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Abstract
We present a general framework to rank assumptions in assumption-based argumentation frameworks (ABA frameworks),
relying on their relationship to other assumptions and the syntactical structure of the ABA framework. We define general
principles for assessing the suitability of ranking-based semantics and propose a new family of semantics for ABA frameworks
that is using reductions to the abstract argumentation setting and leveraging existing ranking-based semantics for abstract
argumentation. We show that this family complies with many of our principles.
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1. Introduction
In recent years, formal argumentation [1] has gained
attention as a rational decision-making model. Formal
argumentation is concerned with the representation of
arguments and their relationships. One important ap-
proach is the abstract argumentation framework (AF)
by Dung [2]. This framework uses directed graphs to
represent arguments as nodes and attacks between two
arguments as edges between these two arguments, where
the source of an edge attacks the target. One way to rea-
son with AFs is by using extension-based semantics, which
are relying on functions allowing us to state when a set
of arguments is jointly acceptable.

In addition to AFs, other models of rational decision-
making using argumentative reasoning were defined in
the literature. One of them are assumption-based ar-
gumentation frameworks (ABA frameworks) [3, 4, 5, 6].
These frameworks are based on deductive systems over
a formal language and rules. One particular part of the
formal language are the so-called assumptions, which
are used as the basis for deriving further pieces of in-
formation. Similar to AFs, one reasoning method for
ABA frameworks are extension-based semantics that
state when a set of assumptions is acceptable. Abstract
argumentation frameworks and ABA frameworks are
closely related, the standard approach for reasoning with
ABA frameworks includes the derivation of an AF and a
translation for the other direction exists as well [7].

The classical semantics of both AFs and ABA frame-
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works induce a binary classification of arguments resp.
assumptions: an argument or assumption is either ac-
cepted or not. This can be considered too limiting in real
world scenarios like online debates [8]. For AFs, ranking-
based semantics [9, 10] were introduced to overcome this
limitation, where a ranking over the arguments based on
their individual strength is established. Hence, we can
not only state that an argument is part of an acceptable
set or not, but infer that one argument is “better” than
another one.

The ranking-based approach does not only allow us
to establish whether one assumption is “better” than an-
other one, but additionally we can use it to refine other
reasoning methods. Let us assume we have two sets of as-
sumptions 𝑆1 and 𝑆2 which are acceptable with respect
to some extension-based semantics. Say these two sets
are in a conflict with each other, i. e., we cannot accept
both sets at the same time. With the help of the individual
strength of each assumption, we can identify the “better”
set of assumptions between them. For example 𝑆1 might
contain assumptions ranked higher than assumptions of
𝑆2, hence we can consider 𝑆1 to be better than 𝑆2.

In this paper, we introduce ranking-based semantics
for the ABA setting to rank assumptions based on their
strength. With the help of these semantics we can state
if an assumption is stronger than another one. To eval-
uate different ranking-based semantics approaches, we
propose principles each describing different desirable
behaviours for concrete approaches. With this principle-
based approach we can compare different ranking-based
semantics based solely on their behaviour. Additionally,
we present a family of ranking-based semantics based
on ideas for AFs. For an ABA framework, we look at
the induced AF and calculate a ranking over arguments
to then lift the resulting ranking back to ABA and then
re-evaluate the result in the context of ABA.
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𝑎 𝑏𝑐

𝑟 𝑞𝑝

Figure 1: Abstract argumentation framework 𝐴𝐹 from Ex-
ample 1.

This paper is organised as follows. We recall the neces-
sary background information about AFs, ranking-based
semantics and ABA frameworks in Section 2. In Sec-
tion 3, we introduce ranking-based semantics for ABA
frameworks, present principles for these semantics and
propose a family of ranking-based semantics for ABA
frameworks based on ranking-based semantics for AFs.
Related work will be discussed in Section 4 and Section
5 will conclude the paper.

2. Preliminaries

Abstract Argumentation Frameworks
An abstract argumentation framework (𝐴𝐹 ) is a directed
graph 𝐹 = (𝐴,𝑅) where 𝐴 is a finite set of arguments
and 𝑅 ⊆ 𝐴× 𝐴 is an attack relation [2]. An argument
𝑎 is said to attack an argument 𝑏 if (𝑎, 𝑏) ∈ 𝑅. We
say that an argument 𝑎 is defended by a set 𝐸 ⊆ 𝐴 if
every argument 𝑏 ∈ 𝐴 that attacks 𝑎 is attacked by some
𝑐 ∈ 𝐸. For 𝑎 ∈ 𝐴 we define 𝑎−

𝐹 = {𝑏 | (𝑏, 𝑎) ∈ 𝑅}
and 𝑎+

𝐹 = {𝑏 | (𝑎, 𝑏) ∈ 𝑅}, so the sets of attackers of
𝑎 and the set of arguments attacked by 𝑎 in 𝐹 . For a
set of arguments 𝐸 ⊆ 𝐴 we extend these definitions to
𝐸−

𝐹 and 𝐸+
𝐹 via 𝐸−

𝐹 =
⋃︀

𝑎∈𝐸 𝑎−
𝐹 and 𝐸+

𝐹 =
⋃︀

𝑎∈𝐸 𝑎+
𝐹 ,

respectively. If the AF is clear in the context, we will omit
the index.

Example 1. Consider the argumentation framework 𝐹 =
(𝐴,𝑅) depicted as a directed graph in Figure 1, with the
nodes corresponding to arguments, and the edges corre-
sponding to attacks

𝐴 = {𝑎, 𝑏, 𝑐, 𝑝, 𝑞, 𝑟}
𝑅 = {(𝑟, 𝑎), (𝑞, 𝑏), (𝑝, 𝑐), (𝑝, 𝑟), (𝑟, 𝑝), (𝑞, 𝑟)}.

Most semantics [11] for abstract argumentation are
relying on two basic concepts: conflict-freeness and ad-
missibility.

Definition 1 (Conflict-freeness, Admissibility). Given
𝐹 = (𝐴,𝑅), a set 𝐸 ⊆ 𝐴 is

• conflict-free iff ∀𝑎, 𝑏 ∈ 𝐸, (𝑎, 𝑏) ̸∈ 𝑅;
• admissible iff it is conflict-free, and every element

of 𝐸 is defended by 𝐸.

We use 𝑐𝑓(𝐹 ) and 𝑎𝑑(𝐹 ) for denoting the sets of
conflict-free and admissible sets of an argumentation
framework 𝐹 , respectively. The intuition behind these
concepts is that a set of arguments may be accepted only
if it is internally consistent (conflict-freeness) and able
to defend itself against potential threats (admissibility).
The semantics proposed by Dung [2] are then defined as
follows.

Definition 2 (Extension-based Semantics). Given 𝐹 =
(𝐴,𝑅), an admissible set 𝐸 ⊆ 𝐴 is

• a complete extension (𝑐𝑜) iff it contains every ar-
gument that it defends;

• a preferred extension (𝑝𝑟) iff it is a ⊆-maximal
complete extension;

• the unique grounded extension (𝑔𝑟) iff it is the
⊆-minimal complete extension;

• a stable extension (𝑠𝑡𝑏) iff 𝐸+
𝐹 = 𝐴 ∖ 𝐸.

The sets of extensions of an argumentation framework
𝐹 , for these four semantics, are denoted (respectively)
𝑐𝑜(𝐹 ), 𝑝𝑟(𝐹 ), 𝑔𝑟(𝐹 ) and 𝑠𝑡𝑏(𝐹 ).

Ranking-based Semantics
Instead of only reasoning based on the acceptance of
sets of arguments, ranking-based semantics [10] were
introduced to focus on the strength of a single argument
with respect to the other arguments. Note that the order
returned by a ranking-based semantics is not necessarily
total, i. e., not every pair of arguments is comparable.

Definition 3. A ranking-based semantics 𝜌 is a function,
which maps an argumentation framework 𝐹 = (𝐴,𝑅) to
a preorder1 ⪰𝜌

𝐹 on 𝐴.

Intuitively, 𝑎 ⪰𝜌
𝐹 𝑏 means that 𝑎 is at least as strong

as 𝑏 in 𝐹 . We define the usual abbreviations as follows;
𝑎 ≻𝜌

𝐹 𝑏 denotes strictly stronger, i. e. 𝑎 ⪰𝜌
𝐹 𝑏 and 𝑏 ̸⪰𝜌

𝐹 𝑎.
Moreover, 𝑎 ≃𝜌

𝐹 𝑏 denotes equally strong, i. e. 𝑎 ⪰𝜌
𝐹 𝑏

and 𝑏 ⪰𝜌
𝐹 𝑎.

One example for ranking-based semantics is the
Burden-based semantics [10]. This semantics calculates
in each step a burden number for each argument based
on the burden number of the attackers in the previous
step and then lexicographically compares these numbers
to establish a ranking.

Definition 4. [10] Let 𝐹 = (𝐴,𝑅) be an AF. The bur-
den number 𝑏𝑢𝑟(𝑎) for argument 𝑎 ∈ 𝐴 is denoted as
𝑏𝑢𝑟(𝑎) = (𝑏𝑢𝑟0(𝑎), 𝑏𝑢𝑟1(𝑎), 𝑏𝑢𝑟2(𝑎), ...) whereby the
1A preorder is a (binary) relation that is reflexive and transitive.



functions 𝑏𝑢𝑟𝑖 for 𝑖 ∈ N are mapping arguments 𝑎 to
values as follows:

𝑏𝑢𝑟𝑖 : 𝐴→ Q,

𝑏𝑢𝑟𝑖(𝑎) :=

{︃
1 if 𝑖 = 0
1 +

∑︀
𝑏∈𝑎−

𝐹

1
𝑏𝑢𝑟𝑖−1(𝑏)

otherwise

The Burden-based semantics (𝐵𝑏𝑠) defines a ranking
⪰𝐵𝑏𝑠

𝐹 s.t. for each 𝑎, 𝑏 ∈ 𝐴, it holds that 𝑎 ⪰𝐵𝑏𝑠
𝐹 𝑏 iff

𝑏𝑢𝑟(𝑎) ⪰𝑙𝑒𝑥 𝑏𝑢𝑟(𝑏), where ⪰𝑙𝑒𝑥 is the lexicographi-
cal order, i. e. for two (possibly infinite) real number vec-
tors 𝑉 = (𝑉1, 𝑉2, . . .) and 𝑉 ′ = (𝑉 ′

1 , 𝑉
′
2 , . . .) we say

𝑉 ≻𝑙𝑒𝑥 𝑉 ′ iff ∃𝑖 s.t. 𝑉𝑖 < 𝑉 ′
𝑖 and ∀𝑗 < 𝑖, 𝑉𝑗 = 𝑉 ′

𝑗 and
we say 𝑉 ≃𝑙𝑒𝑥 𝑉 ′ iff ∀𝑖, 𝑉𝑖 = 𝑉 ′

𝑖 .

Example 2. Given the AF𝐹 from Example 1. We calculate
for each argument the burden number. Argument 𝑞 is
unattacked, hence 𝑏𝑢𝑟(𝑞) = (1, 1, 1, ...). Based on the
value of 𝑞, we can calculate the remaining burden numbers:

𝑏𝑢𝑟(𝑎) = (1, 2,
4

3
, ...);

𝑏𝑢𝑟(𝑏) = (1, 2, 2, ...);

𝑏𝑢𝑟(𝑐) = (1, 2,
2

3
, ...);

𝑏𝑢𝑟(𝑝) = (1, 2,
4

3
, ...);

𝑏𝑢𝑟(𝑟) = (1, 3, 2.5, ...).

Since 𝑎 and 𝑝 have the same attacker 𝑟, they receive in
each step the same value. So, these burden numbers result
in the following ranking:

𝑞 ≻𝐵𝑏𝑠
𝐹 𝑎 ≃𝐵𝑏𝑠

𝐹 𝑝 ≻𝐵𝑏𝑠
𝐹 𝑐 ≻𝐵𝑏𝑠

𝐹 𝑏 ≻𝐵𝑏𝑠
𝐹 𝑟.

Argument 𝑞 is ranked highest, then 𝑎 and 𝑝 are equally
strong, then 𝑐 followed by 𝑏, and finally the least ranked
argument is 𝑟.

We recall some of the most fundamental principles [9]
that guide the development of ranking-based semantics
for abstract argumentation. The first and most basic
principle states, that the names of the arguments should
not influence the ranking.

Definition 5 (Isomorphism). An isomorphism 𝛾 between
two argumentation frameworks 𝐹 = (𝐴,𝑅) and 𝐹 ′ =
(𝐴′, 𝑅′) is a bijective function 𝛾 : 𝐴→ 𝐴′ such that for
all 𝑎, 𝑏 ∈ 𝐴, (𝑎, 𝑏) ∈ 𝑅 iff (𝛾(𝑎), 𝛾(𝑏)) ∈ 𝑅′.

Definition 6 (Abs). A ranking-based semantics 𝜌 sat-
isfies Abstraction (short Abs) if for every pair of AFs
𝐹 = (𝐴,𝑅), 𝐹 ′ = (𝐴′, 𝑅′) and every isomorphism
𝛾 : 𝐴 → 𝐴′, for all 𝑎, 𝑏 ∈ 𝐴, we have 𝑎 ⪰𝜌

𝐹 𝑏 iff
𝛾(𝑎) ⪰𝜌

𝐹 ′ 𝛾(𝑏).

The next principle states, that unattacked arguments
should be ranked better than any attacked argument.

Definition 7 (VP). A ranking-based semantics 𝜌 satisfies
Void Precedence (short VP) iff for any AF 𝐹 = (𝐴,𝑅),
it holds that for all 𝑎, 𝑏 ∈ 𝐴 with 𝑎−

𝐹 = ∅ and 𝑏−𝐹 ̸= ∅,
𝑎 ≻𝜌

𝐹 𝑏.

Contrasting to VP the principle SC focuses on the
worst ranked arguments. These worst arguments are self-
conflicting arguments and any self-conflicting argument
should be ranked worse than any not self-conflicting
argument.

Definition 8 (SC). A ranking-based semantics 𝜌 satisfies
Self-Contradiction (short SC) iff for any AF𝐹 = (𝐴,𝑅), it
holds that for all 𝑎, 𝑏 ∈ 𝐴 with (𝑎, 𝑎) /∈ 𝑅 and (𝑏, 𝑏) ∈ 𝑅,
𝑎 ≻𝜌

𝐹 𝑏.

The principle Cardinality Precedence focuses on the
number of attackers. If an argument has fewer attack-
ers than another argument, the first argument can be
considered stronger.

Definition 9 (CP). A ranking-based semantics 𝜌 satisfies
Cardinality Precedence (short CP) iff for any AF 𝐹 =
(𝐴,𝑅), it holds that for all 𝑎, 𝑏 ∈ 𝐴 with |𝑎−| < |𝑏−|,
𝑎 ≻𝜌

𝐹 𝑏.

The final principle states that any of two arguments
should be comparable.

Definition 10 (Total). A ranking-based semantics 𝜌 sat-
isfies Total iff for any AF 𝐹 = (𝐴,𝑅), it holds that for all
𝑎, 𝑏 ∈ 𝐴 either 𝑎 ⪰𝜌

𝐹 𝑏 or 𝑏 ⪰𝜌
𝐹 𝑎.

Note that, this is not a complete list of principles, more
principles can be found in the literature [9] and also
these principles are not mandatory principles since there
are incompatibilities between them, e.g., CP and SC are
incompatible. 𝐵𝑏𝑠 satisfies Abs, VP, CP and Total and
violates SC [9].

Assumption-based Argumentation
Frameworks
Assumption-based Argumentation (ABA) uses a deductive
system (ℒ,ℛ), where ℒ is a formal language andℛ a set
of rules of the form 𝑟 = 𝑎0 ← 𝑎1, ..., 𝑎𝑛 with 𝑎𝑖 ∈ ℒ.
We say that 𝑎0 is the head of the rule (ℎ𝑒𝑎𝑑(𝑟) = 𝑎0) and
the set {𝑎1, ..., 𝑎𝑛} is the body (𝑏𝑜𝑑𝑦(𝑟) = {𝑎1, ..., 𝑎𝑛}).

Definition 11. An ABA framework is a tuple
(ℒ,ℛ,𝒜, ), where (ℒ,ℛ) is a deductive system, 𝒜 ⊆ ℒ
a non-empty set of assumptions, and : 𝒜 → ℒ is a
so-called contrary function.

We focus in this work on flat ABA frameworks, i. e.,
ℎ𝑒𝑎𝑑(𝑟) /∈ 𝒜 for each rule 𝑟 ∈ ℛ.

A sentence 𝑠 ∈ ℒ is derivable from a set of assump-
tions 𝑋 ⊆ 𝒜 and rules 𝑅 ⊆ ℛ, denoted by 𝑋 ⊢𝑅 𝑠,



if there is a finite rooted labelled tree 𝑇 with the root
being labelled with 𝑠, the set of labels for the leaves of
𝑇 is equal to 𝑋 or 𝑋 ∪ {⊤}, and the internal nodes are
labelled with ℎ𝑒𝑎𝑑(𝑟) according to a rule 𝑟 ∈ 𝑅 s.t. the
children are labelled with 𝑏𝑜𝑑𝑦(𝑟) or ⊤ if the body is
empty. Each assumption 𝑥 ∈ 𝑋 has an associated leaf
labelled with 𝑥 and each rule 𝑟 ∈ 𝑅 has an associated
node in the tree. For a tree 𝑇 , we denote by 𝑎𝑠𝑚(𝑇 ) the
set of assumptions used to derive the conclusion denoted
𝑐𝑙(𝑇 ) with rules 𝑟𝑢(𝑇 ).

Similar to AFs, ABA frameworks can be used as a ratio-
nal decision-making model. In order to reason with ABA
frameworks, extension-based semantics were introduced
to state when a set of assumptions is acceptable. A set
of assumptions 𝑆 attacks a set of assumptions 𝑄 ⊆ 𝒜 if
there is 𝑆′ ⊆ 𝑆, 𝑅 ⊆ ℛ , s.t. 𝑆′ ⊢𝑅 𝑎 for some 𝑎 ∈ 𝑄. 𝑆
is conflict-free if 𝑆 does not attack 𝑆. 𝑆 defends assump-
tion 𝑠 if 𝑆 attacks each assumption set 𝑄 that attacks
{𝑠}.

Definition 12. For 𝐷 = (ℒ,ℛ,𝒜, ) be an ABA frame-
work and a conflict-free set of assumptions 𝑆 ⊆ 𝒜, we say
𝑆 is

• admissible in 𝐷 (𝑆 ∈ 𝑎𝑑(𝐷)) if 𝑆 defends itself,
• complete in 𝐷 (𝑆 ∈ 𝑐𝑜(𝐷)) if 𝑆 is admissible and

contains every assumptions set it defends,
• grounded in 𝐷 (𝑆 ∈ 𝑔𝑟(𝐷)) if 𝑆 is ⊆-minimally

complete,
• preferred in 𝐷 (𝑆 ∈ 𝑝𝑟(𝐷)) if 𝑆 is ⊆-maximally

complete, and
• stable in 𝐷 (𝑆 ∈ 𝑠𝑡(𝐷)) iff 𝑆 attacks every as-

sumption 𝑎 ∈ 𝒜 ∖ 𝑆.

Example 3. Consider the ABA framework 𝐷 with as-
sumptions 𝒜 = {𝑎, 𝑏, 𝑐} and rules:

𝑟1 : 𝑟 ← 𝑏, 𝑐;

𝑟2 : 𝑞 ← ;

𝑟3 : 𝑝← 𝑞, 𝑎

with 𝑎 = 𝑟, 𝑏 = 𝑞, 𝑐 = 𝑝. Then for example, we can derive
𝑝 from {𝑎} with rules 𝑟2 and 𝑟3 and since 𝑝 = 𝑐 we see
that {𝑎} attacks {𝑐}. Additionally, we see that {𝑎} and ∅
are the two admissible sets.

AFs and ABA frameworks are closely related [7], and
we can define an AF as an instance of an ABA framework
and the other way around.

Definition 13. The associated AF 𝐹𝐷 = (𝐴,𝑅) of an
ABA framework 𝐷 = (ℒ,ℛ,𝒜, ) is given by 𝐴 = {𝑇 |
𝑇 is a tree for 𝑠 ∈ ℒ with 𝑐𝑙(𝑇 ) = 𝑠} and attack relation
(𝑇, 𝑇 ′) ∈ 𝑅 iff there is 𝑐 ∈ 𝑎𝑠𝑚(𝑇 ′) s.t. 𝑐 = 𝑐𝑙(𝑇 ).

Definition 14. Let 𝐹 = (𝐴,𝑅) be an AF. The associated
ABA framework of 𝐹 is 𝐴𝐵𝐴(𝐹 ) = (ℒ,ℛ,𝒜, ) with

a bc

r qp

Figure 2: Graph representation of Example 4

• 𝒜 = 𝐴,
• ℒ = 𝒜 ∪ {𝑎𝑐|𝑎 ∈ 𝒜},
• ℛ = {𝑏𝑐 ← 𝑎|(𝑎, 𝑏) ∈ 𝑅},
• for all 𝑎 ∈ 𝒜: 𝑎 = 𝑎𝑐.

Cyras and Toni [7] showed that the acceptance co-
incides. So, if a set of assumptions 𝑆 is acceptable in
the ABA framework 𝐷, then 𝑆 is also acceptable in the
corresponding AF 𝐹𝐷 (in the form of conclusions of an
extension).

Example 4. Continuing Example 3, we can construct
the corresponding AF 𝐹𝐷 = (𝐴,𝑅) of 𝐷, with 𝐴 =
{a, b, c, p, q, r} where

• a is a tree with 𝑎𝑠𝑚(a) = {𝑎}, 𝑐𝑙(a) = 𝑎, and
𝑟𝑢(a) = ∅,

• b is a tree with 𝑎𝑠𝑚(b) = {𝑏}, 𝑐𝑙(b) = 𝑏, and
𝑟𝑢(b) = ∅,

• c is a tree with 𝑎𝑠𝑚(c) = {𝑐}, 𝑐𝑙(c) = 𝑐, and
𝑟𝑢(c) = ∅,

• p is a tree with 𝑎𝑠𝑚(p) = {𝑎}, 𝑐𝑙(p) = 𝑝, and
𝑟𝑢(p) = {𝑟3},

• q is a tree with 𝑎𝑠𝑚(q) = ∅, 𝑐𝑙(q) = 𝑞, and
𝑟𝑢(q) = {𝑟2},

• r is a tree with 𝑎𝑠𝑚(r) = {𝑏, 𝑐}, 𝑐𝑙(r) = 𝑟, and
𝑟𝑢(r) = {𝑟1}

and the attack relation

𝑅 = {(q, b), (q, r), (r, a), (r, p), (p, r), (p, c)}.

The corresponding graph representation can be found in
Figure 2. So, for each derivable sentence in an ABA frame-
work, we create an argument in the corresponding AF. We
know that 𝑝 is derivable from {𝑎} by rules 𝑟2 and 𝑟3, hence
p ∈ 𝐴 and additionally the attacks in the AF are repre-
senting the attacks from one set of assumptions to another
set of assumptions. For example, the attack (p, r) ∈ 𝑅 is
representing the fact, that {𝑎} attacks {𝑏}.

Note that in the following, we call argument a, based
on a tree of the form 𝑎𝑠𝑚(a) = {𝑎}, 𝑐𝑙(a) = 𝑎 and
𝑟𝑢(a) = ∅, where 𝑎 is an assumption, the assumption
argument of 𝑎.



3. Ranking Assumptions
Up to this point, reasoning in ABA is focused on sets of
assumptions being acceptable with respect to a semantics
like admissible, complete, or preferred semantics. So, we
can state that an assumption is contained in an accept-
able set of assumptions or not, however this reasoning
approach does not give us any insight into the strength of
individual assumptions. In this paper, we shift the focus
to the strength of the individual assumptions. For that
purpose, we develop a general framework for ranking
assumptions in ABA. This framework allows us to state
that an assumption is stronger than another one.

Definition 15. A ranking-based semantics 𝜏 is a function
that maps an ABA framework 𝐷 = (ℒ,ℛ,𝒜, ) to a
preorder ⪰𝜏

𝐷 on 𝒜.

Intuitively, 𝑎 ⪰𝜏
𝐷 𝑏means, that assumption 𝑎 is at least

as strong as 𝑏 in 𝐷. We define the usual abbreviations as
follows;

• 𝑎 ≻𝜏
𝐷 𝑏 denotes strictly stronger, i.e. 𝑎 ⪰𝜏

𝐷 𝑏 and
𝑏 ̸⪰𝜏

𝐷 𝑎.
• 𝑎 ≃𝜏

𝐷 𝑏 denotes equally strong, i.e. 𝑎 ⪰𝜏
𝐷 𝑏 and

𝑏 ⪰𝜏
𝐷 𝑎.

3.1. Principles
In order to evaluate different ranking-based approaches
for ABA frameworks, we will follow a principle-based
approach, like typical in the area of argumentation [12, 9].
These principles will give us insight into the behaviour
of the different ranking-based semantics, hence allowing
us to compare these different approaches. Note that all
these principles are not mandatory and should be selected
depending on the application. Some application favour
some principles over others. In some other applications,
we want to avoid satisfying particular principles, since
these principles are obstructing or counter-intuitive in
these scenarios. Next, we will propose a number of prin-
ciples for ranking-based semantics for ABA frameworks.

The first principle states that an assumption for which
we cannot derive the contrary should be ranked higher
than any assumption for which we can derive the con-
trary.

Definition 16 (P1). Ranking-based semantics 𝜏 satisfies
P1 iff for every ABA framework 𝐷 = (ℒ,ℛ,𝒜, ) it holds
that for every assumption 𝑎 ∈ 𝒜 s.t. 𝑎 is not derivable from
any set of assumptions 𝑄 ⊆ 𝒜 and for every assumption
𝑏 ∈ 𝒜 s.t. 𝑏 is derivable it holds that 𝑎 ≻𝜏

𝐷 𝑏.

In other words, if there is no reason to lower the
strength of an assumption, then the strength of that as-
sumption should not be lowered.

One simple principle states that the names of the as-
sumptions do not influence the ranking.

Definition 17 (Isomorphism). An isomorphism 𝛾 be-
tween two ABA frameworks 𝐷 = (ℒ,ℛ,𝒜, ) and
𝐷′ = (ℒ′,ℛ′,𝒜′, ′) is a bijective function 𝛾 : 𝒜 → 𝒜′

(extended to ℒ′ with for all 𝑥 ∈ ℒ ∖ 𝒜: 𝛾(𝑥) = 𝑥
and ℛ′ = {𝛾(𝑟)|𝑟 ∈ ℛ}, where for all 𝑟 ∈ ℛ with
𝑟 = ℎ ← 𝑎1, ..., 𝑎𝑛: 𝛾(ℎ ← 𝑎1, ..., 𝑎𝑛) = 𝛾(ℎ) ←
𝛾(𝑎1), ..., 𝛾(𝑎𝑛)) and 𝑎 = 𝛾(𝑎)

′
for all 𝑎 ∈ 𝒜.

Definition 18 (P2). Ranking-based semantics 𝜏 satisfies
P2 iff for every pair of ABA frameworks 𝐷 = (ℒ,ℛ,𝒜, )
and 𝐷′ = (ℒ′,ℛ′,𝒜′, ′) and for all isomorphisms 𝛾
s.t. 𝐷′ = 𝛾(𝐷), for all 𝑎, 𝑏 ∈ 𝒜, we have 𝑎 ⪰𝜏

𝐷 𝑏 iff
𝛾(𝑎) ⪰𝜏

𝐷′ 𝛾(𝑏).

The next principle is focusing on the addition of rules,
where the head is a contrary of an assumption. In a
sense, these rules can be considered as attacking rules.
The addition of such a rule for an assumption should not
raise the strength of that assumption.

Definition 19 (P3). Let 𝐷 = (ℒ,ℛ,𝒜, ) be an ABA
framework and 𝑎 ∈ 𝒜. Let 𝑟−𝑎𝑑𝑑 be a rule with 𝑟−𝑎𝑑𝑑 /∈ ℛ
and ℎ𝑒𝑎𝑑(𝑟−𝑎𝑑𝑑) = 𝑎. 𝐷−

𝑎𝑑𝑑 is a copy of 𝐷 with 𝑟−𝑎𝑑𝑑
added, i. e., 𝐷−

𝑎𝑑𝑑 = (ℒ,ℛ∪ {𝑟−𝑎𝑑𝑑},𝒜, ).
Ranking-based semantics 𝜏 satisfies P3 iff for all ABA

frameworks 𝐷 = (ℒ,ℛ,𝒜, ) it holds for all 𝑎, 𝑏 ∈ 𝒜
with 𝑎 ̸= 𝑏 that 𝑎 ⪰𝜏

𝐷−
𝑎𝑑𝑑

𝑏 implies 𝑎 ⪰𝜏
𝐷 𝑏.

So, the addition of rules, which in a sense can lower
the strength of an assumption, should at least not raise
the strength of that assumption.

Cyras and Toni [7] have shown that the acceptance
of extension-based semantics coincides for ABA frame-
works and their corresponding AFs. However, the trans-
formation from an ABA framework to an AF and back
to an ABA framework does add new rules and there-
fore changes the framework. The next principle ensures
that these transformations between frameworks do not
change the resulting ranking.

Definition 20 (P4). Ranking-based semantics 𝜏 satisfies
P4 iff for every ABA framework 𝐷 = (ℒ,ℛ,𝒜, ) and
𝐹𝐷 the corresponding AF to 𝐷, and 𝐴𝐵𝐴(𝐹𝐷) the cor-
responding ABA framework to 𝐹𝐷 , it holds for any pair
𝑎, 𝑏 ∈ 𝒜 that we have 𝑎 ⪰𝜏

𝐷 𝑏 iff 𝑎 ⪰𝜏
𝐴𝐵𝐴(𝐹𝐷) 𝑏.

The next principle focuses on assumptions, for which
we can derive the contrary by only using the assumption
itself. These assumptions are in a sense self-attacking
and should be ranked worse than any non-self-attacking
assumption.

Definition 21 (P5). Ranking-based semantics 𝜏 satisfies
P5 iff for every ABA framework 𝐷 = (ℒ,ℛ,𝒜, ) the
following holds for every assumptions 𝑎, 𝑏 ∈ 𝒜, if {𝑎} ̸⊢ℛ
𝑎 and {𝑏} ⊢ℛ 𝑏 then 𝑎 ≻𝜏

𝐷 𝑏.



3.2. Methods
We define a family of ranking-based semantics for ABA
frameworks that relies on the reduction of an ABA frame-
work to its corresponding AF, an application of a ranking-
based semantics for AFs on this derived AF, and a re-
interpretation of the resulting ranking over arguments
in terms of assumptions.

Definition 22. Let 𝐷 = (ℒ,ℛ,𝒜, ) be an ABA frame-
work, 𝐹𝐷 = (𝐴,𝑅) the corresponding AF, 𝑎, 𝑏 ∈ 𝒜,
a, b the corresponding assumptions arguments, and 𝜌 a
ranking-based semantics for AFs. The ranking-based se-
mantics ABA-𝜌 returns 𝑎 ⪰ABA-𝜌

𝐷 𝑏 iff a ⪰𝜌
𝐹𝐷

b.

In other words, assumption 𝑎 is at least as strong 𝑏 in
𝐷 if the corresponding assumption argument a is at least
as strong as b in the corresponding AF of 𝐷.

Example 5. In the following example, we use the Burden-
based semantics as an example ranking-based semantics.
Other semantics can be applied equivalently. Consider the
ABA framework 𝐷 from Example 3 and its corresponding
AF 𝐹𝐷 constructed in Example 4.

Similar to Example 2, if we apply the Burden-based se-
mantics to 𝐹𝐷 , the resulting ranking is:

q ≻𝐵𝑏𝑠
𝐹𝐷

p ≃𝐵𝑏𝑠
𝐹𝐷

a ≻𝐵𝑏𝑠
𝐹𝐷

c ≻𝐵𝑏𝑠
𝐹𝐷

b ≻𝐵𝑏𝑠
𝐹𝐷

r.

Restricting the ranking to only assumption arguments gives
us

a ≻𝐵𝑏𝑠
𝐹𝐷

c ≻𝐵𝑏𝑠
𝐹𝐷

b.

We can project this ranking back to ABA:

𝑎 ≻ABA-𝐵𝑏𝑠
𝐷 𝑐 ≻ABA-𝐵𝑏𝑠

𝐷 𝑏

Hence, 𝑎 is the strongest assumption, then 𝑐, and 𝑏 is the
weakest assumption. The preferred extension of 𝐷 is {𝑎},
thus it is intuitive that 𝑎 is the strongest assumption. While
𝑏 is attacked by a fact 𝑞 ← meaning that 𝑏 is not really
strong and therefore should be ranked below 𝑐.

So, the corresponding AF of an ABA framework gives
us insight into the relationship between each assumption.
We see that if the corresponding argument is strong or
highly ranked in the corresponding AF, then the assump-
tion will also be strong in the ABA framework as well.
Additionally, we can compare two assumptions 𝑏 and 𝑐
with each other, which is not possible by using solely
extension-based semantics since both assumptions are
not acceptable.

In the remainder of this section, we look at the com-
pliance of this family of ranking-based semantics with
respect to our principles from before. For that we look at
the principles the underlying ranking-based semantics
for AFs satisfies. With the help of these principles, we
can show that principles in the ABA setting are satisfied.

The idea that unattacked arguments should be ranked
best can be translated into the ABA setting. The
unattacked arguments then correspond to assumptions
for which we can not derive the contrary.

Theorem 1. If 𝜌 satisfies VP, then ABA-𝜌 satisfies P1.

Proof. Let 𝐷 = (ℒ,ℛ,𝒜, ) be an ABA framework,
𝐹𝐷 = (𝐴,𝑅) the corresponding AF, 𝑎, 𝑏 ∈ 𝒜, a, b the
corresponding assumptions arguments, and 𝜌 a ranking-
based semantics for AFs.

Assume 𝜌 satisfies VP, 𝑎 is not derivable and 𝑏 is deriv-
able. Since 𝑎 is not derivable, we know that a can not be
attacked in 𝐹𝐷 , because we do not have any argument
x in 𝐹𝐷 with 𝑐𝑙(x) = 𝑎. Hence, a−𝐹𝐷

= ∅. Additionally,
we know that b is attacked at least once, because 𝑏 is
derivable in 𝐷, so there has to be an argument x′ s.t.
𝑐𝑙(x′) = 𝑏. Hence, b−𝐹𝐷

̸= ∅. Since 𝜌 satisfies VP, we
know that a ≻𝜌

𝐹𝐷
b and therefore also 𝑎 ≻ABA-𝜌

𝐷 𝑏.

We see that the names of assumptions do not influence
the ranking, despite translating the ABA framework into
an AF.

Theorem 2. If 𝜌 satisfies Abs, then ABA-𝜌 satisfies P2.

Proof. Let 𝐷 = (ℒ,ℛ,𝒜, ) and 𝐷′ = (ℒ′,ℛ′,𝒜′, ′)
be two ABA frameworks and 𝛾 be an isomorphism s.t.
𝐷′ = 𝛾(𝐷). Let 𝐹𝐷 = (𝐴,𝑅) resp. 𝐹𝐷′ = (𝐴′, 𝑅′)
be the corresponding AFs for 𝐷 and 𝐷′. Let 𝜌 be an
ranking-based semantics for AFs.

Assume 𝜌 satisfies Abs. We know that for every as-
sumption 𝑎 ∈ 𝒜 there is an isomorphic assumption
𝑎′ ∈ 𝒜′, hence for every argument a ∈ 𝐴 there is an iso-
morphic assumption argument a′ in 𝐹𝐷′ . Similar can be
reason for any other element in𝐷. Therefore, there has to
be an isomorphism 𝛾′ for 𝐹𝐷 s.t. 𝛾′(𝐹𝐷) = 𝐹𝐷′ . Since
𝜌 satisfies Abs, we know that for any pair of arguments
(a, b) it holds that if a ⪰𝜌

𝐹𝐷
b then 𝛾′(a) ⪰𝜌

𝐹𝐷′ 𝛾′(b).

Hence, it holds that 𝛾(𝑎) ⪰ABA-𝜌
𝐷′ 𝛾(𝑏) iff 𝑎 ⪰ABA-𝜌

𝐷 𝑏 and
therefore P2 is satisfied.

In the following, we show that if the underlying
ranking-based semantics for AFs satisfies CP and To-
tal, then we know that the addition of rules, with which
we can derive the contrary of an assumption, do not raise
the strength of that assumption.

Theorem 3. If 𝜌 satisfies CP and Total, then ABA-𝜌 satis-
fies P3.

Proof. Let 𝐷 = (ℒ,ℛ,𝒜, ) be an flat ABA framework,
𝐹𝐷 = (𝐴,𝑅) the corresponding AF and 𝜌 a ranking-
based semantics for AFs. Let 𝑟−𝑎𝑑𝑑 is a new rule for 𝑎 ∈ 𝒜,
where 𝑟−𝑎𝑑𝑑 /∈ ℛ and ℎ𝑒𝑎𝑑(𝑟−𝑎𝑑𝑑) = 𝑎 and𝐷−

𝑎𝑑𝑑 is a copy
of 𝐷 with 𝑟−𝑎𝑑𝑑 added, i.e. 𝐷−

𝑎𝑑𝑑 = (ℒ,ℛ∪{𝑟−𝑎𝑑𝑑},𝒜, )
and let 𝐹

𝐷−
𝑎𝑑𝑑

be the corresponding AF.



Assume 𝜌 satisfies CP, Total and 𝑎 ⪰ABA-𝜌

𝐷−
𝑎𝑑𝑑

𝑏 for 𝑏 ∈ 𝒜
and the corresponding assumption arguments a and
b. First, we look at the case that 𝑟−𝑎𝑑𝑑 can not be ac-
tivated, so there is no tree x s.t. 𝑟−𝑎𝑑𝑑 ∈ 𝑟𝑢(x) mean-
ing that, 𝑏𝑜𝑑𝑦(𝑟−𝑎𝑑𝑑) ̸⊆ 𝒜 and there is no sequence
of rules (𝑟1, ..., 𝑟𝑛, 𝑟

−
𝑎𝑑𝑑) from ℛ s.t. 𝑏𝑜𝑑𝑦(𝑟−𝑎𝑑𝑑) ⊆⋃︀𝑛

𝑖=1 ℎ𝑒𝑎𝑑(𝑟𝑖) ∪ 𝒜. Then the addition of 𝑟−𝑎𝑑𝑑 does not
change the corresponding AF, i.e. 𝐹𝐷 = 𝐹

𝐷−
𝑎𝑑𝑑

and

therefore 𝑎 ⪰ABA-𝜌
𝐹
𝐷

−
𝑎𝑑𝑑

𝑏 implies 𝑎 ⪰ABA-𝜌
𝐹𝐷

𝑏.

Next, we look at the case, where 𝑟−𝑎𝑑𝑑 can be activated.
The addition of any attack into an AF can only raise
the number of attackers for an argument and can not
lower the number of attackers. Similar hold for ABA
frameworks, the addition and activation of a new rule
does not yield to deactivation of other rules. Hence, it
holds that |x−𝐹𝐷

| ≤ |x−𝐹
𝐷

−
𝑎𝑑𝑑

| for any 𝑥 ∈ 𝒜 and its

corresponding assumption argument x. Since 𝜌 satis-
fies CP and Total and 𝑎 ⪰𝜌

𝐷−
𝑎𝑑𝑑

𝑏 holds, we know that

|a−𝐹
𝐷

−
𝑎𝑑𝑑

| ≤ |b−𝐹
𝐷

−
𝑎𝑑𝑑

|.

If |b−𝐹𝐷
| = |b−𝐹

𝐷
−
𝑎𝑑𝑑

|, then it is clear that |a−𝐹𝐷
| ≤

|b−𝐹𝐷
| and since 𝜌 satisfies CP and Total it holds that

a ⪰𝜌
𝐹𝐷

b and therefore also 𝑎 ⪰ABA-𝜌
𝐷 𝑏.

For |b−𝐹𝐷
| < |b−𝐹

𝐷
−
𝑎𝑑𝑑

|we know that we can derive 𝑎 in

𝐹
𝐷−

𝑎𝑑𝑑
and this activates a rule 𝑟′ with 𝑎 ∈ 𝑏𝑜𝑑𝑦(𝑟′) and

this rule is needed to activate rule 𝑟′′ with ℎ𝑒𝑎𝑑(𝑟′′) = 𝑏.
This implies that 𝑎 can not be derived in 𝐷 otherwise
we could activate 𝑟′ in 𝐷 as well and that means that
|b−𝐹𝐷

| < |b−𝐹
𝐷

−
𝑎𝑑𝑑

| could not hold. Since 𝑎 can not be

derived this implies |a−𝐹𝐷
| = 0 and therefore |a−𝐹𝐷

| ≤
|b−𝐹𝐷

| and also a ⪰𝜌
𝐹𝐷

b, which implies 𝑎 ⪰ABA-𝜌
𝐷 𝑏.

Similar to extension-based reasoning transforming
ABA frameworks into AF and back should not influence
the resulting ranking.

Theorem 4. If 𝜌 satisfies CP and Total, then ABA-𝜌 satis-
fies P4.

Proof. Let 𝐷 = (ℒ,ℛ,𝒜, ) be a flat ABA framework,
𝐹𝐷 = (𝐴,𝑅) the corresponding AF, 𝐴𝐵𝐴(𝐹𝐷) the cor-
responding ABA framework of 𝐹𝐷 , 𝐹𝐴𝐵𝐴(𝐹𝐷) the cor-
responding AF to 𝐴𝐵𝐴(𝐹𝐷) and 𝜌 a ranking-based se-
mantics for AFs. Let 𝑎, 𝑏 ∈ 𝐴, a be the corresponding
assumptions argument of 𝑎 and b be the corresponding
assumption argument of 𝑏.

Assume 𝜌 satisfies CP, Total and 𝑎 ⪰ABA-𝜌
𝐷 𝑏. If a sen-

tence is derivable in 𝐷, then there is a corresponding
argument in 𝐹𝐷 and every argument in 𝐹𝐷 is an assump-
tion in 𝐴𝐵𝐴(𝐹𝐷) and since assumptions are always
derivable, we know that everything, which is derivable

in 𝐷 is also derivable in 𝐴𝐵𝐴(𝐹𝐷). This implies that
the number of attacker for any assumption argument a in
𝐹𝐷 is equal to the number of attacker for the correspond-
ing assumption argument in 𝐹𝐴𝐵𝐴(𝐹𝐷). Since 𝜌 satisfies
CP and Total and 𝑎 ⪰𝐴𝐵𝐴−𝜌

𝐷 𝑏, we know |a−𝐹𝐷
| ≤ |b−𝐹𝐷

|
and since the number of attacker is the same in 𝐹𝐷

and 𝐹𝐴𝐵𝐴(𝐹𝐷), i.e. |(𝑎)−𝐹𝐷
| = |(𝑎)−𝐹𝐴𝐵𝐴(𝐹𝐷)

|, we have

|a−𝐹𝐴𝐵𝐴(𝐹𝐷)
| ≤ |b−𝐹𝐴𝐵𝐴(𝐹𝐷)

|. CP and Total then imply

a ⪰𝜌
𝐹𝐴𝐵𝐴(𝐹𝐷)

𝑏 and therefore also 𝑎 ⪰ABA-𝜌
𝐴𝐵𝐴(𝐹𝐷) 𝑏.

If the underlying ranking-based semantics 𝜌 does sat-
isfy SC, then we know that in the ABA setting assump-
tions for which we can derive the contrary by only using
the assumption should be ranked worst.

Theorem 5. If 𝜌 satisfies SC, then ABA-𝜌 satisfies P5.

Proof. Let 𝐷 = (ℒ,ℛ,𝒜, ) be an ABA framework,
𝐹𝐷 = (𝐴,𝑅) the corresponding AF, 𝑎, 𝑏 ∈ 𝒜, the corre-
sponding assumptions arguments a, b, and 𝜌 a ranking-
based semantics for AFs.

Assume 𝜌 satisfies SC and {𝑎} ̸⊢ℛ 𝑎 and 𝑏 with
{𝑏} ⊢ℛ 𝑏. This implies that (b, b) ∈ 𝑅 and (a, a) /∈ 𝑅.
So, b attacks itself and also an assumption argument x
for 𝑥 ∈ 𝒜 can only attack it self if {𝑥} ⊢ℛ 𝑥, hence a

can not attack it self. Because 𝜌 satisfies SC, we know
a ≻𝜌

𝐹𝐷
b and this implies 𝑎 ≻ABA-𝜌

𝐷 𝑏.

The principles the underlying ranking-based semantics
for AFs need to satisfy in order to satisfy every principle
proposed for the ABA setting are simple. A number of
different ranking-based semantics for AFs are suitable to
be used, since they satisfy a good number of principles
like the Burden-based semantics satisfies Abs, VP, CP
and Total and therefore ABA-𝐵𝑏𝑠 satisfies P1, P2, P3 and
P4. However, Besnard et al. [13] have shown that a few
principles for the AF setting are incompatible with each
other, in particular CP and SC are incompatible. Hence,
there is no ranking-based semantics, which satisfies CP
and SC. Therefore, we have to check the principles in the
ABA setting by hand. For ABA-𝐵𝑏𝑠 we know, that SC
is violated, therefore we have to check P5. By adapting
the counterexample used to show the incompatibility of
CP and SC, we can show that ABA-𝐵𝑏𝑠 does violate P5
[13, 14].

Example 6. Let 𝐷1 = (ℒ,ℛ,𝒜, ), with𝒜 = {𝑎, 𝑏, 𝑐},
rules 𝑟1 : 𝑏→ 𝑎, 𝑟2 : 𝑐→ 𝑎, and 𝑏 = 𝑏. The correspond-
ing AF is

𝐹𝐷1 = ({a, b, c, r1, r2}, {(r1, a), (r2, a), (b, b)}),

where

• a is a tree with 𝑎𝑠𝑚(a) = {𝑎}, 𝑐𝑙(a) = 𝑎 and
𝑟𝑢(𝑎) = ∅,
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Figure 3: Graph representation of Example 6

• b is a tree with 𝑎𝑠𝑚(b) = {𝑏}, 𝑐𝑙(b) = 𝑏 and
𝑟𝑢(𝑏) = ∅,

• c is a tree with 𝑎𝑠𝑚(c) = {𝑐}, 𝑐𝑙(c) = 𝑐 and
𝑟𝑢(𝑐) = ∅,

• r1 is a tree with 𝑎𝑠𝑚(r1) = {𝑏}, 𝑐𝑙(r1) = 𝑎 and
𝑟𝑢((𝑟1) = {𝑟1},

• r2 is a tree with 𝑎𝑠𝑚(r2) = {𝑐}, 𝑐𝑙(r2) = 𝑎 and
𝑟𝑢((𝑟2) = {𝑟2}.

Depicted in Figure 3.
So, 𝑏 implies its contrary {𝑏} ⊢∅ 𝑏 and 𝑎 does

not imply its contrary. When we apply the Burden-
based semantics, we see that 𝑏𝑢𝑟(a) = (1, 3, 3, ...) and
𝑏𝑢𝑟(b) = (1, 2, 2, ...), this implies b ≻𝐵𝑏𝑠

𝐹𝐷1
a and there-

fore 𝑏 ≻ABA-𝐵𝑏𝑠
𝐷1

𝑎. However, this contradicts 𝑎 ≻ABA-𝐵𝑏𝑠
𝐷1

𝑏
like P5 implies.

4. Related Work
One of the most discussed topics in structured argumen-
tation are preferences over uncertain information. These
preferences state that information 𝑎 is better or more
believable than information 𝑏. A number of frameworks
working with preferences can be found the literature
like ASPIC+ [15, 16, 17, 18, 19], ABA+ [7, 20] or 𝑝_ABA
[21]. While ABA+ and 𝑝_ABA are extensions of ABA,
ASPIC+ is a general-purpose structure argumentation
framework, with focus on preferences. Prakken [17] has
shown that flat ABA frameworks can be instantiated as
ASPIC+ frameworks. ABA+ receives in addition of an
ABA framework a preference over the assumptions as an
input. Using these preferences a new attack relation is
defined. Similar to ABA+, 𝑝_ABA receives in addition to
the ABA framework a preference as an input. However,
the preference in 𝑝_ABA is over the sentences ℒ.

In these frameworks the preferences are preorders
over rules and ordinary premises (ASPIC+), assumptions
(ABA+) or sentences (𝑝_ABA). Hence, these preferences
are similar to our rankings over assumptions. All these
preferences can be seen as a strength notion, if an as-
sumption 𝑎 is preferred over assumption 𝑏 in an ABA+

framework, then this relationship between 𝑎 and 𝑏 can
be seen as 𝑎 is better than 𝑏. However, all these frame-
works receive their preferences as an input rather than

calculating the preorder based on the language and rules
given.

In ASPIC+ and ABA+ preferences are used to disable
or reverse attacks. If the target of an attack is consid-
ered better than the attacker, this attack is discarded or
reversed, so the attacker is the attacked.

One interesting idea with ABA+ is to use the under-
lying ranking over assumptions to construct the corre-
sponding ABA+ framework for an ABA framework. So,
we take an ABA framework and calculate a ranking over
the assumption with any ranking-based semantics like
ABA-𝐵𝑏𝑠 to then construct an ABA+ framework using
our ranking as a preference order. An ABA+ framework
constructed in such a way has similarities with the un-
derlying ABA framework for example the conflict-free
sets are the same. Hence, we can transform any ABA
framework into an ABA+ framework without additional
information like a preference order.

𝑝_ABA uses preferences to discredit sets of assump-
tions. Wakaki [21] proposes preorders over sets of as-
sumptions. However, their approach has two big differ-
ences: first, in 𝑝_ABA preferences are part of the input
and, secondly, they can only differentiate sets of assump-
tions, which belong to an extension-based semantics.

In the literature, ranking-based semantics are used to
refine extension-based reasoning in the area of abstract
argumentation. For example Bonzon et al. [22] uses the
aggregated strength values of each argument of a set to
compare two sets. While Konieczny, Marquis, and Vesic
[23] are comparing two sets of arguments using a pair-
wise comparison based on a criterion like the number of
arguments inside the first set not attacked by the second
set. So, the presented ranking-based semantics for ABA
frameworks are the first step towards refining extension-
based reasoning inside structured argumentation.

5. Conclusion
In this work, we discussed the problem of individual
strength of assumptions in ABA frameworks. We pro-
posed a general framework to rank assumptions based
on their strength inside an ABA framework without ad-
ditional information like a preference order. Additionally,
we proposed principles in order to compare different
ranking-based semantics based on their behaviour alone.
We also defined a family of ranking-based semantics for
ABA based on approaches and ideas for AFs. For an ABA
framework we construct the corresponding AF then ap-
ply known ranking-based semantics in order to rank ar-
guments in the corresponding AF to finally re-interpret
this ranking in the ABA setting. We have shown that if
the underlying ranking-based semantics for AFs satisfies
certain principles, then this family of semantics satisfies
our proposed principles for the ABA setting as well.



As for future work, we want to look at other struc-
tured argumentation frameworks like ASPIC+ and apply
similar ideas in order to rank individual elements of the
ASPIC+ framework based on their strength alone. Our
current approach uses AFs in order to rank assumptions.
As a follow-up we want to propose direct approaches
only using the ABA framework without the help of the
corresponding AF.
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