) :- next(F,G),

state(S i),

tv(T),

S j = S i + 1,

S i < M,

finalState(M),

truthValue(G,S j,T). (B25)

Note that the fact that each state is defined as an integer number in ASP
(see (B13)) allows us to use arithmetic and comparison operators. Moreover,
' = X'1 evaluates to false in case i � m:

truthValue(F,S i,f) :- next(F, ),

state(S i),

S i >= M,

finalState(M). (B26)

Following again Section 3.2, a formula ' = '1U'2 is defined to be true
in state ti if both '1 and '2 are true in ti or if there is a j 2 {i+ 1, . . . ,m}
such that '1 is true in all ti, . . . , tj�1, and '2 is true in tj. To represent the
first case in ASP, we add the following rule:

truthValue(F,S i,t) :- until(F,G,H),

state(S i),

truthValue(G,S i,t),

truthValue(H,S i,t). (B27)

We represent the second case by using a cardinality constraint that requires
'1 to be true in X states, with X being defined as j � i. To ensure that
exactly the states ti, . . . , tj�1 are selected, we formulate two conditions within
the cardinality constraint: first, each selected state must be greater than or
equal to i, and second, each such state must be strictly smaller than j. In
addition, the rule separately states that '2 must be true in tj.
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truthValue(F,S i,t) :- until(F,G,H),

state(S i),

state(S j),

S j > S i,

S j <= M,

finalState(M),

X{truthValue(G,S,t): state(S),

S >= S i,

S < S j}X,
X = S j - S i,

truthValue(H,S j,t). (B28)

The formula ' = '1U'2 is evaluated to both in state ti if there is a j 2
{i + 1, . . . ,m} such that '1 is true or both in all ti, . . . , tj�1, and '2 is true
or both in tj, i. e., {⌫̂(ti,'1), . . . , ⌫̂(tj�1,'1), ⌫̂(tj,'2)} = {1,B}. As in the
previous rule, we make use of a cardinality constraint. However, since both
'1 and '2 are allowed to be true or both in each corresponding state, we need
to formulate it a bit di↵erently. To begin with, we do not handle tj separately,
but include it in the cardinality constraint, which leads to its upper and lower
bound to be defined by j� i+1 (instead of j� i, as before). The cardinality
constraint intuitively contains a choice of the following elements, of which
exactly j � i+ 1 must be true:

• '1 can be 1 in each ti, . . . , tj�1

• '1 can be B in each ti, . . . , tj�1

• '2 can be 1 in tj

• '2 can be B in tj

Since each atom in each state has a unique truth value (due to (B14)), we
prevent the same formula in the same state from being, e. g., 1 and B at the
same time. Hence, exactly the states ti, . . . , tj are selected, and '1 and '2

are 1 or B in each respective state. Furthermore, we enforce implicitly that
at least one element in {⌫̂(ti,'1), . . . , ⌫̂(tj�1,'1), ⌫̂(tj,'2)} must evaluate to

44



B by stating that we cannot derive that ' is true (i. e., the case described by
(B27)).

truthValue(F,S i,b) :- until(F,G,H),

state(S i),

state(S j),

S j > S i,

S j <= M,

finalState(M),

X{truthValue(G,S,t): state(S),

S >= S i,

S < S j;

truthValue(H,S j,t);

truthValue(G,S,b): state(S),

S >= S i,

S < S j;

truthValue(H,S j,b)}X,
X = S j - S i + 1,

not truthValue(F,S i,t). (B29)

Lastly, ' = '1U'2 is false if it is neither true nor both:

truthValue(F,S i,f) :- until(F, , ),

state(S i),

not truthValue(F,S i,t),

not truthValue(F,S i,b). (B30)

A formula ' = G'1 evaluates to false in state ti if '1 is false in any
(following) state from ti, i. e., ' evaluates to false if there exists at least one
state tj with j � i in which '1 evaluates to false:

truthValue(F,S i,f) :- globally(F,G),

state(S i),

1{truthValue(G,S,f): state(S),

S >= S i}. (B31)
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The formula is true in ti, if '1 evaluates to true in all following states:

truthValue(F,S i,t) :- globally(F,G),

state(S i),

X{truthValue(G,S,t): state(S),

S >= S i}X,
finalState(M),

X = M - S i. (B32)

Otherwise (i. e., if '1 evaluates at least once to both, and to true in all other
cases), the formula evaluates to both:

truthValue(F,S i,b) :- globally(F, ),

state(S i),

not truthValue(F,S i,t),

not truthValue(F,S i,f). (B33)

A formula ' = F'1 evaluates to false in state ti if '1 is false in all
following states and including the current:

truthValue(F,S i,f) :- eventually(F,G),

state(S i),

X{truthValue(G,S,f): state(S),

S >= S i}X,
finalState(M),

X = M - S i. (B34)

' = F'1 evaluates to true in state ti if there is a state tj with j � i in which
'1 evaluates to true:

truthValue(F,S i,t) :- eventually(F,G),

state(S i),

state(S j),

truthValue(G,S j,t),

S j >= S i. (B35)
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Otherwise, the formula evaluates to both:

truthValue(F,S i,b) :- eventually(F, ),

state(S i),

not truthValue(F,S i,t),

not truthValue(F,S i,f). (B36)

Overall, we aim to derive a satisfied interpretation, i. e., the truth value
of each formula must not be false in t0:

:- truthValue(F,0,f), kbElement(F). (B37)

We are now ready to define the actual inconsistency measures ILTL
d and

ILTL
c . To determine whether any atom in a given state evaluates to B (i. e.,

whether a given state is in A↵ectedStates), we define:

affectedState(S) :- state(S),

truthValue(A,S,b),

atom(A). (D1)

This allows us to minimize |A↵ectedStates| by means of an optimization state-
ment:

#minimize{S: affectedState(S)}. (D2)

Let Rbase(K) be the union of the rules defined by (B1)–(B37) wrt. a
knowledge base K9, and let Rd be the union of rules (D1) and (D2). The
optimal solution of the program Pd(K) = Rbase(K) [ Rd now corresponds
exactly to the value of ILTL

d (K).
In order to compute ILTL

c , we do not require affectedState/1—instead,
we make use of the #count aggregate in order to count the number of B
evaluations in a given state:

numBInState(S,X) :- state(S),

#count{A: truthValue(A,S,b),

atom(A)} = X. (C1)

9
Note the rules yielded by (B2)–(B8) will only appear in Rbase(K) if the corresponding

operators are part of the original K.
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To sum up the values of numBInState/2, we use a #sum aggregate:

sumB(X) :- #sum{Y,S: numBInState(S,Y), state(S)} = X. (C2)

Finally, we minimize the aforementioned sum:

#minimize{X: sumB(X)}. (C3)

Let Rc be the union of rules (C1)–(C3). The optimal answer set of the
program Pc(K) = Rbase(K) [Rc then represents the value of ILTL

c (K).
We conclude this section with an example illustrating the concrete re-

trieval of an inconsistency measure value.

Example 25. Consider the following knowledge base K9:

K9 =

8
>>><

>>>:

'1,1z}|{
a U

'1,2z}|{
b| {z }

'1

, G

'2,1z}|{
a| {z }

'2

, X

'3,1z }| {

¬
'3,1,1z}|{
a| {z }

'3

9
>>>=

>>>;

In this example, we construct Pd(K9) and Pc(K9) with m = 10. To achieve
this, we first need to construct Rbase(K9). We begin by representing the for-
mulas in K7 according to (B1) and add them to Rbase(K9):

kbElement('1). kbElement('2). kbElement('3).

The first formula in K9 ('1) contains a U operator, so we represent it in ASP
as until('1,'1,1,'1,2) (B6). As '2 contains a G operator, we represent
it as globally('2,'2,1) (B7). Lastly, '3 contains an X operator, so it is
represented as next('3,'3,1) (B5). Further, '3,1 consists of a negation, thus
we need to add negation('3,1,'3,1,1) (B4) to Rbase(K9). To finally represent
those subformulas that consist of individual atoms, we follow (B9):

formulaIsAtom('1,1, a). formulaIsAtom('1,2, b).

formulaIsAtom('2,1, a). formulaIsAtom('3,1,1, a).

To represent the atoms in the signature, i. e., At(K9) = {a, b}, using (B10)
we add:

atom(a). atom(b).
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The formulas in K9 are now represented as ASP rules. In order to model
the number of states, we need to represent that the final state m is set to 10.
Thus, we add finalState(10) (B12).

The remainder of the rules required to form Rbase(K9) are static, meaning
that they do not need to be adapted to fit K9. Hence, we can add (B11)
and (B13)–(B36) exactly as they were previously defined. Note that the rules
referring to ^, _, and F (i. e., (B16)–(B18), (B19)–(B21), and (B33)–(B35),
respectively) are not strictly necessary, as those operators do not appear in
K9.

In order to ultimately form Pd(K9) and Pc(K9) we simply need to join
Rbase(K9) with Rd and, respectively, Rc.

Two further remarks on reasoning with preference relations and on cul-
pability measurement are in order.

Regarding measuring inconsistency with preferences, note that this can
be added in a straightforward manner. Definition 8 provides two additional
constraints that need to be considered. For this, a tagging is induced via a
simple graph search following the stated inference rules. To calculate #open-

ConflictingStates (see Definition 9), we do not even need to alter the proposed
ASP encoding for ILTL

d at all—we simply apply it to all formulas tagged +�
and disregard the formulas tagged ��. To calculate #exceptionStates (see
Definition 10), we can compute the subtrahend by once again applying the
aforementioned ASP encoding. As for the minuend, we finally need to slightly
extend the previous ASP encoding in order to incorporate the two conditions
proposed in Definition 8. Thus, we need to include predicates that represent
which formulas tagged as +� and ��, respectively. This additional informa-
tion can then be used to extend the integrity constraint (B37) in such a way
that it is limited exclusively to formulas tagged +�, and therefore model con-
dition 1. from Definition 8. All that is now left to do is to model the second
condition, i. e., that no formulas tagged �� are unnecessarily unsatisfied.

Regarding culpability measurement, the presented approaches for com-
puting the inconsistency measures can be extended in a straightforward way
to obtain the corresponding Shapley values (i. e., simply by computing the
values over all subsets of formulas, cf. Section 4.3). However, it would also
be possible to leverage the previous results as heuristics for reducing the
computational burden here. As an example, one only needs to iterate over
all subsets of formulas that contain at least one atom which was assigned a
truth value B—the marginal contribution towards the overall inconsistency
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will always be 0 in all other cases. In future works, we aim to investigate
this in more detail, possibly also extending our results for Shapley value
approximation.

7. Evaluation

We continue with an evaluation of our approach for time-sensitive in-
consistency measurement. We briefly recall results on the computational
complexity of our approach, which have already been presented in [9]. For
this, let L denote the set of all LTL↵ knowledge bases. We assume famil-
iarity with basic concepts of computational complexity and basic complexity
classes such as P and NP, see [49] for an introduction. Proofs can be found
in the Appendix.

Following [11], we consider the following computational problems:

ExactI Input: K 2 L, x 2 R1
�0

Output: true i↵ I(K) = x

UpperI Input: K 2 L, x 2 R1
�0

Output: true i↵ I(K)  x

LowerI Input: K 2 L, x 2 R1
�0

\ {0}
Output: true i↵ I(K) � x

ValueI Input: K 2 L
Output: The value of I(K)

ForUpperI , the same general non-deterministic algorithm as in Theorem
1 from [9] can be applied.

Theorem 1. UpperILTL
d

and UpperILTL
c

are NP-complete.

Using the insights from [11] we also get the following results for the other
problems.

Corollary 1. LowerILTL
d

and LowerILTL
c

are coNP-complete. ExactILTL
d

and ExactILTL
c

are in DP. ValueILTL
d

and ValueILTL
c

are in FP
NP[logn].

So we see that in general, computing the concrete values is intractable.
Therefore, to investigate the plausibility of applying our approach in practice,
we conducted runtime experiments with real-life data sets. In the following,
we present our evaluation results. We begin by briefly introducing our data
set.
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7.1. Description of Data Sets

We conducted a series of runtime experiments for the ASP-based imple-
mentations of ILTL

d and ILTL
c (see Section 6) using real-life data sets of the

Business Process Intelligence Challenge (BPIC)10. The BPIC is an interna-
tional scientific challenge series and provides real-life process data from var-
ious domains such as healthcare, government or industry. The process data
provided via the BPIC is o↵ered in the form of so-called event logs, which are
essentially (multi)sets of activity sequences (i. e., [customer] cases). In our
setting, these correspond to linear sequences of time-points, where at every
point in time a certain activity may occur. Importantly, various tools exist
that allow to mine LTL rule sets from this case data (essentially, temporal
rules that hold over the sequences in the data sets can be mined). Here,
we applied the state-of-the-art tool MINERful [50, 51] to obtain LTL rule
sets from the BPIC data sets. As mining parameters, we selected standard
mining parameters as suggested in [4], namely a support factor of 75% (min-
imum number of cases a rule has to be fulfilled in), as well as confidence and
interest factors of 12.5% (support scaled by the ratio of cases in which the ac-
tivation occurs, resp. support scaled by the ratio of cases both the activation
and reaction occur). All obtained LTL rule sets can be found online11.

The data sets of the BPIC are ideal candidates for our evaluation, as they
allow us to obtain LTL rule sets from event logs of industrial complexity. For
our evaluation, we used the BPIC data sets of the last five available challenges
(2016–2020), which we briefly outline in the following:

• BPIC 2016. This data set contains process data of a healthcare pro-
cess for treating Sepsis and contains around 1.000 cases.

• BPIC 2017. This data set contains process data of a loan application
process of a vendor in the financial industry and contains around 30.000
cases.

• BPIC 2018. This data set contains process data of government fund
distribution process and contains around 43.000 cases.

10https://icpmconference.org/2020/bpi-challenge/
11https://github.com/aig-hagen/inconsistency-measurement-LTL/tree/

master/data
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• BPIC 2019. This data set contains process data of a purchase process
a of a large multinational company and contains around 250.000 cases.

• BPIC 2020. This data set contains process data of a travel reimburse-
ment process of a university and contains around 32.000 cases.

The 2020 data set is divided into five sub logs, marked accordingly. Note
that we also included the data set from 2012, as this is an earlier version of
the 2017 data set.

We then applied our presented implementation to compute the inconsis-
tency measures for the obtained LTL rule sets (see above).

In Table 3, we show an overview of the analyzed data sets, including the
domain, the number of (customer) cases contained in the original data set,
the average sequence length in the original data set, as well as the number
of distinct atoms in the respective rule bases. As can be seen, the considered
data sets reflect case data of industrial complexity with up to 250.000 cases.
Table 3 also indicates the size of these obtained LTL rule sets. As shown,
the sizes of the considered rule bases ranged from around 60–600 rules.

Data set Domain # of cases ? case length # of atoms # of rules

1 BPIC2012 Financial Industry 13 087 20.03 21 275

2 BPIC2016 Healthcare 1 050 14.48 11 204

3 BPIC2017 Financial Industry 31 509 38.15 20 607

4 BPIC2018 Government 43 809 47.39 17 449

5 BPIC2019 Industry 251 734 6.33 8 65

6 BPIC2020 1 Government 6 886 5.37 6 58

7 BPIC2020 2 - 7 065 11.18 14 295

8 BPIC2020 3 - 2 099 12.25 18 374

9 BPIC2020 4 - 6 449 8.69 12 194

10 BPIC2020 5 - 10 500 5.34 7 66

Table 3: Overview of the considered data sets including industrial domain, number of

cases, average case length, number of atoms, and size of the rule-base obtained via the

described mining tool.

We now continue to present our experimental results.

7.2. Experimental Results

The experiments were run on a computer with 32GB RAM and an AMD
Ryzen 7 PRO 5850U CPU which has a basic clock frequency of 1.9GHz. The
approach was implemented in C++, and Clingo 5.4.0 is the ASP solver we
used. As Table 3 shows, the average case length of the di↵erent data sets lies
between 5.34 (BPIC2020 5) and 47.39 (BPIC2018). We therefore decided to
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measure the runtime wrt. both ILTL
d and ILTL

c with m 2 {10, 20, 30, 40, 50}.
Moreover, we set a timeout to 900 seconds (15minutes). Figure 1 shows our
experimental results.

Figure 1: Results of runtime experiments wrt. ILTL
c (left) and ILTL

d (right). A timeout

was set to 900 seconds.

In general, the computation of both inconsistency measures was feasible
for the considered real-life data sets. For a smaller number of states (e. g., 10),
the values could be computed in a few seconds. For some larger configurations
(e. g., m=50), this could take up to 10 minutes. We also observe that only in
one case, a timeout occurred. To be precise, this happened for the BPIC2017
instance with m = 50 for ILTL

c . However, the average case length for this
instance is 38.15, and for m = 40, ILTL

c could be computed in less than
10minutes.

As can be seen, the runtime scales in relation to the number of states
(which is to be expected, as more states also mean more possible solutions
for the ASP solver). In this sense, the configuration of the number of states to
be considered is crucial for the performance. Here, we argue that the average
case length of the respective data set may serve as a good indication for how
to select this parameter (cf. Table 3). Here, a main observation is that the
inconsistency values for each data set wrt. each respective average case length
could be computed well within the time limit (over all data sets, the average
case length was around 16.9, so assuming a parameter of m = 20, note that
all values could be computed in well under 100 seconds for this setting).

Another observation is that ILTL
d seems to be computed faster than ILTL

c

wrt. a given data set and number of states. Again, this is rather unsurprising,
as the search space of possible solutions is generally smaller regarding ILTL

d
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than regarding ILTL
c . Moreover, the runtime measurements for both incon-

sistency measures show a similar tendency in terms of the di↵erent data sets
(e. g., calculating the values for BPIC2017 takes longer than for any other
data set for both ILTL

d and ILTL
c ).

Note that as the data sets are unrelated, no further comparison can be
made as to how the performance scales with the number of rules, or the
number of atoms. In future work, we aim to conduct further experiments
to investigate this further. It may also be interesting for future works to
investigate how the concrete distribution of how often the di↵erent temporal
operators occur impacts performance.

7.3. Outlook: Approximation

The above experimental results indicate general feasibility for the con-
sidered lengths of sequences (as mentioned based on observed real-life trace
lengths). In general, the topic of approximating inconsistency values seems
however interesting for our use-case, as the length could be identified to be
a factor to the runtime, e. g., regarding even longer trace lengths. As an
outlook, we present an algorithm for approximating whether m states will
always be a↵ected, for any m. To clarify, if less than the considered number
of time points are a↵ected, a concrete value of ILTL

d could still increase for
larger m, e. g., in case of loops. However, we can approximate whether it
is impossible for m time points to be a↵ected in general. Vice versa, it suf-
fices to consider the maximal depth over all formulas as m to approximate
whether in fact all time points will always be a↵ected for any m (in which
case ILTL

d is in fact always equal to the considered number of states).
For our approach, an important observation to recall (cf. also Section 3)

is that via Proposition 3, m can be set to the depth of the conjunction of all
formulas in a knowledge base K. This ensures that an interpretation exists.
It directly follows that if an inconsistency a↵ects n < m states, it can never
hold that all states will be a↵ected as we quantify inconsistency by seeking
a minimal number of assignments to the truth value B (and we have already
found a minimal one here). Consequently, setting m to the depth su�ces in
this case already. For the case that m states are a↵ected, Algorithm 1 can
be used to e�ciently compute whether this will be the case for any m, if m
is increased.

Example 26. Recall K1 = {Xa,X¬a} and K2 = {Ga, G¬a}. For both
knowledge bases, d = 1. So initially we assume m = 1, i.e., states t0, t1.
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Algorithm 1: Deciding whether ILTL
d (K) will be m(+1), for any m

Input : Knowledge base K
Output: True if ILTL

d (K) = m+ 1 for any m, False otherwise
1 depth  d(

S
K)

2 m  depth
3 #a↵ectedStatesInitial  ILTL

d (K)// Assuming m

4 if #a↵ectedStatesInitial  m then

5 return False

6 m0  m+ 1
7 #a↵ectedStates 0  ILTL

d (K)// Assuming m’

8 if #a↵ectedStates 0 = m0 + 1 then

9 return True

10 else

11 return False

Via line 3, we see that ILTL
d (K1) = 1 and ILTL

d (K2) = 2 = m + 1. So for
K1, we correctly return false. This is because not all time points t0, ..., tm are
a↵ected. Note also that this value cannot increase for K1, as we have already
identified a minimal interpretation and this would remain a valid minimal in-
terpretation even if m is increased. For K2, we again compute ILTL

d assuming
m0 = m + 1 = 2 (via line 7). We again see that ILTL

c (K2) = 3 = m0 + 1,
and can correctly return true. Importantly, we know via Proposition 3 that
an interpretation already exists (and via ILTL

d we have selected one with a
minimal number of assignments to B). The condition in line 8 is needed to
discriminate cases that a↵ect exactly m + 1 time points, but do not grow,
if m grows. For example, if the depth of a knowledge base is 1 and the in-
consistency a↵ects initially exactly 1 state + t0, it could still be that when
increasing m, ILTL

d will remain 1+1 (in which case it does not hold that m
states will always be a↵ected).

We continue to discuss the correctness of Algorithm 1 (cf. Appendix A).
Here, we consider an algorithm to be correct if it satisfies the properties of
soundness and completeness, which we define as follows:

• Given a problem P and an algorithm that tries to solve this problem, an
algorithm is sound if the solution returned by the algorithm is correct.
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• Given a problem P and an algorithm that tries to solve this problem,
an algorithm is complete if it returns a solution if one exists, or reports
failure, if no solution exists.

Theorem 2. For a knowledge base K, Algorithm 1 is sound for the problem
of deciding whether ILTL

d (K) will be m+1, for any m > 0.

Theorem 3. For a knowledge base K, Algorithm 1 is complete for the prob-
lem of deciding whether ILTL

d (K) will be m+1, for any m > 0.

To gain an overview of the potential interest for Algorithm 1 in practical
settings, we computed the times for running Algorithm 1 for the considered
real-life data-sets, shown in Table 4. As can be seen, the algorithm seems
very useful here, as the max. depth is very low (which is intuitive, given
the predefined template structure of Declare), and thus computation was
very fast in all cases. In result, it seems plausible to apply our approach to
reason whether in fact all time points will always be a↵ected, without having
to consider large values for m (which may be computationally hard). One
could also easily extend our algorithm with a bound parameter b to assess
whether m�b states will always be a↵ected. Also, note that it may be useful
to extend the algorithm to reason about whether ILTL

d will never increase
(cf. the discussion for K1 in Example 26).

Data set Max. depth Runtime (s)

1 BPIC2012 3 0.583
2 BPIC2016 3 0.304
3 BPIC2017 3 1.593
4 BPIC2018 3 0.686
5 BPIC2019 3 0.095
6 BPIC2020 1 3 0.110
7 BPIC2020 2 3 0.605
8 BPIC2020 3 3 0.658
9 BPIC2020 4 3 0.428
10 BPIC2020 5 3 0.145

Table 4: Runtime results when m is set to d(K).

The presented Algorithm 1 focused on ILTL
d , which is built on the number

of a↵ected states, i.e., dependent of m. For measures such as ILTL
c , it is not

possible to easily define a function that maps the value of the inconsistency
measure relative to m. However, given that the length of the time sequence
seems to play an important role for computation, approximation techniques
seem promising in general and should be considered in future work.
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8. Conclusion

In this work, we have presented an approach for measuring the sever-
ity of inconsistencies in declarative process specifications, in particular those
based on linear temporal logic. In this regard, we introduced a paraconsis-
tent semantics for LTL↵ and developed inconsistency measures, as well as
element-based measures. Here, our approach extends recent works [3, 4, 5]
on the identification of inconsistent sets in declarative process specifications
by allowing a look “into” those sets. Also, we have shown how our results ap-
ply to higher-level modeling languages such as Declare, allowing also a wider
range of stakeholders to access our results, with the underlying complexity
of LTL hidden from the user.

The presented work also extends our previous results in [9], by presenting
novel algorithmic approaches for computing the devised measures. Here, we
show that computation is feasible for real-life data sets of the BPI challenge,
allowing us to implement our results in applied settings. We aim to conduct
further experiments in future work.

As a further addition, we have extended our framework by allowing to
model preferences amongst formulas, which allows to define default rules
and exceptions in a flexible manner. Being able to express concepts like ex-
ceptions seems to be an important aspect for allowing companies to handle
declarative specifications properly, in particular, in use-cases including knowl-
edge changes over time, uncertainty, or other data-perspectives of declarative
process specifications such as resources [52, 45]. Here, it seems useful to also
be able to lift results for inconsistency measurement to these use-cases.

On a more general note, LTL research has traditionally been focused on
answering certain questions in a binary manner, e. g., “are certain formulas
satisfied?”, or “is the set of formulas inconsistent?”. While this work is the
first to investigate the notion of a degree of inconsistency in LTL, we see
some other works that try to answer other LTL-related research questions in
a more quantitative fashion. For example, in [53, 54], the authors investigate
the notion of a satisfaction degree, which, in short, is a degree between [0,1]
indicating “how much” an individual LTL formula is satisfied by an inter-
pretation. While this is a di↵erent problem than addressed in this paper,
it seems that the idea of quantifying certain LTL-related notions may be
promising for future work.
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Appendix A: Proofs for Technical Results

Proposition 2. For every (two-valued) LTL↵ interpretation !̂ and LTL↵

formula �, !̂ |= � if and only if !̂ |=3 �.

Proof. Let !̂ be any two-valued LTL↵ interpretation. First observe that using
three-valued semantics, !̂(ti,�) 6= B for every � (this can be easily verified
by structural induction since no atom has the value B). We prove now the
more general statement that !̂, ti |= � if and only if !̂(ti,�) = 1 for any ti by
induction on the structure of �:

• � = a for a 2 At: From !̂, ti |= � it follows !̂(ti, a) = 1 via classical
semantics, which is equivalent to !̂(ti, a) = 1 via 3-valued semantics.

• � = ¬ : We have !̂, ti |= ¬ i↵ !̂, ti 6|=  . By the induction hypothesis,
this is equivalent to !̂(ti, ) = 0. This is equivalent to !̂(t1,¬ ) = 1.
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• � = �1 ^ �2: We have that !̂, ti |= �1 ^ �2 is equivalent to !̂, ti |= �1

and !̂, ti |= �2. By the induction hypothesis, this is equivalent to
!̂(ti,�1) = 1 and !̂(ti,�2) = 1. This is equivalent to !̂(ti,�) = 1.

• � = �1 _ �2: We have that !̂, ti |= �1 _ �2 is equivalent to !̂, ti |= �1

or !̂, ti |= �2. Without loss of generality assume !̂, ti |= �1. By the
induction hypothesis, this is equivalent to !̂(ti,�1) = 1 which implies
!̂(ti,�) = 1. This other direction is analogous.

• � = X : Observe first that for i � m both !̂, ti 6|= � and !̂(ti,�) = 0
hold. So assume that i < m. Then we have !̂, ti |= X equivalent
to !̂, ti+1 |=  . By the induction hypothesis, this is equivalent to
!̂(ti+1, ) = 1 and !̂(ti,X ) = 1.

• � = '1U'2: Assume that !̂, ti |= '1U'2. Then there is some j 2 {i+
1, . . . ,m} with !̂, tj |= �2 and !̂, tk |= �1 for all k 2 {i, . . . , j � 1}. By
the induction hypothesis, this amounts to !̂(tj,�2) = 1 and !̂(tk,�1) =
1 for all k 2 {i, . . . , j � 1}. From this follows !̂(ti,�1U�2) = 1. The
other direction is analogous.

Proposition 3. For every LTL↵ formula � with d(�)  m there is a ⌫̂ with
⌫̂ |=3 �.

Proof. Let ⌫̂b be the three-valued interpretation defined via ⌫̂b(ti, a) = B for
all ti and a. We prove the more general statement that ⌫̂b(ti,�) = B for any
ti and d(�)  m� i by induction on the structure of �:

• � = a for a 2 At: ⌫̂b(ti, a) = B holds by definition.

• � = ¬ : d(�)  m � i implies that d( )  m � i as well. By the
induction hypothesis, ⌫̂b(ti, ) = B and therefore ⌫̂b(ti,¬ ) = B as
well.

• � = �1^�2: d(�)  m� i implies that d(�1)  m� i and d(�2)  m� i
as well. By the induction hypothesis, ⌫̂b(ti,�1) = ⌫̂b(ti,�2) = B and
therefore ⌫̂b(ti,�1 ^ �2) = B.

• � = �1_�2: d(�)  m� i implies that d(�1)  m� i and d(�2)  m� i
as well. By the induction hypothesis, ⌫̂b(ti,�1) = ⌫̂b(ti,�2) = B and
therefore ⌫̂b(ti,�1 _ �2) = B.
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• � = X : d(�)  m�i implies that d( )  m�(i+1). By the induction
hypothesis ⌫̂b(ti+1, ) = B which directly gives ⌫̂b(ti,X ) = B.

• � = '1U'2: d(�)  m� i implies that d(�1)  m� (i+1) and d(�2) 
m � (i + 1) as well. So, by the induction hypothesis ⌫̂b(ti+1,�2) = B
and therefore ⌫̂b(ti,'1U'2) = B.

Proposition 4. C(ILTL
d ,m) = m+ 2 and C(ILTL

c ,m) =1.

Proof. For any interpretation ⌫̂, any number of the states t0, t1, . . . , tm, in-
cluding none, may be a↵ected by the inconsistency. This results in C(ILTL

d ,m)
= m + 2. C(ILTL

c ,m) = 1 follows from the fact that already for a single
state ILTL

c , m may take any non-negative integer value. For example, for
Ki = {a1 ^ ¬a1, ..., ai ^ ¬ai}. ILTL

c (Ki) = i and limi!1ILTL
c (Ki) = 1.

So C(ILTL
c , n) = 1 for any number of states (given there is at least one

state).

Proposition 5. The compliance of the inconsistency measures Id, IMI, Ip,
Ir, Ic, Iat, ILTL

d and ILTL
c with the postulates CO, MO, IN, DO and TS is

as shown in Table 1.

Proof. The proofs for Id, IMI, Ip, Ir, Ic, Iat can be found in [55].12 In the
process we corrected one result in [55], based on an earlier error. Actually, Ic

does not satisfy IN because of iceberg inconsistencies (see [56]). For example,
consider a knowledge base Kc = {a ^ ¬a ^ b,¬b}. Then ¬b is free, but
Ic(Kc) = 2 and Ic(Kc \ {¬b}) = 1. Also, for those measures TS follows from
Example 2.

We now consider the remaining measures ILTL
d and ILTL

c in turn. Recall
that the definition of consistency for LTL requires the existence of a 2-valued
interpretation ⌫̂ such that ⌫̂ |= K. Using such an interpretation we obtain
|A↵ectedStates(⌫̂)| = |ConflictBase(⌫̂)| = 0. If K is inconsistent, B is assigned
to at least one proposition, so these values are positive.

We now start with ILTL
d . For this, let K,K0 be knowledge bases and

↵, � be two formulas of LTL↵. CO follows directly from the definition of
consistency. For MO, if K is consistent, then K [ K0 is either consistent
or inconsistent. In both cases A↵ectedStates(K [ K0) � A↵ectedStates(K).

12Ir is equivalent to Ihit
dalal from that work. Also, the proofs for Iat are analogous to

Imv.
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If K is inconsistent, so is K [ K0 and again ILTL
d (K)  ILTL

d (K [ K0).
For IN, observe that for any free formula ↵, there exists an interpretation
that maps ↵ to 1; thus, free formulas cannot a↵ect the size of A↵ected-

States. In turn, if ↵ is a free formula, for any interpretation ⌫̂ that as-
signs B to a minimal number of propositions we have that |A↵ectedStates(⌫̂)|
is the same for K and (K \ ↵). For DO, observe from [57] that if ↵ |=
�, then {⌫̂ | ⌫̂ |=3 (K [ {↵})} ✓ {⌫̂ | ⌫̂ |=3 (K [ {�)})}. Therefore
min⌫̂|=3(K[{↵}) |A↵ectedStates(⌫̂)| � min⌫̂|=3(K[{�}) |A↵ectedStates(⌫̂)|. For TS
let K = {X',X¬'} and K0 = {G',G¬'}. Then there is an interpretation
satisfying K that only assigns B to state t1. But for K0 every interpreta-
tion must assign B to m states. Therefore min⌫̂|=3K |A↵ectedStates(⌫̂)| <
min⌫̂|=3K0 |A↵ectedStates(⌫̂)|.

The proofs for ILTL
c are analogous to ILTL

d except that ILTL
c counts the

number of inconsistencies for each state also. VO and MO are immediate
as before. For IN the counterexample for propositional logic can be used.
DO follows as for ILTL

d . The only di↵erence in the proof for TS is that
now it is possible to give a formula ' for which ILTL

c (K) > 1 but then
ILTL
c (K0) = m⇥ ILTL

c (K) > ILTL
c (K).

Proposition 6 (Coherence). For any K: @� 2 K s.t. +�� and ���.

Proof. First, observe that–by definition–for ��� to hold, there needs to exist
a disputee ' s.t. +�' holds, Then, to show coherence, proceed by cases.
Either (1) � is undisputed, so ��� cannot hold by definition. Or (2) all
disputors are successfully defended, so +�' cannot hold at the same time.

Proposition 7 (Soundness). If +�� then K |= �.

Proof. This follows directly from Definition 8.

Proposition 8. Let I be an inconsistency measure that satisfies CO,TS, then
S(�, I) satisfies COC, BLC, TSC.

Proof. COC has already been shown in [10], cf. what they call consistency.
Also regarding [10], BLC follows from what they call consistency and distri-
bution. For TSC, observe that � a↵ects more states than ' per assumption.
So the marginal contribution of � will be strictly larger than for '.

Theorem 1. UpperILTL
d

and UpperILTL
c

are NP-complete.
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Proof. First, observe that given a 3-valued interpretation ⌫̂, evaluating ⌫̂(ti,�)
for any ti and �, as well as determining A↵ectedStates(⌫̂) and ConflictBase(⌫̂),
can be done in polynomial time.

For NP-membership consider the following non-deterministic algorithm.
Given K and x 2 R1

�0
, we non-deterministically guess an interpretation ⌫̂

and verify ⌫̂ |=3 K and |A↵ectedStates(⌫̂)|  x (or |ConflictBase(⌫̂)|  x).
For NP-hardness, observe that for given K and x = 0, both problems Up-

perILTL
d

and UpperILTL
c

are equivalent to the problem of deciding whether
there is a two-valued interpretation that satisfies K. Due to Proposition 2
this problem is equivalent to the classical satisfiability problem in LTL↵.
Therefore, we can reduce the classical satisfiability problem of propositional
logic to the problem UpperILTL

d
(or UpperILTL

c
) with x = 0, which shows

the NP-hardness of the latter.

Corollary 1. LowerILTL
d

and LowerILTL
c

are coNP-complete. ExactILTL
d

and ExactILTL
c

are in DP. ValueILTL
d

and ValueILTL
c

are in FP
NP[logn].

Proof. The coNP-completeness of LowerILTL
d

and LowerILTL
c

and the mem-
bership of ExactILTL

d
and ExactILTL

c
in DP follow from Lemma 6 in [11],

Proposition 1, and the fact that the measures ILTL
c and ILTL

d are well-
serializable, cf. Definition 22 in [11], due to their range being equal to
{0, . . . ,m,1} (for ILTL

d ) and {0, . . . ,m|At|,1} (for ILTL
c ). The membership

of ValueILTL
d

and ValueILTL
c

in FP
NP[logn] follow likewise from Lemma 4 in

[11] and Proposition 1.

Theorem 2. Let K be a knowledge base. Algorithm 1 is sound for the problem
of deciding whether ILTL

d (K) will be m, for any m > 0.

Proof. Assuming a sequence of states t0, ..., tm, via Proposition 3, it directly
follows that if an inconsistency a↵ects n < m states, the number of a↵ected
states can only grow by a constant, but can never a↵ect all states (Via the
proposition, an interpretation already exists and via ILTL

d we have selected
one with a minimal number of assignments to B). If we consider larger m,
note that similar as above, as we have already selected a minimal interpreta-
tion, ILTL

d can only increase. If the condition of line 4 does not hold, we know
exactly m+1 states were a↵ected before. So the only, minimal interpretation
that existed was one that assigned B to all atoms in all states. Again via
Proposition 3, we know that if we add a state to the sequence of states, and
this state is also a↵ected, this will hold for any length m inductively.
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Theorem 3. Let K be a knowledge base. Algorithm 1 is complete for the
problem of deciding whether ILTL

d (K) will be m, for any m > 0.

Proof. Assume a sequence of states t0, ..., tm. First, note that our algorithm
returns true or false on a decision, so there is no case where no solution should
be reported. Then, consider the return variable. In line 4, we correctly return
false if n < m states are a↵ected. So the variable is returned in this case.
Then, if line 8 holds, we return true, and false otherwise. The condition in
line 8 is decidable, and it is immediate to see that all values are computable.
So Algorithm 1 is complete by invariance.

Appendix B: Preliminaries on Answer Set Programming

For computing the inconsistency measures presented in this work, we de-
velop new algorithmic approaches based on Answer Set Programming (ASP)
[58, 59, 60], which has already been successfully applied for the computation
of inconsistency values in related works [46, 35, 47, 48]. In the following, we
provide a brief overview of the syntax and semantics of ASP.

Due to the declarative nature of ASP, the goal is to represent a problem
in a logical format (namely, an extended logic program) such that the models
of this representation (the answer sets) describe solutions of the original
problem.

An extended logic program consists of rules which are of the form

r = a0 :- a1, . . . , an, not an+1, . . . , not am. (1)

with ai, i 2 {0, . . . , n, n + 1, . . . ,m} being atoms. An atom is a predicate
p(v1, . . . , vk) with k � 0, where each v1, . . . , vk is either a constant or a
variable. If an atom does not contain any variables, it is referred to as
ground (this concept can be applied to rules analogously). Constants are
represented by strings starting with a lowercase letter, variables by strings
starting with an uppercase letter13. We write the arity k of a predicate p as
p/k. Further, in an ASP rule (Eq. 1), “:-” can be interpreted as “if”, a “,”
can be read as “and”, and the end of a rule is marked by a “.”. Moreover,
“not” denotes default negation in the sense of Reiter’s default logic [61].

13
Note that we also make use of anonymous variables. Those variables do not recur

within the rule at hand, and are indicated by “ ”.
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An ASP rule is comprised of a head and a body, which are divided
by “:-”. Hence, wrt. Eq. 1, the head consists of {a0}, and the body of
{a1, . . . , an, not an+1, . . . , not am}. A rule with an empty body is called
a fact, and a rule with an empty head is called a constraint.

Let L be a set of ground atoms. L is a model of a program P (i. e., a set
of rules) if a0 2 L whenever {a1, . . . , an} ✓ L and {an+1, . . . , am}\L = ; for
each rule r included in P . The reduct of a program P wrt. L is defined as

PL = {a0 :- a1, . . . , an |
a0 :- a1, . . . , an, not an+1, . . . , not am 2 P,

{an+1, . . . , am} \ L = ;}.

Note that the last part of this definition ensures that PL is a positive program,
meaning that no instance of not occurs in it. A positive program always pos-
sesses a uniquely defined subset-minimal model. If L is the subset-minimal
model of PL, then L is called an answer set of P .

In addition to the “basic” rules described above, we make use of some
further language concepts that modern ASP dialects allow for. To begin
with, we use cardinality constraints, which are of the form

l{a1; . . . ; an}u

where l constitutes a lower bound, and u an upper bound. Thus, the above
cardinality constraint can be read as “at least l, and at most u of the atoms
in {a1; . . . ; an} must be included in the answer set”. Note that either one of
the bounds may be omitted. Moreover, “;” can be read as “or”.

Furthermore, we make use of aggregates, which are functions that apply
to sets and allow for expressing concepts such as counting, summing, or
determining minima or maxima in a concise manner. To be precise, we only
use a specific form of aggregates:

#agg{v1, . . . , vn : a1, . . . , am} = vn+1

Here, #agg 2 {#count, #sum} is the aggregate function name, {v1, . . . , vn} is
a set of variables, {a1, . . . , am} is a set of atoms, and vn+1 is a variable repre-
senting an integer value. Intuitively speaking, the set of ground instances of
{v1, . . . , vn} fulfilling the conditions modeled by {a1, . . . , am} must be equal
to vn+1 if counted or, respectively, summed up.
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Example 27. Assume we are aiming to determine the total number of for-
mulas in a knowledge base (expressed by numFormulas(K,X), where K repre-
sents the knowledge base, and X the number of formulas). Let each formula
be represented by isFormula/1 and each knowledge base by isKB/1. We can
use a #count aggregate to count all (ground) instances of isFormula/1 and
to state that the resulting value must be equal to X:

numFormulas(X,K) :- X = #count{F: isFormula(F,K)}, isKB(K).

Let us now assume that we are dealing with multiple knowledge bases, and
that our new goal is to determine the total number of formulas across all
knowledge bases (expressed by totalNumFormulas(Y)). Hence, we aim to
count the number of formulas in each knowledge base and then sum up the
resulting values. We can achieve this by using a #sum aggregate as follows:

totalNumFormulas(Y) :- Y = #sum{X,K: numFormulas(X,K), isKB(K)}.

Another ASP language concept we use is the optimization statement.
Optimization statements can express cost functions involving minimization
and/or maximization. Again, we only require a specific type of optimization
statement, which we define as

#minimize{v : a1, . . . , an}

with v being a variable, and {a1, . . . , an} being a set of atoms. Such a
minimization statement instructs the ASP solver to find a solution in which
the number of ground instances for which {a1, . . . , an} hold is minimal. We
refer to an answer set that complies with the minimization as an optimal
answer set.

Example 28. Consider a scenario in which we already modeled the basic
concepts of (propositional) logic in ASP. Our goal is now to find a solution
in which a maximal number of formulas in a given knowledge base is sat-
isfiable (i. e., in which a minimal number of fomulas is unsatisfiable). Let
isUnsat(F) represent that a formula is unsatisfiable. We can find an opti-
mal solution by using the following minimization statement:

#minimize{F: isUnsat(F)}.

70


	Introduction
	Preliminaries
	Inconsistency Measurement
	Linear Temporal Logic on Fixed Traces
	Related Work and Contributions

	A Framework for Inconsistency Measurement in LTLff
	Motivation for Inconsistency Measures for LTLff
	A Paraconsistent Semantics for LTLff

	Approaches for Time Sensitive Inconsistency Measurement in LTLff
	Baseline Measures
	Measuring Inconsistency in LTLff with Preferences
	Element-Based Time-Sensitive Inconsistency Measurement

	Application to Declarative Process Models
	Inconsistency Measurement in Declarative Process Models
	Element-Based Inconsistency Measurement in Declarative Process Models

	Algorithmic Approaches
	Evaluation
	Description of Data Sets
	Experimental Results
	Outlook: Approximation

	Conclusion

