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Abstract

We introduce a novel approach to measure inconsistency in knowledge bases that
is based on the Tableau Method and derivations of contradictions from a knowledge
base. This approach is purely syntactic and differs from previous approaches by neither
taking minimal inconsistent sets nor non-classical semantics into account. We develop
three concrete measures that take derivations of contradictions into account and inves-
tigate their compliance w. r. t. rationality postulates, expressivity, and computational
complexity.

1 Introduction

An inconsistency measure I is a function mapping a knowledge base—e. g. a set of proposi-
tional sentences—to a non-negative real value, such that larger values indicate more severe
inconsistency in the knowledge base [7, 9, 21]. Considering, e. g., the two knowledge bases
K1 and K2 defined via

K1 = {a,¬a, b} K2 = {a ∧ b,¬a,¬b}

one can see that both knowledge bases are inconsistent (in the classic-logical sense), but
K2 may be judged “more inconsistent” as it contains contradictory information about both
propositional atoms a and b while K1 has only contradictory information about a. So an
inconsistency measure I focusing on this aspect may give I(K1) < I(K2). The concept of
a degree of inconsistency is not easily characterisable through either formal properties or a
single measure. In fact, there are many proposals for desirable properties an inconsistency
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measure should satisfy and many proposals for inconsistency measures that satisfy certain
subsets of these properties, see [21] for a survey.

One way to classify inconsistency measures is by differentiating whether they operate
on the formula level or on the language level. The former category is also called the syn-
tactic approach while the latter is called the semantic approach [9]. Measures belonging
to the syntactic approach usually make use of minimal inconsistent subsets, i. e., subsets of
the knowledge base that are inconsistent but removing any formula renders them consis-
tent. For example, a simple measure is IMI [11], which assigns to a knowledge base simply
the number of its minimal inconsistent subsets. For the knowledge bases from before we
have therefore IMI(K1) = 1 and IMI(K2) = 2, since {a,¬a} is the only minimal incon-
sistent subset of K1 and {a ∧ b,¬a} and {a ∧ b,¬b} are the minimal inconsistent subsets
of K2. Other measures also take the relationships between minimal inconsistent subsets
into account [14] or exploit other notions such as maximal consistent subsets [1], but the
commonality of these approaches is that they focus on conflicts between formulae of the
knowledge base. On the other hand, measures belonging to the semantic approach focus
on conflicts between language components. More precisely, these measures aim at identi-
fying those atoms of the underlying language that are conflicting and they usually employ
non-classical and many-valued logics as a tool for that [20]. For example, the measure Ic

[8] assigns to a knowledge base the number of propositional atoms participating in the in-
consistency using three-valued paraconsistent semantics. Without going into details, this
measure gives Ic(K1) = 1 and Ic(K2) = 2 as well, as one resp. propositional atoms are
participating in the conflicts of K1 resp. K2.

In this paper, we propose a different perspective for measuring inconsistency based
on derivations of contradictions with logical calculi. In fact, we argue that the current
distinction between syntactic and semantic approaches is mislabelled, as our new approach
is purely syntactic and does not rely on notions such as minimal inconsistent subsets or
maximal consistent subsets, which are actually semantically defined concepts. We consider
the Tableau Method [17] as a prototypical logical calculus (also called proof system) and
consider proofs of contradiction as a sequence of derivation rules that shows how a logical
inconsistency can be derived from the knowledge base syntactically. We use such proofs as
measures of inconsistency by assuming that 1.) the existence of many such proofs and 2.)
the existence of short proofs indicates a larger degree of inconsistency.

To summarise, the contributions of this paper are as follows:

1. We define three inconsistency measures based on proofs of contradictions (Section 4).
Our inconsistency measures explore the size and number of minimal tableaux to
weigh the inconsistency within a knowledge base.

2. We analyse our measures in terms of rationality postulates (Section 5.1), expressivity
(Section 5.2), and computational complexity (Section 5.3). Besides comparing our
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new measures with the existing rationality postulates, we introduce a new postulate
with the objective of identifying redundant information in producing inconsistency,
and we show that our measures comply with that postulate. We show that our mea-
sures are maximally expressive, in the sense that it produces infinitely many values
of inconsistency. As for complexity, due to open problems in the area of proof com-
plexity, EXPSPACE is shown to be the tightest upper bound for various decision
problems related to our measures.

Sections 2 and 3 provide the formal background and Section 6 concludes.

2 Preliminaries

Let At be an arbitrary fixed finite set of propositional atoms. We assume that the special
symbols ⊤,⊥ (tautology and contradiction, respectively) are always contained in At, i. e.,
⊤,⊥∈ At.

Definition 1. Given a set of propositional atoms At, the propositional language L(At) cor-
responds to the language generated by the following grammar:

φ := p | ¬φ | φ ∧ φ | φ ∨ φ;

where p ∈ At.

As usual, ¬ denotes negation, ∧ is conjunction, ∨ is disjunction. A knowledge base
K w. r. t. a language L(At) is any finite subset K ⊆ L(At). Let K(At) be the set of all
knowledge bases w. r. t. to the language L(At). For any formula ϕ, let At(ϕ) ⊆ At be the set
of atoms appearing in ϕ. When it is clear from context, we will omit At and simply write L
and K.

Definition 2. Given a set of propositional atoms At, the length of a formula ϕ ∈ L(At) is
given by the function len : L(At) → Z≥0 inductively defined as

• if φ ∈ At then len(φ) = 1;

• len(¬φ) = len(φ) + 1;

• len(φ □ ψ) = len(φ) + len(ψ) + 1 for □ ∈ {∧,∨}.

The size of a set A is denoted by |A|. An interpretation ω on At is a function ω : At →
{true, false} with ω(⊤) = true and ω(⊥) = false. Let Ω(At) be the set of all interpretations
on At. An interpretation ω satisfies an atom a ∈ At, denoted as ω |= a, iff ω(a) = true. Let
ω ̸|= ψ denote that ω does not satisfy a formula ψ. The relation |= is inductively extended
to general formulae as usual, that is,
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ω |= φ ∧ ψ iff ω |= φ and ω |= ψ

ω |= φ ∨ ψ iff ω |= φ or ω |= ψ

ω |= ¬φ iff ω ̸|= φ.

If ω |= ϕ we also say that ω is a model of ϕ. Let Mod(ϕ) denote the set of models of
a formula ϕ. A formula ϕ ∈ L(At) is entailed by ψ ∈ L(At), denoted by ψ |= ϕ, if for all
ω ∈ Ω(At), ω |= ψ implies ω |= ϕ. Two formulae ϕ, ψ ∈ L(At) are equivalent, denoted
by ϕ ≡ ψ, if both ϕ |= ψ and ψ |= ϕ. Furthermore, two sets of formulae X1, X2 are
semi-extensionally equivalent if there is a bijection s : X1 → X2 such that for all α ∈ X1
we have α ≡ s(α) [18]. We denote this by X1 ≡s X2.

3 The Tableau Method

In general, a proof system is a set of schematic inference rules that allows the purely syn-
tactic transformation of formulae. Well-known proof systems are e. g. Frege’s propositional
calculus [5] and Gentzen-style proof systems [6]. In this section, we review the Tableau
Method for classical propositional logics [17]. The Tableau method is a proof system based
on refutation: given a knowledge base K, it constructs a binary tree by applying a sequence
of rules until either (i) all the branches of the tree present a contradiction or (ii) no rules
can be further applied. In the first case, the knowledge base K is inconsistent; while in the
second case, as long as there is at least one branch free of contradiction, K is consistent.
The constructed tree is referred to as a tableau. In the remainder of this section, we review
the set-labelled variant of the Tableau Method, where the constructed tableau is a binary
tree in which each node is labelled with a set of formulae.

Definition 3. A set-labelled tree is a tuple T = (N,E, λ) where

• (N,E) is a tree, s.t N is the set of nodes, E ⊆ N ×N the set of edges,

• λ : N → K(At) is a labelling function.

The labelling function λmaps each node of the tree to a set of formulae in L(At). Given
a set-labelled tree T = (N,E, λ), the children of a node n are given by children(n) = {n′ ∈
N | (n, n′) ∈ E}, and the leaf nodes of T are given by leaf(T ) = {n ∈ N | children(n) =
∅}. Moreover, the root of T is given by root(T ).

We will postpone the formal definition of the set-labelled tableau (see Definition 5) until
we have all the necessary ingredients. We start by giving an intuition of how the tableau
method works. As mentioned above, a tableau, which is a set-labelled binary tree with some
further constraints, is constructed by applying a set of non-deterministic derivation rules,
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(¬¬e)
K ∪ {¬¬φ}

K ∪ {¬¬φ} ∪ {φ}

(DM∧)
K ∪ {¬(φ ∧ ψ)}

K ∪ {¬(φ ∧ ψ)} ∪ {¬φ ∨ ¬ψ}
(DM∨)

K ∪ {¬(φ ∨ ψ)}
K ∪ {¬(φ ∨ ψ)} ∪ {¬φ ∧ ¬ψ}

(∧e)
K ∪ {φ ∧ ψ}

K ∪ {φ ∧ ψ} ∪ {φ,ψ}

(∨e)
K ∪ {φ ∨ ψ}

K ∪ {φ ∨ ψ} ∪ {φ} | K ∪ {φ ∨ ψ} ∪ {ψ}

Figure 1: Derivation rules for the Tableau Method.

so several tableaux can exist for a same knowledge base K. The procedure for constructing
a tableau works by first creating a tree with only the root node (called a root tree), which
is labelled with the knowledge base K itself. This initial root tree is then expanded by
applying one of the derivation rules depicted in Fig. 1. When applied, these rules append
new nodes to one of the leaf nodes of the tree. In the derivation rules DM∧ and DM∨,
DM stands for De Morgan, as these rules correspond to the De Morgan laws. While rules
¬¬e, DM∧, DM∨ and ∧e append a single leaf node, rule (5) opens two branches.

Each node is labelled with a set of formulae, and therefore, there might exist more than
one possible rule to be applied on such a leaf node, or even more than one choice for a same
applicable rule. We define a function σ that exhibits explicitly all the possible extensions
for non-branching rules, that is, rules ¬¬e, DM∧, DM∨ and ∧e. The set of all possible
extensions for the branching rule ∨e is given by the function γ below. The set of all rule
names are given by RT B = {¬¬e, DM∧, DM∨,∧e,∨e}.

Definition 4. Let σ : RT B × K(At) → K(At) be such that

1. σ(¬¬e,K) = {K ∪ {φ} ∈ K(At) | ¬¬φ ∈ K}

2. σ(∧e,K) = {K ∪ {φ,ψ} ∈ K(At) | φ ∧ ψ ∈ K}

3. σ(DM∧,K) = {K ∪ {¬φ ∨ ¬ψ} ∈ K(At) | ¬(φ ∧ ψ) ∈ K}

4. σ(DM∨,K) = {K ∪ {¬φ ∧ ¬ψ} ∈ K(At) | ¬(φ ∨ ψ) ∈ K}

Let γ : K(At) → K(At) × K(At) be such that

γ(K) = {(X,Y ) ∈ K(At) × K(At) | X = K ∪ {φ}, Y = K ∪ {ψ}, for some φ ∨ ψ ∈ K}
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π1 : {a ∧ c,¬a, b ∨ d}

{a ∧ c,¬a, b ∨ d, a, c}✗

π2 : {a ∧ c,¬a, b ∨ d}

{a ∧ c,¬a, b ∨ d, b}

{a ∧ c,¬a, b ∨ d, b, a, c}✗

{a ∧ c,¬a, b ∨ d, d}

{a ∧ c,¬a, b ∨ d, d, a, c}✗

Figure 2: Example of two tableaux for the knowledge base K = {a ∧ c,¬a, b ∨ d}.

Definition 5. A tableau for a knowledge base K ⊆ L(At) is a binary set-labelled tree
(N,E, λ) such that

• λ(r) = K, where r is the root node;

• for each node n ∈ N :

1. λ(n) ̸= λ(n′), for all n′ ∈ children(n);

2. if children(n) = {n1} then λ(n1) ∈ σ(ε, λ(n)), for a derivation rule ε ∈ RT B ;

3. if children(n) = {n1, n2} and n1 ̸= n2 then (λ(n1), λ(n2)) ∈ γ(λ(n)) or
(λ(n2), λ(n1)) ∈ γ(λ(n)).

Conditions 1 to 3 guarantee that a tableau is generated according to the application of
the rules in RT B . Condition 1 is imposed in order to avoid redundant tableaux. Specifically,
the application of a rule on a node of a tableau needs to yield children nodes labelled with
new formulae. This will become important since we are interested in minimal proofs of
contradiction. The Greek letter π will be used to denote a tableau.

Example 6. Consider the inconsistent knowledge base K = {a ∧ c,¬a, b ∨ d}. Fig. 2
illustrates two tableaux π1 and π2 for K. The root node of every tableau is labelled with the
knowledge base itself K. There are two possible rules to apply at the root node: (i) rule ∧e

creates a single child node with the added sub-formulae a and c (tableau π1); (ii) rule ∨e

creates two children node, one labelled with the sub-formula b with K and another with the
sub-formula d with K (tableau π2).

If a formula α appears in the leaf node of a tableau π for a knowledge base K, then we
say that K structurally derives α, denoted by K ⊢ α. For instance, in Example 6 the tableau
π1 has the formula c in its leaf node, therefore K ⊢ c.

If a node contains a formula and its negation then we say that such a node has a clash.
More precisely, if there are formulae φ,¬φ ∈ λ(n) then n has a clash. Each leaf node of
the tableaux π1 and π2 from Example 6 has a clash, as each leaf node has the formula a and
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its negation ¬a. If every leaf node of a tableau has a clash then such a tableau is said to
be closed. The tableaux π1 and π2 from Example 6 are both closed. The set of all closed
tableaux for a knowledge base K is given by T⊥(K).

Theorem 7. [17] A knowledge base K ∈ K(At) is inconsistent iff T⊥(K) ̸= ∅.

As we are interested in minimal proofs of contradiction, we introduce the notion of a
closed tableau being shorter than other closed tableau.

Definition 8. A closed tableau π is shorter than a closed tableau π′, denoted as π ⪯ π′, iff
there is an injection τ : leaf(π) → leaf(π′) such that λ(n) ⊆ λ(τ(n)). Given a knowledge
base K, a closed tableau π ∈ T⊥(K) is minimal iff for all π′ ∈ T⊥(K), if π′ ⪯ π then
π ⪯ π′. The set of minimal tableaux for a given knowledge base K is given by T min

⊥ (K).

Intuitively, a closed tableau π is shorter than a tableau π′ if each set of formulae that
clashes (what are present in the leaf nodes of the tableaux) are subsets of the leaf nodes of
π′. For instance, the tableau π1 from Example 6 is shorter than the tableau π2 from the same
example. We say that a tableau is redundant if two different branches lead to the same clash
of formulae labelled on their leaf nodes, as it occurs with the tableau π2 from Example 6.
The injection condition guarantees that redundant tableaux are identified and therefore are
not among the minimal tableaux. For instance, the tableau π1 from Example 6 is minimal,
while π2 is not minimal.

4 Measuring inconsistency via Tableaux

An inconsistency measure is a function I : K(At) → R∞
≥0 that maps each knowledge base

K to a non-negative real number [7, 22]. Intuitively, larger values I(K) indicate a larger
degree of inconsistency in K, while 0 is reserved to indicate the absence of inconsistency.

A closed tableau exemplifies the reasoning effort to detect the presence of an inconsis-
tency and thus gives rise to quantitative measures of inconsistency. The following principles
are our main motivation to study measures based on tableaux:

1. If there are more ways to derive inconsistency in a knowledge base K than there are in
a knowledge base K′, then K should be regarded as more inconsistent than K′. This
principle represents a form of monotonicity of inconsistency w. r. t. number of closed
tableaux.

2. Smaller closed tableaux indicate a larger degree of inconsistency than larger closed
tableaux. The rationale behind this principle can be motivated by the lottery paradox
[15]: if there are many lottery tickets it is rational to assume for each ticket holder
that he will not win and the less tickets there are the less rational this assumption
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becomes. In the first case, the inconsistency (on the fact that one ticket will win and
every ticket holder thinks he will not win) is not that much apparent as in the case of
just two tickets. A tableau for the first case would include many more steps to show
the inconsistency than in the second case.

Both principles capture the intuition that a knowledge base is more inconsistent if the com-
putational effort to find an inconsistency is low. This is indeed the case if there are many
ways to prove inconsistency (e. g. a random method would more likely find a proof) and
these proofs are short (as the depth of the search of such an algorithm does not need to be
high).

We implement the above principle in the following inconsistency measures:

Definition 9. The three inconsistency measures are I# : K(At) → R≥0, Imin : K(At) →
R≥0, and I

∑
: K(At) → R≥0

I#(K) = |T min
⊥ (K)|

Imin(K) =


1

min{|A| | A ∈ T min
⊥ (K)}

, if T⊥(K) ̸= ∅

0 otherwise.

I
∑

(K) =


∑

A ∈ T min
⊥ (K)

1
|A|

if T min
⊥ (K) ̸= ∅

0 otherwise

The inconsistency measure I# focuses on the first principle and simply takes the num-
ber of minimal closed tableaux as the degree of inconsistency. The measure Imin focuses on
the second principle and takes the reciprocal size of a minimal closed tableau as the degree
of inconsistency. Finally, the measure I

∑
combines both principles by summing up the

reciprocal sizes of all minimal closed tableaux.

Example 10. Consider the knowledge bases K1 and K2 below:

K1 = {a ∧ c,¬a, b} K2 = {a ∧ b, c ∧ d,¬a,¬d}.

Note that K1 has only one minimal tableau:

π =
{a ∧ c,¬a, b}

{a ∧ c,¬a, b, a, c}
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Therefore, I#(K1) = 1, and Imin(K1) = I
∑

(K1) = 1/2. For K2 we have the
following two minimal closed tableaux

π1 =
{a ∧ b, c ∧ d,¬a,¬d}

{a ∧ b, a, b, c ∧ d,¬a,¬d}
π2 =

{a ∧ b, c ∧ d,¬a,¬d}

{a ∧ b, c ∧ d, c, d,¬a,¬d}

Therefore, I#(K2) = 2, Imin(K2) = 1/2 and I
∑

(K2) = 2/2 = 1.

In general, our measures take a radically different perspective on inconsistency mea-
surement, which is also illustrated by the fact that these measures do not conform with
many postulates proposed for inconsistency measures so far (see Section 5). Our aim with
these measures is to investigate a new foundation of inconsistency measurement, i. e., one
based on syntactic derivations instead of semantical concepts.

5 Analysis

In this section we conduct an analytical evaluation of our measures, focussing on compli-
ance to rationality postulates, expressivity, and computational complexity.

5.1 Rationality Postulates

Many rationality postulates have been proposed for inconsistency measures, see [21] for a
survey. However, many of these postulates are disputed and there is up to now no consensus
on which of these postulates are desirable and which are not, see also [3] for a discussion.
In fact, there is only one postulate which can be regarded as the defining property of an
inconsistency measure I [10]:

Consistency (CO) I(K) = 0 if and only if K is consistent

For all other postulates proposed in the literature, we can find (reasonable) proposals of
inconsistency measures that violate these postulates, see [21] for an overview. We compile
below the existing rationality postulates from the literature, and we investigate the compli-
ance of our measures with such postulates. For the presentation of the postulates, we will
first need the following auxiliary definitions:

Definition 11. A set M ⊆ K is a minimal inconsistent subset (MI) of K, if M |=⊥ and
there is no M ′ ⊂ M with M ′ |=⊥. Let MI(K) be the set of all MIs of K. A formula α ∈ K
is called free formula if α /∈

⋃
MI(K). Let Free(K) be the set of all free formulae of K.
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Definition 12. A formula α ∈ K is a safe formula if it is consistent and At(α) ∩ At(K \
{α}) = ∅. Let Safe(K) be the set of all safe formulae of K.

Let I be any function I : K → R∞
≥0, K,K′ ∈ K, and α, β ∈ L(At). The rationality

postulates for inconsistency measure in the literature, see [20] for a survey on the subject,
are:

Normalization (NO) 0 ≤ I(K) ≤ 1

Monotony (MO) If K ⊆ K′ then I(K) ≤ I(K′)

Free-formula independence (IN) If α ∈ Free(K) then I(K) = I(K \ {α})

Dominance (DO) If α ̸|=⊥ and α |= β then I(K ∪ {α}) ≥ I(K ∪ {β})

Safe-formula independence (SI) If α ∈ Safe(K) then
I(K) = I(K \ {α})

Super-Additivity (SA) If K ∩ K′ = ∅ then I(K ∪ K′) ≥ I(K) + I(K′)

Penalty (PY) If α /∈ Free(K) then I(K) > I(K \ {α})

MI-separability (MI) If MI(K ∪ K′) = MI(K) ∪ MI(K′) and MI(K) ∩ MI(K′) = ∅ then
I(K ∪ K′) = I(K) + I(K′)

MI-normalization (MN) If M ∈ MI(K) then I(M) = 1

Attenuation (AT) M,M ′ ∈ MI(K) and |M | > |M ′| implies I(M) < I(M ′)

Equal Conflict (EC) M,M ′ ∈ MI(K) and |M | = |M ′| implies I(M) = I(M ′)

Almost Consistency (AC) Let M1,M2, . . . be a sequence of minimal inconsistent sets Mi

with limi→∞ |Mi| = ∞, then limi→∞ I(Mi) = 0

Contradiction (CD) I(K) = 1 if and only if for all ∅ ≠ K′ ⊆ K, K′ |=⊥

Free Formula Dilution (FD) If α ∈ Free(K) then I(K) ≥ I(K \ {α})

Irrelevance of Syntax (SY) If K ≡s K′ then I(K) = I(K′)

Exchange (EX) If K′ ̸|=⊥ and K′ ≡ K′′ then I(K ∪ K′) = I(K ∪ K′′)

Adjunction Invariance (AI) I(K ∪ {α, β}) = I(K ∪ {α ∧ β})

10
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As mentioned above, the postulate CO addresses the basic property of an inconsistency
measure to differentiate between consistent and inconsistent knowledge bases. The postu-
late NO expresses that the degree of inconsistency is a relative notion that is normalized in
the unit interval. MO states that adding information can only increase the degree of incon-
sistency. IN states that adding free formulae cannot change the degree of inconsistency and
DO states that substituting a formula with a semantically weaker version cannot increase
the degree of inconsistency. For a discussion on the rationale of the other postulates, see
[20].

It is important to stress that there is no consensus about which postulates should be
satisfied or which ones should not. However, there are scenarios in which some of the
postulates are clearly unsuitable. This is the case of the following postulates: IN, PY,
DO, SA, MN, CD, MI, AT, EC, EX, SY and AI. We explain below why each one of such
postulates is not adequate under our principles of measuring inconsistency. In fact, none of
our measures satisfy these postulates.

• IN: It states that the removal of a free formula does not decrease the inconsistency
degree of a knowledge base. Although this intuition might seem plausible at a first
glance, it is counter-intuitive under our second principle of inconsistency degree. Let
K = {(a ∨ b) ∧ (a ∨ ¬b),¬b}, and K′ = {(a ∨ b) ∧ (a ∨ ¬b),¬b, a}. Observe
that a is free in K′, but the presence of a in K′ makes it much easier to prove the
inconsistency of K′ than in K: to prove the inconsistency of K, one needs to take
the case distinction of both disjunctive formulae a ∨ b and ¬a ∨ b; while for K′ the
proof of inconsistency is much easier because only the case distinction of ¬a ∨ b
is necessary due to the presence of a. Therefore, free formulae should indeed be
considered for assessing the degree of inconsistency in a knowledge base. Therefore,
under our second principle IN becomes undesirable.

• PY: this postulate is the dual of IN, removing free-formulae should strictly reduce the
inconsistency degree. Analogous to our reasons against IN, as adding free formulae
does not necessarily contributes to augmenting the inconsistency degree, removing
them should not contribute to making it less inconsistent either.

• DO: According to this postulate, stronger formulae can only make a knowledge base
more inconsistent than weaker formulae. This postulate is in conflict with our second
principle of inconsistency. To illustrate this, consider the knowledge base K = {¬a∧
¬b}, and the formulae α = c∧(a∨b)∧(a∨¬b), and a. Observe that α |= a. It is much
easier to prove that K1 = K ∪ {a} is inconsistent than to prove that K2 = K ∪ {α} is
inconsistent, because for the former the contradiction is evident, while for the latter
one needs to consider the case distinction due to the disjunction a ∨ b. According to
our principle, the knowledge base K1 should be more inconsistent than K2, opposed
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to DO.

• SA: This postulate imposes a strict form of monotonicity. It states that if two knowl-
edge bases share no formulae, then their union present an inconsistency degree equal
to or higher than the sum of their individual inconsistency degrees. However, this
should not be taken as a rule. According to our first principle, the inconsistency de-
gree of a knowledge base should be directly proportional to the number of minimal
tableaux. It turns out that the union of knowledge bases does not accumulate their
minimal tableaux. Consider, for example, the knowledge bases K1 = {a∧ (a∧ ¬a)}
and K2 = {a,¬a}. Each of them presents only one minimal proof of inconsistency.
Observe that, in both knowledge bases, the cause of inconsistency is the same: a and
¬a. For the knowledge base K1, we achieve this by decomposing the conjunctions,
while in K2, this conflict is evident. Therefore, individually, K1 and K2 present in-
consistency degree of 1. Thus, according to SA, K1 ∪ K2 must have an inconsistency
degree of at least 2. However, K1 ∪ K2 presents only one minimal proof of incon-
sistency as well: the explicit conflict a and ¬a. Therefore, in all three measures we
proposed, we have that K1 ∪ K2 presents an inconsistency degree of 1 as well. It is
clear that SA does not present a good behaviour for inconsistency measurement.

• MN and CD: The postulate MN states that all minimal inconsistent sets should have
the same degree of inconsistency 1, while CD states that if every formula in a knowl-
edge base K is inconsistent then the inconsistency degree of K must be 1. Both pos-
tulates are very prohibitive, as they do not allow grading neither minimal inconsistent
sets nor sets containing only inconsistent formulae. If inconsistency in a minimal
inconsistent set is much more apparent than in another minimal inconsistent set, then
according to our two principles, it is plausible to grade the first one as more inconsis-
tent than the second one. This argument also applies for bases with only inconsistent
formulae. Such postulates, therefore, are too fragile to give a suitable notion of ratio-
nality for assessing inconsistencies.

• MI: this postulate says that if one can partition the set of minimal inconsistent subsets
of a knowledge base K into two sets A and B then the inconsistency degree of K
corresponds to the sum of the inconsistency degree of the knowledge base obtained
from A and obtained from B. Similar to MN, this postulate disregards that the degree
of inconsistency does not depend exclusively on the minimal inconsistent subsets. As
our measures resort to minimal proofs, this postulate does not pose any criteria for
assessing inconsistencies.

• AT and EC: these postulates state that the degree of minimal inconsistent sets should
be graded according to the number of formulae in it. The size of the minimal incon-
sistent set, however, is not directly connected to the effort of proving that a knowledge

12



MEASURING INCONSISTENCY WITH THE TABLEAU METHOD

base is inconsistent. Indeed, smaller inconsistent sets might present minimal proofs
bigger than minimal proofs from greater sets (see proof of AT in Theorem 13, for an
example).

• EX, SY and AI: Two bases can be logically equivalent but present different reasons
of inconsistency, therefore since we are based on the effort of reasoning to measure
inconsistency it is desirable that EX, SY and AI be violated.

CO NO MO IN DO NM SD SI SA PY MI MN AT EC AC CD FD SY EX AI
I#(K) ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Imin(K) ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗

I
∑

(K) ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Table 1: Compliance of Imin with rationality postulates for inconsistency measures.

For our measures, we obtain the following.

Theorem 13. The compliance of the measures I#, Imin, and I
∑

with the rationality
postulates is as presented in Table 1.

The measures I# and I
∑

do not comply with the MO postulate, which is satisfied by
several inconsistency measures in the literature. Indeed, according to our two principles,
there are cases in which it is plausible to waive MO. For instance, consider the knowledge
K = {(a ∨ b) ∧ (¬a ∧ ¬b)}. This knowledge base has two minimal closed tableaux: the
tableaux π2 and π3 depicted at Fig. 3.

By adding a to K, we obtain the knowledge base K′, which has only one minimal closed
tableau (the tableau π1 above). Therefore, according to our first principle, the inconsistency
degree of K′ must be smaller than the inconsistency degree of K. Although this example
works as an argument against MO, we argue that there are cases in which some form of
monotonicity would still be desirable. For this same example, consider the formula a ∨ c
and the knowledge base K′′ = K ∪ {a ∨ c}. Observe that a ∨ c does not “participate” in
making K′′ inconsistent, as it does not produce any new minimal proof of inconsistency.
Towards this end, according to our both principles, the inconsistency degrees of K and K′′

should be the same. Therefore, for this specific example, some form of monotonicity should
be preserved. Indeed, for all the three inconsistency measures we defined, K and K′′ present
the same degree of inconsistency. But then, why adding a ∨ c should induce a monotonic
behaviour, whilst adding a should not? In fact, if we inspect a ∨ c and a closer, we will see
that a is partially “redundant” while a ∨ c is not “redundant”. To be more precise, K ⊢ a,
but K ̸⊢ a ∨ c. Let us properly define our notion of partial redundancy:

Definition 14. A formula α is partially-redundant in K iff there is some formula φ such that
K ⊢ φ and α ⊢ φ.
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π1 =

K ∪ {a}

K ∪ {a, a ∨ b,¬a ∧ ¬b}

K ∪ {a, a ∨ b,¬a ∧ ¬b,¬a,¬b}

π2 =

K

K ∪ {a ∨ b,¬a ∧ ¬b}

K ∪ {a ∨ b,¬a ∧ ¬b,¬a,¬b}

K ∪ {a ∨ b,¬a ∧ ¬b,¬a,¬b, a} K ∪ {a ∨ b,¬a ∧ ¬b,¬a,¬b, b}

π3 =

K

K ∪ {a ∨ b,¬a ∧ ¬b}

K ∪ {a ∨ b,¬a ∧ ¬b, a}

K ∪ {a ∨ b,¬a ∧ ¬b, a,¬a,¬b}

K ∪ {a ∨ b,¬a ∧ ¬b, b}

K ∪ {a ∨ b,¬a ∧ ¬b, b,¬a,¬b}

Figure 3: Some minimal tableaux form knowledge bases K = {(a ∨ b) ∧ (¬a ∧ ¬b)} and
K′ = K ∪ {a}.

Example 15. Consider the knowledge base K = {a ∧ b,¬a} and the formula α = (c ∨ d).
Observe that the only common information derived from each consistent subset of K and α
are tautologies. This means that α has no partially-redundant information with K, that is,
K is not partially-redundant. This is because no tableaux of K shares formulae with any
tableaux of {α}. In fact, K and α have each one single tableau, as illustrated in Fig. 4, and
neither has a single formula in common.

In the following, we investigate a further (and new) postulate that describe our new
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π1 =
{a ∧ b,¬a}

{a ∧ b,¬a, a, b}
π2 =

{c ∨ d}

{c ∨ d, c} {c ∨ d, d}

Figure 4: The only tableaux for knowledge base K and formula α from Example 15.

approaches and point to their specific advantages. In particular, if we restrict the addition of
information to “non-redundant” information our measures do indeed behave monotonically:
This monotonicity of non-redundant information is formalised as the

Non-redundant Monotonicity (NM): If ϕ is not partially-redundant in K then I(K) ≤
I(K ∪ {ϕ}).

The above postulate demands that adding genuinely new information to a knowledge
base cannot decrease the degree of inconsistency. Our three measures comply with this
demand.

Theorem 16. The inconsistency measures Imin, I# and I
∑

satisfy NM.

In the analyses above, we have shown that our measures do not comply with the postu-
late MI. This occurs mainly because there is no correspondence between minimal inconsis-
tent subsets and minimal tableaux, as Example 17 and Example 18 below illustrate.

Example 17. Consider the knowledge base K = {a ∧ c, (¬a ∨ d) ∧ (¬c ∨ d),¬d} and the
following 2 minimal tableaux of this knowledge base:

π1 =

K

K ∪ {a, b ∧ c}

K ∪ {a, c,¬a ∨ d,¬c ∨ d}

K ∪ {a, c,¬a ∨ d,¬c ∨ d,¬a} K ∪ {a, c,¬a ∨ d,¬c ∨ d, d}
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π2 =

K

K ∪ {a, b ∧ c}

K ∪ {a, c,¬a ∨ d,¬c ∨ d}

K ∪ {a, c,¬a ∨ d,¬c ∨ d,¬c} K ∪ {a, c,¬a ∨ d,¬c ∨ d, d}

In Example 17, the knowledge base K is a minimal inconsistent set and has at least two
different minimal tableaux τ1 and τ2.

Example 18. Let K = {a,¬a, b,¬b, a∨b}. Observe that this knowledge base has two min-
imal inconsistent subsets which are A1 = {a,¬a}, A2 = {b,¬b}. However, this knowledge
base has only one minimal tableau which is

π3 = K

In Example 18, the minimal tableaux τ3 is associated with the minimal inconsistent
subsets A1 and A2, since the contradictions in the leaf node, which coincides with the root
node, regard both A1 and A2: {a,¬a} and {b,¬b}. Therefore, none of the three measures
that we proposed are sensible to this interpretation of the number of sources of conflict.
However, we can construct a measure that iteratively removes the sources of inconsistency
based on the minimal tableaux, and accumulate the values, until no inconsistency is left.
For example, as both A1 and A2 are related to τ3, we can remove A1 from K obtaining
the knowledge base K′ = K \ A1. We then compute the minimal tableau of K′ which
contains only one node labelled with K′. We then remove A2 from it obtaining a consistent
knowledge base. Therefore, in the end, we assign an inconsistency value of 2 to K: since
all three measure yield value 1 on both iterations.

5.2 Expressivity

Besides rationality postulates, another (complementary) dimension of evaluating an incon-
sistency measure is its expressivity [19], that is, the number of different inconsistency val-
ues a measure can attain on some certain sets of knowledge bases. This evaluation measure
has been proposed in order to be able to distinguish trivial measures such as the drastic
measure—which assigns 0 to consistent and 1 to inconsistent knowledge bases but still sat-
isfies a reasonable number of rationality postulates—from more “fine-grained” assessments
of inconsistency.
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Before defining expressivity characteristics we need some further definitions.

Kv(n) = {K ∈ K | |At(K)| ≤ n}
Kf (n) = {K ∈ K | |K| ≤ n}
Kl(n) = {K ∈ K | ∀ϕ ∈ K : len(ϕ) ≤ n}
Kp(n) = {K ∈ K | ∀ϕ ∈ K : |At(ϕ)| ≤ n}

Informally speaking, Kv(n) is the set of all knowledge bases that mention at most n different
propositions, Kf (n) is the set of all knowledge bases that contain at most n formulae, Kl(n)
is the set of all knowledge bases that contain only formulae with maximal length n, and
Kp(n) is the set of all knowledge bases that contain only formulae that mention at most n
different propositions each.

Definition 19. Let I be an inconsistency measure and n > 0. Let α ∈ {v, f, l, p}. The
α-characteristic Cα(I, n) of I w. r. t. n is defined as Cα(I, n) = |{I(K) | K ∈ Kα(n)}|.

In other words, Cα(I, n) is the number of different inconsistency values I assigns to
knowledge bases from Kα(n).

The following results show that our new measures are maximally expressive w. r. t. all
four expressivity characteristics.

Theorem 20. For all n > 0 and I ∈ {Imin, I#, I
∑

}, Cv(I, n) = Cf (I, n) = Cp(I, n) =
∞.

Theorem 21.

1. For all n > 1, Cl(I#, n) = ∞.

2. For all n > 3, and I ∈ {Imin, I
∑

}, Cl(I, n) = ∞.

All three measures are maximally expressive. All three measures present infinitely many
values for knowledge bases with at least one atomic propositional symbol, or knowledge
bases with at least one formula. With respect to the length of the formulae in a knowledge
base, the measure I# presents infinitely many values for knowledge bases containing for-
mulae with length higher than one, while for the other two measures, for length higher than
3.

5.3 Computational complexity

In the following, we will (briefly) discuss computational complexity issues of our new mea-
sures.

Following [23], we consider the following problems. Let I be some inconsistency
measure.
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EXACTI Input: K ∈ K, x ∈ R∞
≥0

Output: TRUE iff I(K) = x

UPPERI Input: K ∈ K, x ∈ R∞
≥0

Output: TRUE iff I(K) ≤ x

LOWERI Input: K ∈ K, x ∈ R∞
≥0 \ {0}

Output: TRUE iff I(K) ≥ x

VALUEI Input: K ∈ K
Output: The value of I(K)

The computational complexity of our new measures is tightly linked to the general area
of proof complexity [4]. As there are exponential lower bounds on the size of a minimal
tableau [2, 16], we cannot expect to provide membership results of any of the above com-
putational problems to any (deterministic or non-deterministic) complexity class within the
polynomial hierarchy. The most precise statement on all our measures we can make is the
following.

Theorem 22. For I ∈ {I#, Imin, I#}, EXACTI , UPPERI , and LOWERI are in EX-
PSPACE, while VALUEI is in FEXPSPACE (the functional variant of EXPSPACE).

It is possible that the above bound could be improved to EXPTIME as it may not be
necessary to explicitly write down every (potential) tableau (but note that whether EX-
PTIME̸=EXPSPACE is also an open question). However, without a proof system that
exhibits minimal proofs of polynomial length for all contradictions, EXPTIME is a neces-
sary lower bound. This fact establishes our three measures to be the hardest inconsistency
measures among the ones investigated in [23].

6 Summary and Conclusion

In this paper, we proposed novel approaches to measure inconsistency in knowledge bases.
Our approaches are based on the notion of minimal closed tableaux, and we analysed the
behaviour of these novel inconsistency measures in terms of rationality postulates, expres-
sivity and computational complexity. The central idea of our approaches is to measure
inconsistency via measuring proof complexity, i. e. the easier it is for a reasoner to detect
inconsistency, the larger the inconsistency is to be regarded.

Using tableaux methods for constructing inconsistency measurement is novel, but [13]
uses a different notion of proof to define an inconsistency measure. There, instead of min-
imal tableaux a minimal proof is a (not necessarily consistent) subset of the knowledge
base that entails some formula and inconsistency is measured by appropriately aggregating
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the number of proofs of complementary literals. However, this measure makes no use of
proof systems in our sense and it has also been shown in [20] that it does not satisfy CO
and should therefore not be regarded as a meaningful inconsistency measure. Inconsistency
measures based on conflicting variables were proposed in [12]. In their measure, the in-
consistency value of a knowledge base K corresponds to the ratio between the conflicting
variables and all the variables of K. This focus on variables makes their measure to plateau
when the addition/removal of formulae does not change the amount of conflicting variables.
Consider, for example, the knowledge bases K = {a ∧ b,¬a ∨ ¬b} and K′ = K ∪ {a}.
As K′ contains more conflicting sources of inconsistencies than K (two minimal inconsis-
tencies sets against one minimal inconsistent set), it would be rational to assess K′ as more
inconsistent than K. However, the measure based on conflicting variables will assess both
as equally inconsistent as they contain the same number of conflicting variables. All our
three measures will assess both knowledge bases differently.

Our measures provide a new completely syntactical approach to inconsistency mea-
surement that feature maximal expressivity in differentiating inconsistent knowledge bases
(see Section 5.2). However, their computational complexity is a significant challenge for
their applicability. Future work is about devising (approximate) algorithmic solutions to
overcome this barrier.
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A Proofs for Section 5 (Analysis)

The proofs presented in this appendix include set-labelled tableaux in which the set of for-
mulae labelled to the nodes is significantly big. For clarity, we will depict tableaux in a
concise way. We will draw the root now with the whole knowledge base. However, for
other nodes, instead of presenting the whole set of formulae labelled in a node, we draw
only the fresh formulae added from the parent node to the child node (as illustrated in
Fig. 5). The set of formulae labelled on a node n can be inferred by taking the union of the
formulae from the root node to n.

π : {a ∧ c,¬a, b ∨ d}

{a ∧ c,¬a, b ∨ d, b}

{a ∧ c,¬a, b ∨ d, b, a, c}

{a ∧ c,¬a, b ∨ d, d}

{a ∧ c,¬a, b ∨ d, d, a, c}

{a ∧ c,¬a, b ∨ d}

{b}

{a, c}

{d}

{a, c}

Figure 5: On the left, a closed set-labelled tableau π for the knowledge base K = {a ∧
c,¬a, b ∨ d}. On the right, the concise way of representing the set-labelled tableaux π.

Lemma A.1. If π = (N,E, λ) is a tableau for a knowledge base K then At(λ(n)) = At(K)
for every n ∈ N .

Proof. By induction on the level of n

Base: level(n) is zero, that is, n is the root. Then λ(n) = K. Thus, At(λ(n)) = At(K).

Induction Hypothesis (IH): if level(n′) < level(n) then At(λ(n′)) = At(K).

Induction Step: level(n) > 1. Thus, n has some parent n′, and either (1) children(n′) =
{n} or (2) children(n′) = {n, n2} with n ̸= n2:

(1) children(n′) = {n}. Then, λ(n) = λ(n) ∪ A, where one of the following
cases hold:

1. A = {φ}, with ¬¬φ ∈ λ(n). Thus, as At(φ) = At(¬¬φ), we get that
At(λ(n′)) = At(λ(n)). Thus, it follows from HI, that At(λ(n)) = At(K).
2. A = {φ,ψ} withφ∧ψ ∈ λ(n′). Thus, as At(φ∧ψ) = At(φ)∪At(ψ), we
get that At(λ(n′)) = At(λ(n)). Thus, it follows from HI, that At(λ(n)) =
At(K).
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3. A = {¬φ ∨ ¬ψ} with ¬(φ ∧ ψ) ∈ λ(n′). Thus, as At(¬(φ ∧ ψ)) =
At(¬φ∨¬ψ), we get that At(λ(n′)) = At(λ(n)). Thus, it follows from HI,
that At(λ(n)) = At(K).
4. A = {¬φ ∧ ¬ψ} with ¬(φ ∨ ψ) ∈ λ(n′). Thus, as At(¬(φ ∨ ψ)) =
At(¬φ∧¬ψ), we get that At(λ(n′)) = At(λ(n)). Thus, it follows from HI,
that At(λ(n)) = At(K).

(2) children(n′) = {n, n2} with n ̸= n2. Thus, there is φ ∨ ψ ∈ λ(n′) such
that either (a) λ(n) = λ(n′) ∪ {φ} or (b) λ(n) = λ(n′) ∪ {ψ}. Observe that
At(φ) ⊆ At(φ ∨ ψ) and At(ψ) ⊆ At(φ ∨ ψ). Therefore in either cases (a or b),
we get that At(n) = At(n′). Thus, it follows from HI, that At(λ(n)) = At(K).

Theorem 13. The compliance of the measures I#, Imin, and I
∑

with the rationality
postulates is as presented in Table 1.

Proof. In the following, we denote by +X a proof that shows that property X is satisfied
and by −X a proof that shows that property X is violated.

+CO Let K be a knowledge base. K is inconsistent if and only if there is a closed tableau
π. Then, I#(K) = 0 if and only if K is inconsistent. Analogously, Imin(K) = 0 if
and only if K is inconsistent; and I

∑
(K) = 0 if and only if K is inconsistent

NO The measures I# and I
∑

clearly fail NO, while Imin satisfies it.

+ By definition Imin(K) = 0, if K is consistent, and corresponds Imin(K) =
1/n, where n is the size of the minimal closed tableaux in T⊥(K). Therefore,
0 ≤ Imin(K) ≤ 1.

− Consider the following knowledge base K = {a ∧ ¬a, b ∧ ¬b, c ∧ ¬c}. For this
knowledge base, there are only three minimal closed tableaux, all of them of
size 2. Therefore, I#(K) = 3, and I

∑
(K) = 3

2 > 1.

MO The measures I# and I
∑

clearly fail MO, while Imin satisfies it.

+ Note that if π is a closed tableau in K then π is also a closed tableau in K′ for
K ⊆ K′. Therefore, the length of a minimal closed tableau can only decrease
when adding information, thus Imin can only increase.

− Let K = {(a ∨ b) ∧ (¬a ∧ ¬b), a}.
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There is only one minimal closed tableau for K, which is π1 below. On the other
hand, there are two minimal closed tableau for K \ {a}, which are π2 and π3
below (depicted in the concise form). We have

I#(K) = 1 < I#(K \ {a}) = 2
I
∑

(K) = 1/3 < I
∑

(K \ {a}) = 1/5 + 1/6 = 11/30

π1 =

K

{a ∨ b,¬a ∧ ¬b}

{¬a,¬b}

π2 =

K\{a}

{a ∨ b,¬a ∧ ¬b}

{¬a,¬b}

{a} {b}

π3 =

K\{a}

K ∪ {a ∨ b,¬a ∧ ¬b}

{a}

{¬a,¬b}

{b}

{¬a,¬b}

−IN Consider the counterexample for MO. Recall K = {(a∨ b) ∧ (¬a∧ ¬b), a}. Observe
that a is free, and I#(K) ̸= I#(K\{a})), Imin(K) ̸= Imin(K\{a})) and I

∑
(K) ̸=

I
∑

(K \ {a})).

−DO Let K = {¬a,¬b,¬c}, and formulae α = a and β = (a ∨ b) ∧ (a ∨ c). Note that
K ≡ β. The knowledge base K ∪ {α} has only one closed tableau which has size
1 (π1 = K ∪ {α}), while K ∪ {β} has two closed tableaux (π1 and π2 below), both
with size 4. Thus, I#(K ∪ {α}) = 1, I#(K ∪ {β}) = 2, Imin(K ∪ {α}) = 1,
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Imin(K ∪ {β}) = 1/4, I
∑

(K ∪ {α}) = 1, I
∑

(K ∪ {β}) = 2/4 = 1/2.

π2 =

K ∪ {β}

K ∪ {(a ∨ b), (a ∨ c), β}

K ∪ {a, (a ∨ b), (a ∨ c), β} K ∪ {b, (a ∨ b), (a ∨ c), β}

π3 =

K ∪ {β}

K ∪ {(a ∨ b), (a ∨ c), β}

K ∪ {a, (a ∨ b), (a ∨ c), β} K ∪ {c, (a ∨ b), (a ∨ c), β}

+SI Let α be a safe-formula in K. From Proposition A.9, we have that α is non-redundant
with K \ {α}. Thus α is consistent and not-redundant in K \ {α}. Thus, from
Theorem A.14, T min

⊥ (K) =
⋃

π∈T min
⊥ (K\α) π[α]. This implies that I(K) = I(K \

{α}), for all three measures.

−SA Let K = {a ∧ (b ∧ ¬b)} and K′ = {a,¬a}. Note that both K and K′ have only
one tableau (π1 below, and K′ also has only one closed tableau which is the tableau
π′ with only the root node labelled with K′ itself. Moreover, K ∪ K′ has only one
tableau: the tableau with only the root node. Thus,

K K′ K ∪ K′ I(K) + I(K′)
I# 1 1 1 2

Imin 1/4 1 1 4/3
I
∑

1/4 1 1 4/3

π1 =

K

K ∪ {a, b ∧ ¬b}

K ∪ {a,¬b, b, b ∧ ¬a}
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−PY . Let K = {a,¬a, a∧b}. Observe that MI(K) = {{a,¬a}, {a∧b,¬a}.}. Thus, a∧b
is not free. However, both K and K′ = K \ {a ∧ b} have only one minimal closed
tableau each: K and K′, respectively. Thus penalty is violated for all three measures.

−MI . Let K = {¬a, a ∧ b} and K′ = {a ∧ b, (¬a ∧ b) ∧ c}. Note that MI(K) = {K},
MI(K′) = {K′}, and MI(K ∪ K′) = {K,K′}. Thus, MI(K) ∩ MI(K′) = ∅ and
MI(K) ∪ MI(K′) = MI(K ∪ K′). The minimal closed tableau of K is π1, the minimal
closed tableau of K′ is π2 and the minimal closed tableau of K∪K′ is π3. All of them
are shown below. Thus,

K K′ K ∪ K′ I(K) + I(K′)
I# 1 1 1 2

Imin 1/2 1/3 1/2 1/2 + 1/3
I
∑

1/2 1/3 1/2 1/2 +1/3

π1 =
K

K ∪ {a, b}
π2 =

K’

K’ ∪ {c,¬a ∧ b}

K’ ∪ {c,¬a, b}

π3 =
K ∪ K′

K ∪ K′ ∪ {a, b}

−MN Let K = {¬a ∧ (¬b ∧ ¬c), (a ∨ b) ∧ (a ∨ c)}. Note that K ∈ MI(K). The minimal
closed tableaux of K are π1 and π2 below.

Thus, I#(K) = 2, Imin(K) = 1/6 and I
∑

(K) = 2 · 1/6 = 1/3.

π1 =
K

K ∪ {¬a,¬b ∧ ¬c}

K ∪ {¬a,¬b,¬c,¬b ∧ ¬c}

K ∪ {a ∨ b, a ∨ c,¬a,¬b,¬c,¬b ∧ ¬c}

K ∪ {a, a ∨ b, a ∨ c,¬a,¬b,¬c,¬b ∧ ¬c} K ∪ {b, a ∨ b, a ∨ c,¬a,¬b,¬c,¬b ∧ ¬c}
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π2 =
K

K ∪ {¬a,¬b ∧ ¬c}

K ∪ {¬a,¬b,¬c,¬b ∧ ¬c}

K ∪ {a ∨ b, a ∨ c,¬a,¬b,¬c,¬b ∧ ¬c}

K ∪ {a, a ∨ b, a ∨ c,¬a,¬b,¬c,¬b ∧ ¬c} K ∪ {c, a ∨ b, a ∨ c,¬a,¬b,¬c,¬b ∧ ¬c}

−AT Let K = {a∧ (¬a∧ ¬b), a,¬a}, M = {a∧ (¬a∧ ¬b)} and M ′ = {a,¬a}. Observe
that M,M ′ ∈ MI(K) and |M | < |M ′|. The only closed tableau of M is π1, and
π2 = M ′ is the only proof of closed tableau of M ′. Thus,

M M ′

I# 1 1
Imin 1/3 1
I
∑

1/3 1
π1 =

M

M ∪ {a,¬a ∧ b}

M ∪ {a,¬a, b,¬a ∧ b}

−EC Let K = {(a ∧ (b ∧ c)) ∧ (¬a ∨ ¬b) ∧ (¬a ∨ ¬c)}. It has only two closed tableaux,
π1 and π2 below. Thus, I#(K) = 2, Imin(K) = 1/7, and I

∑
(K) = 1/7

Below for clarity, we do not draw the whole sets in each node, but instead, only the
fresh formulae just added.
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π1 =
K

K ∪ {(a ∧ (b ∧ c)), (¬a ∨ ¬b) ∧ (¬a ∨ ¬c)}

K ∪ {a, b ∧ c, (¬a ∨ ¬b) ∧ (¬a ∨ ¬c)}

K ∪ {a, b, c, (¬a ∨ ¬b) ∧ (¬a ∨ ¬c)}

K ∪ {a, b, c, (¬a ∨ ¬b), (¬a ∨ ¬c)}

K ∪ {¬a, a, b, c, (¬a ∨ ¬b), (¬a ∨ ¬c)} K ∪ {¬b, a, b, c, (¬a ∨ ¬b), (¬a ∨ ¬c)}

π2 =
K

K ∪ {(a ∧ (b ∧ c)), (¬a ∨ ¬b) ∧ (¬a ∨ ¬c)}

K ∪ {a, b ∧ c, (¬a ∨ ¬b) ∧ (¬a ∨ ¬c)}

K ∪ {a, b, c, (¬a ∨ ¬b) ∧ (¬a ∨ ¬c)}

K ∪ {a, b, c, (¬a ∨ ¬b), (¬a ∨ ¬c)}

K ∪ {¬a, a, b, c, (¬a ∨ ¬b), (¬a ∨ ¬c)} K ∪ {¬c, a, b, c, (¬a ∨ ¬b), (¬a ∨ ¬c)}

+-AC The inconsistency measures I# and I
∑

violates AC.

− I#. Consider the sequence Mi, i ∈ N of minimal inconsistent sets given via

Mi = {a1, . . . , ai,¬a1 ∨ (¬a2 ∨ (. . . ∨ ¬ai) . . .)}

We have lim
i→∞

|Mi| = ∞. Observe that each Mi has only one minimal closed

tableau. Thus, I#(Mi) = 1, which means lim
i→∞

I#(Mi) = 1,
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− I
∑

. Consider the sequence Mi, i ∈ N of minimal inconsistent sets given via

M1 = {¬a1, a1}
M2 = {¬a1,¬a2, (a1 ∨ a2) ∧ (a2 ∨ a1)}
M3 = {¬a1,¬a2,¬a3, (a1 ∨ a2) ∧ (a2 ∨ a3) ∧ (a3 ∨ a1)}
. . .

Mi = {¬a1,¬a2, . . . ,¬ai, (a1 ∨ a2) ∧ (a2 ∨ a3) ∧ . . . ∧ (ai ∨ a1)}
. . .

Each Mi has exactly i minimal closed tableau. The M1 has one with size one,
M2 has two, each with size 4. For the following ones, we can enumerate their
minimal tableaux in the following way. The Mi has i − 2 minimal tableaux,
such that their sizes correspond exactly to the size of the tableaux of Mi−1,
while the last 2 minimal tableaux have size i + 2. In summary, (the number
between commas represents the size of each tableau).

M1 = 1
M2 = 2 · 4
M3 = 4, 2 · (3 + 2)
M4 = 4, (3 + 2), 2 · (4 + 2)
M5 = 4, (3 + 2), (4 + 2), 2 · (5 + 2)
. . .

Mi = 4, (3 + 2), (4 + 2), . . . (i− 1 + 2), 2 · (i+ 2)

Thus,

I
∑

(M1) = 1

I
∑

(M2) = 2
4 = 1

2
I
∑

(M3) = 1
4 + 2

(3 + 2)
. . .

I
∑

(Mi) = 1
4 + 1

(3 + 2) + 1
(4 + 2) + . . .+ 1

(i− 1 + 2) + 2
(i+ 2)
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Note that I
∑

(Mi) < I
∑

(Mi+1). Thus, lim
i→∞

I
∑

(Mi) = ∞.

+ Imin. Let Mi be a minimal inconsistent set, and π one of its minimal tableau.
Observe that, due to the sub-formulae derivation structure of the tableau, |π| ≥
|Mi|. Thus, the bigger is the set, the bigger is the tableau, which means that the
smaller is its inconsistent value according to Imin. Therefore, for an infinity se-
quence of minimal inconsistent sets, if lim

i→∞
|Mi| = ∞, then lim

i→∞
Imin(Mi) =

0.

−CD . Let K = {a ∧ ¬a}. The knowledge base has only one minimal closed tableau and
its size is 2. Thus, Imin(K) = I

∑
(K) = 1/2. For Imin, let K′ = {¬a ∧ (a ∨ b) ∧

(a ∨ ¬b) ∧ (a ∨ c) ∧ (a ∨ ¬c)}. Observe that K′ has two minimal closed tableaux.
Therefore, I#(K) = 2.

FD − I# and I
∑

. See counterexample for MO.

+ Imin. If follows from MO.

−SY . Let K = {a,¬a} and K′ = {(a∨ b) ∧ (a∨ ¬b) ∧ (a∨ c) ∧ (a∨ ¬c),¬a}. Note that
K ≡s K′ Observe that K has only one closed tableau which is K, while K′ has two
closed tableaux: π1 and π2 below. Thus, I#(K) = 1, I#(K′) = 2, Imin(K) = 1,
Imin(K′) = 1/7 and I

∑
(K) = 1, I

∑
(K′) = 1/7. Below for clarity, we do not

draw the whole sets in each node, but instead, only the fresh formulae just added.

π1 =

K

K ∪ {(a ∨ b) ∧ (a ∨ ¬b), }

K ∪ {(a ∨ b), (a ∨ ¬b)}

K ∪ {a, (a ∨ ¬b), (a ∨ c) ∧ (a ∨ ¬c)} K ∪ {b, (a ∨ ¬b)}

K ∪ {a, b, (a ∨ ¬b)} K ∪ {b,¬b, (a ∨ ¬b)}
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π2 =

K

K ∪ {(a ∨ b) ∧ (a ∨ ¬b), (a ∨ c) ∧ (a ∨ ¬c)}

K ∪ {(a ∨ b) ∧ (a ∨ ¬b), (a ∨ c), (a ∨ ¬c)}

K ∪ {a, (a ∨ c), (a ∨ ¬c)} K ∪ {c, (a ∨ c), (a ∨ ¬c)}

K ∪ {a, c, (a ∨ c), (a ∨ ¬c)} K ∪ {¬c, c, (a ∨ c), (a ∨ ¬c)}

−EX See counterexample for SY

−AI See counter-example for SY

The following definition will be useful for proving the following results regarding non-
redundant formulae.

Definition A.2. The sub-structural formulae of a given formula ϕ are defined inductively
as

• subs(φ) = {φ}, if φ is a literal;

• subs(φ □ ψ) = {φ ∧ ψ} ∪ subs(φ) ∪ subs(ψ), for □ ∈ {∧,∨};

• subs(¬(φ □ ψ)) = {¬(φ □ ψ)} ∪ subs(¬φ) ∪ subs(¬ψ), for □ ∈ {∧,∨}.

Definition A.3. Let π = (N,E, λ) be a tableau for a knowledge base K, we define π[α] =
(N,E, λ′) such that λ′(n) = λ(n) ∪ {α}.

The tableau π[α] stands for a tableau that augments each node of π with the formula φ.

Proposition A.4. For every knowledge base K, if α is not partially-redundant in K and π
is a tableau for K then π[α] is a tableau for K ∪ {α}.

Proof. Let π = (N,E, λ) be a tableau for K, and α a not partially-redundant formula in K.
We will show that π[α] = (N,E, λ′) satisfies all conditions of a tableau:

• λ′(r) = K ∪ {α}, where r is the root of π[α]. By definition, λ′(r) = λ(r) ∪ {K} and
λ(r) = K. Thus, λ′(r) = K ∪ {α}.

• Let n ∈ N :
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1. we will show λ′(n) ̸= λ′(n′), for all n′ ∈ children(n). Let n′ ∈ children(n).
As π is a tableau, λ(n) ⊂ λ(n). By hypothesis, α is not partially-redundant
in K which means that φ ̸∈ λ(w), for all w ∈ N . Therefore, λ(n) ∪ {α} ⊂
λ(n′) ∪ {α}. By definition, λ′(n) = λ(n) ∪ {α} and λ′(n′) = λ(n′) ∪ {α}.
Therefore, λ′(n) ⊂ λ′(n′) which means that λ′(n) ̸= λ′(n′)

2. assume children(n) = {n1}. We will show that λ′(n1) ∈ σ(ε, λ′(n)), for some
ε ∈ RT B \ {∨e}. As π is tableau for K, we have that λ(n1) ∈ σ(ε, λ(n)) for
some ε ∈ RT B \ {∨e} = {∧e,¬¬e, DM∧, DM∨}:

– “ε = ¬¬e”. Thus,

λ(n1) = λ(n) ∪ {φ}, for some ¬¬φ ∈ λ(n).

By definition, λ′(n1) = λ(n1) ∪ {α}, and λ′(n) = λ(n) ∪ {α} which
implies that ¬¬φ ∈ λ′(n) and

λ′(n1) = λ(n) ∪ {φ} ∪ {α}
= λ′(n) ∪ {φ}

By definition, σ(¬¬e, λ
′(n)) = {λ′(n) ∪ {ψ} | ¬¬ψ ∈ λ′(n)}. Thus, as

¬¬φ ∈ λ′(n), we get λ′(n)∪{φ} ∈ σ(¬¬e, λ
′(n)) which means λ′(n1) ∈

σ(¬¬e, λ
′(n)).

– “ε = ∧e”. Thus,

λ(n1) = λ(n) ∪ {φ,ψ}, for some φ ∧ ψ ∈ λ(n).

By definition, λ′(n1) = λ(n1) ∪ {α}, and λ′(n) = λ(n) ∪ {α} which
implies that φ ∧ ψ ∈ λ′(n) and

λ′(n1) = λ(n) ∪ {φ,ψ} ∪ {α}
= λ′(n) ∪ {φ,ψ}

By definition, σ(∧e, λ
′(n)) = {λ′(n) ∪ {φ′, ψ′} | φ′ ∧ ψ′ ∈ λ′(n)}. Thus,

as φ ∧ ψ ∈ λ′(n), we get λ′(n) ∪ {φ,ψ} ∈ σ(¬¬e, λ
′(n)) which means

λ′(n1) ∈ σ(∧e, λ
′(n)).

– “ε = DM∧”. Thus,

λ(n1) = λ(n) ∪ {¬φ ∨ ¬ψ}, for some ¬(φ ∧ ψ) ∈ λ(n).

By definition, λ′(n1) = λ(n1) ∪ {α}, and λ′(n) = λ(n) ∪ {α} which
implies that ¬(φ ∧ ψ) ∈ λ′(n) and

λ′(n1) = λ(n) ∪ {¬φ ∨ ¬ψ} ∪ {α}
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= λ′(n) ∪ {¬φ ∨ ¬ψ}

By definition, σ(DM∧, λ
′(n)) = {λ′(n) ∪ {¬φ′ ∨ ¬ψ′} | ¬(φ′ ∧ ψ′) ∈

λ′(n)}. Thus, as ¬(φ ∧ ψ) ∈ λ′(n), we get λ′(n) ∪ {¬φ ∨ ¬ψ} ∈
σ(DM∧, λ

′(n)) which means λ′(n1) ∈ σ(DM∧, λ
′(n)).

– “ε = DM∨”. Thus,

λ(n1) = λ(n) ∪ {¬φ ∧ ¬ψ}, for some ¬(φ ∨ ψ) ∈ λ(n).

By definition, λ′(n1) = λ(n1) ∪ {α}, and λ′(n) = λ(n) ∪ {α} which
implies that ¬(φ ∨ ψ) ∈ λ′(n) and

λ′(n1) = λ(n) ∪ {¬φ ∧ ¬ψ} ∪ {α}
= λ′(n) ∪ {¬φ ∧ ¬ψ}

By definition, σ(DM∨, λ
′(n)) = {λ′(n) ∪ {¬φ′ ∧ ¬ψ′} | ¬(φ′ ∨ ψ′) ∈

λ′(n)}. Thus, as ¬(φ ∨ ψ) ∈ λ′(n), we get λ′(n) ∪ {¬φ ∧ ¬ψ} ∈
σ(DM∨, λ

′(n)) which means λ′(n1) ∈ σ(DM∨, λ
′(n)).

Thus, we conclude that λ′(n1) ∈ σ(ε, λ′(n)), for some ε ∈ RT B \ {∨e}.
3. assume children(n) = {n1, n2} with n1 ̸= n2. We will show that either

(λ′(n1), λ′(n2)) ∈ γ(λ′(n)) or (λ′(n2), λ′(n1)) ∈ γ(λ′(n)). Since π is tableau
for K, we have that (λ(n1), λ(n2)) ∈ γ(λ(n)) or (λ(n2), λ(n1)) ∈ γ(λ(n)).
Without loss of generality, let us assume that (λ(n1), λ(n2)) ∈ γ(λ(n)). Thus,
there is some φ ∨ ψ ∈ λ(n) such that

λ(n1) = λ(n) ∪ {φ} and

λ(n2) = λ(n) ∪ {ψ}

By definition, λ′(n) = λ(n) ∪ {α}, while λ′(n1) = λ(n1) ∪ {α} and λ′(n2) =
λ(n2) ∪ {α}. Thus, φ ∨ ψ ∈ λ′(n) and

λ′(n1) = λ(n) ∪ {φ} ∪ {α}
= λ′(n) ∪ {φ}

λ′(n2) = λ(n) ∪ {ψ} ∪ {α}
= λ′(n) ∪ {ψ}

By definition, γ(λ′(n)) = {(λ′(n) ∪ {φ′}, λ′(n) ∪ {ψ′}) | φ′ ∨ ψ′ ∈ λ′(n)}.
Thus, as φ ∨ ψ ∈ λ′(n), we get that

(λ′(n) ∪ {φ}, λ′(n) ∪ {ψ}) ∈ γ(λ′(n)),

which implies (λ′(n1), λ′(n2)) ∈ γ(λ′(n)). Thus, (λ′(n1), λ′(n2)) ∈ γ(λ′(n))
or (λ′(n2), λ′(n1)) ∈ γ(λ′(n)).
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Proposition A.5. Let K be a knowledge base, π a tableau for K and π′ a tableau for K∪α.
If α is not partially-redundant in K then

(a) λπ[α](n) ∩ subs(α) = {α}, and

(b) if for all node n of π′, λ′(n) ∩ subs(α) = {α} then for every formula β ∈
λ′(n) \ {α}, (subs(β) ∩ subs(α) = ∅,

Proof. Let K be a knowledge base, π a tableau for K and π′ a tableau for K ∪ α, and α a
formula not partially-redundant in K

(a) λπ[α](n) ∩ subs(α) = {α}. As α is not partially-redundant in K, we get that
λ(n) ∩ subs(α) = ∅. Thus,

λπ[α](n) ∩ subs(α) = (λ(n) ∪ {α}) ∩ subs(α)
= (λ(n) ∩ subs(α)) ∪ ({α} ∩ subs(α))
= ∅ ∪ {α} = {α}.

1. (b) for every formula β ∈ λ′(n) \ {α}, (subs(β) ∩ subs(α) = ∅. The proof is by
induction on the level of n

Base: level of n is 0, that is, n is the root node. Thus λ′(n) \ {α} = K. By
hypothesis, α is not redudant in K which means that subs(α) ∩ subs(β) = ∅,
for all β ∈ K.

Induction Hypothesis: for all node n′ such that level(n′) < level(n), subs(α) ∩
subs(β) = ∅, for all β ∈ λ′(n′) \ {α}

Induction Step: level(n) > 0. Thus, n has a parent node n′, and either (i)
children(n′) = {n} or (ii) children(n′) = {n, n2}

(i) children(n′) = {n}. By the definition of Tableau, λ′(n) ∈ σ(ε, λ′(n′)),
for some ε ∈ RT B \ {∨e} = {∧e,¬¬e, DM∧, DM∨}:

– “ε = ¬¬e”. Thus,

λ′(n) = λ′(n′) ∪ {φ}, for some ¬¬φ ∈ λ′(n′)

which implies

λ′(n) = (λ′(n′) \ {α}) ∪ ({φ} \ {α}.

As n′ is the parent of n, we have that level(n′) < level(n). We have two
cases: either α = φ or α ̸= φ
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• α = φ. Thus, λ′(n) = (λ′(n′) \ {α}). Thus, from IH: subs(α) ∩
subs(β) = ∅, for all β ∈ λ′(n′) \ {α}, taht is, subs(α) ∩ subs(β) = ∅,
for all β ∈ λ′(n).
• α ̸= φ. Let β ∈ λ′(n) \ {α}. Thus, β ∈ λ′(n′) \ {α} or β = φ. For
the former, it follows from IH tha subs(β)∩subs(α) = ∅. For the latter,
recall that ¬¬φ ∈ λ′(n′) and that from hypothesis λ′(n′) ∩ subs(α) =
{α}. Therefore, α ̸= ¬¬φ as α ̸= φ and φ ∈ subs(¬¬φ). Thus
¬¬φ ∈ λ′(n′)\{α}, which implies from IH that subs(¬¬φ)∩{α} = ∅.
Thus, as φ ∈ subs(¬¬φ), we get that subs(φ) ∩ subs(α) = ∅. Thus,
subs(β) ∩ subs(α) = ∅, as β = φ.

– the other cases are analagous.
(ii) children(n′) = {n, n2}. Analogous to the ∧e case.

Proposition A.6. Let K be a knowledge base and α a formula which is not partially-
redundant in K. If π is a tableau for K ∪ {α}, and for all n ∈ π, subs(α) ∩ λ(n) = {α}
then there is some tableau π′ of K such that π = π′[α].

Proof. Let K be a knowledge base, α be a formula that is not partially-redundant in K, and
π = (N,E, λ) be a tableau for K ∪ {α} such that subs(α) ∩ λ(n) = {α}, for all n ∈ π.
Let π′ = (N,E, λ′) such that λ′(n) = λ(n) \ {α}. We will show that (a) π′ is a tableau for
K and (b) π′[α] = π.

(a) We will show that π′ satisfy all the conditions of a tableau. Let r be the root of π′,
and therefore also the root of π.

• λ′(r) = K. By definition, λ(π) = K ∪ {α} and λ′(r) = λ(r) \ {α}. Thus,
λ′(r) = K.

• let n ∈ N :

1. let n′ ∈ children(n). As π is a tableau λ(n) ⊂ λ(n′). Thus, as α is labelled
in both n and n′, we have that λ(n) \ {α} ⊂ λ(n′) \ {α} which means
λ′(n) ⊂ λ′(n). Thus, λ′(n) ̸= λ′(n′).

2. assume children(n) = {n1}. We will show that λ′(n1) ∈ σ(ε, λ′(n)), for
some ε ∈ RT B \ {∨e}. As π is tableau for K, we have that λ(n1) ∈
σ(ε, λ(n)) for some ε ∈ RT B \ {∨e} = {∧e,¬¬e, DM∧, DM∨}:

– “ε = ¬¬e”. Thus,

λ(n1) = λ(n) ∪ {φ}, for some ¬¬φ ∈ λ(n).
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As π is a tableaux, λ(n) ⊂ λ(n1). Thus, as by hypothesis α ∈ λ(n),
we get φ ̸= α. Also, observe that α ̸= ¬¬φ. Otherwise, we would
have that φ ∈ subs(α), and therefore, we would get {α,φ} ⊆ λ(n1) ∩
subs(α), a contradiction as by hypothesis λ(n1) ∩ subs(α) = {α}.
Thus, we have

α ̸= φ and α ̸= ¬¬φ.

By definition, λ′(n1) = λ(n1) \ {α} which implies

λ′(n1) = (λ(n) ∪ {φ}) \ {α}.

Thus, as φ ̸= α, we get

λ′(n1) = (λ(n) \ {α}) ∪ {φ}

By definition, λ′(n) = λ(n) \ {α}. Thus,

λ′(n1) = λ′(n) ∪ {φ}.

Moreover, as ¬¬φ ∈ λ(n) and α ̸= ¬¬φ, we get that ¬¬φ ∈ λ′(n).
By definition,

σ(¬¬e, λ
′(n)) = {λ′(n) ∪ {ψ} | ¬¬ψ ∈ λ′(n)}.

Thus, as ¬¬φ ∈ λ′(n), we get that λ′(n) ∪ {φ} ∈ σ(¬¬e, λ
′(n)),

which means λ′(n1) ∈ σ(¬¬e, λ
′(n)).

– “ε = ∧′′
e . Thus,

λ(n1) = λ(n) ∪ {φ,ψ}, for some φ ∧ ψ ∈ λ(n).

Before we proceed, we need first to show that α ̸= φ, α ̸= ψ and
α ̸= φ∧ψ. If α = φ∧ψ then we would have that φ,ψ ∈ subs(α), and
therefore, we would get {α,φ, ψ} ⊆ λ(n) ∩ subs(α), a contradiction
as by hypothesis λ(n) ∩ subs(α) = {α}. It it was that case that α = φ
then we would have that φ ∧ ψ,φ ∈ λ(n). This implies that φ ∧
ψ ∈ λ(n) \ {α}. Note that subs(φ ∧ ψ) ∩ subs(α) ̸= ∅. However,
from Proposition A.5, we have that subs(φ ∧ ψ) ∩ subs(α) = ∅ a
contradiction. Analogously, we get at the same contraction for α = ψ.
Therefore,

α ̸= φ, α ̸= ψ and α ̸= φ ∧ ψ.

By definition, λ′(n1) = λ(n1) \ {α} which implies

λ′(n1) = (λ(n) ∪ {φ,ψ}) \ {α}.
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Thus, as α ̸= φ and α ̸= ψ, we get

λ′(n1) = (λ(n) \ {α}) ∪ {φ,ψ}

By definition, λ′(n) = λ(n) \ {α}. Thus,

λ′(n1) = λ′(n) ∪ {φ,ψ}.

Moreover, as φ∧ψ ∈ λ(n) and α ̸= φ∧ψ, we get that φ∧ψ ∈ λ′(n).
By definition,

σ(∧e, λ
′(n)) = {λ′(n) ∪ {φ′, ψ′} | φ′ ∧ ψ′ ∈ λ′(n)}.

Thus, as φ ∧ ψ ∈ λ′(n), we get that λ′(n) ∪ {φ,ψ} ∈ σ(∧e, λ
′(n)),

which means λ′(n1) ∈ σ(∧e, λ
′(n)).

– “ε = DM ′′
∧. Thus,

λ(n1) = λ(n) ∪ {¬φ ∨ ¬ψ}, for some ¬(φ ∧ ψ) ∈ λ(n).

As π is a tableaux, λ(n) ⊂ λ(n1). Thus, as by hypothesis α ∈ λ(n),
we get α ̸= ¬φ ∨ ¬ψ. Also observe that α ̸= ¬(φ ∧ ψ). Otherwise,
we would have that ¬φ ∨ ¬ψ ∈ subs(α), and therefore, we would get
{α,¬φ ∨ ¬ψ} ⊆ λ(n1) ∩ subs(α), a contradiction as by hypothesis
λ(n1) ∩ subs(α) = {α}. Thus, we have

α ̸= ¬(φ ∧ ψ) and α ̸= ¬φ ∨ ¬ψ.

By definition, λ′(n1) = λ(n1) \ {α} which implies

λ′(n1) = (λ(n) ∪ {¬φ ∨ ψ}) \ {α}.

Thus, as α ̸= ¬φ ∨ ψ,

λ′(n1) = (λ(n) \ {α}) ∪ {¬φ ∨ ψ}

By definition, λ′(n) = λ(n) \ {α}. Thus,

λ′(n1) = λ′(n) ∪ {¬φ ∨ ψ}.

Moreover, as ¬(φ ∧ ψ) ∈ λ(n) and α ̸= ¬(φ ∧ ψ), we get that ¬(φ ∧
ψ) ∈ λ′(n). By definition,

σ(DM∧, λ
′(n)) = {λ′(n) ∪ {¬φ′ ∨ ¬ψ′} | ¬(φ′ ∧ ψ′) ∈ λ′(n)}.

Thus, as ¬(φ∧ψ) ∈ λ′(n), we get λ′(n)∪{¬φ∨ψ} ∈ σ(DM∧, λ
′(n)),

which means λ′(n1) ∈ σ(DM∧, λ
′(n)).
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– “ε = DM ′′
∨. Analogous to case ε = DM∧.

3. let children(n) = {n1, n2} with n1 ̸= n2. We will show (λ′(n1), λ′(n2)) ∈
γ(λ′(n)) or (λ′(n2), λ′(n1)) ∈ γ(λ′(n)). Since π is tableau for K, we have
that (λ(n1), λ(n2)) ∈ γ(λ(n)) or (λ(n2), λ(n1)) ∈ γ(λ(n)). Without loss
of generality, let us assume that (λ(n1), λ(n2)) ∈ γ(λ(n)). Thus, there is
some φ ∨ ψ ∈ λ(n) such that

λ(n1) = λ(n) ∪ {φ} and

λ(n2) = λ(n) ∪ {ψ}

Before we proceed, we need to show that α ̸= φ, α ̸= ψ and α ̸= φ ∨ ψ.
If α = φ ∨ ψ then we would have that φ,ψ ∈ subs(α), and therefore, we
would get {α,φ, ψ} ⊆ λ(n) ∩ subs(α), a contradiction as by hypothesis
λ(n) ∩ subs(α) = {α}. It it was that case that α = φ then we would have
that φ ∨ ψ,φ ∈ λ(n). This implies that φ ∨ ψ ∈ λ(n) \ {α}. Note that
subs(φ ∨ ψ) ∩ subs(α) ̸= ∅. However, from Proposition A.5, we have that
subs(φ ∨ ψ) ∩ subs(α) = ∅ a contradiction. Analogously, we get at the
same contraction for α = ψ. Therefore,

α ̸= φ, α ̸= ψ and α ̸= φ ∨ ψ

By definition, λ′(n) = λ(n) \ {α}, while λ′(n1) = λ(n1) \ {α} and
λ′(n2) = λ(n2) \ {α}. Thus, as α ̸= φ ∨ ψ and φ ∨ ψ ∈ λ(n) we get that
φ ∨ ψ ∈ λ′(n). Moreover, as α ̸= φ and α ̸= ψ, we get

λ′(n1) = (λ(n) ∪ {φ}) \ {α}
= (λ(n) \ {α}) ∪ {φ}
= λ′(n) ∪ {φ}

λ′(n2) = (λ(n) ∪ {ψ}) \ {α}
= (λ(n) \ {α}) ∪ {ψ}
= λ′(n) ∪ {ψ}

By definition, γ(λ′(n)) = {(λ′(n)∪{φ′}, λ′(n)∪{ψ′}) | φ′∨ψ′ ∈ λ′(n)}.
Thus, as φ ∨ ψ ∈ λ′(n), we get that

(λ′(n) ∪ {φ}, λ′(n) ∪ {ψ}) ∈ γ(λ′(n)),

which implies (λ′(n1), λ′(n2)) ∈ γ(λ′(n)). Thus, (λ′(n1), λ′(n2)) ∈
γ(λ′(n)) or (λ′(n2), λ′(n1)) ∈ γ(λ′(n)).

(b) We only have to show that λπ′[α](n) = λ(n), for all n ∈ N . Let n ∈ N . By
definition λ′(n) = λ(n) \ {α}, and λπ′[α](n) = λ′(n) ∪ {α}. Thus, λπ′[α](n) =
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(λ(n) \ {α}) ∪ {α}. By hypothesis, α ∈ λ(n), as subs(α) ∩λ(n) = {α}. Therefore,
λπ′[α](n) = λ(n).

Proposition A.7. Let K be a knowledge base and α a formula which is not partially-
redundant in K. If π and π′ are tableaux for K then: π ⪯ π′ iff π[α] ⪯ π′[α]

Proof. Let K be a knowledge base, α be a formula that is not partially-redundant in K, and
π and π′ be tableaux for K.

“⇒”. Let π ⪯ π′. Thus there is an injection τ : leaf(π) → leaf(π′) such that

λπ(n) ⊆ λπ′(τ(n)) (1)

Observe, from the definition of π[α] and π′[α], that leaf(π) = leaf(π[α]), leaf(π′) =
leaf(π′[α]). Therefore, τ is also an injection from the leaf nodes of π[α] to the leaf
nodes of π′[α]. We only need to show that, λπ[α](n) ⊆ λπ′[α](τ(n)), for all n ∈
leaf(π[α]). Let n ∈ leaf(π[α]). From Eq. (1), we have that

λ(n) ∪ {α} ⊆ λ′(τ(n)) ∪ {α}.

By definition, λπ[α](n) = λπ(n) ∪ {α} and λπ′[α](τ(n)) = λπ′[α](τ(n)) ∪ {α}.
Therefore, λπ[α](n) ⊆ λπ′[α](τ(n)).

• “⇐”. Let π[α] ⪯ π′[α]. Thus there is an injection τ : leaf(π[α]) → leaf(π′[α]) such
that

λπ[α](n) ⊆ λπ′[α](τ(n)) (2)

Observe, from the definition of π[α] and π′[α], that leaf(π) = leaf(π[α]), leaf(π′) =
leaf(π′[α]). Therefore, τ is also an injection from the leaf nodes of π to the leaf
nodes of π′. We only need to show that λπ(n) ⊆ λπ′(τ(n)), for all n ∈ leaf(π). Let
n ∈ leaf(π).

By definition, λπ[α](n) = λπ(n) ∪ {α} and λπ′[α](τ(n)) = λπ′(τ(n)) ∪ {α}. Thus,
from Eq. (2) above we get

λπ(n) ∪ {α} ⊆ λπ′(τ(n)) ∪ {α} (3)

As α is not partially-redundant in K, we have that α is not labelled in any of the
tableaux of K. This means that α ̸∈ λπ(n) and α ̸∈ λπ′(τ(n)). This jointly with
Eq. (3) implies

λπ(n) ⊆ λπ′(τ(n)).
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Proposition A.8. If α is not partially-redundant in K then( ⋃
π∈T min

⊥ (K)
π[α]

)
⊆ T min

⊥ (K ∪ {α}).

Proof. Let us suppose for contradiction that there is a π ∈ T min
⊥ (K) such that π[α] ̸∈

T min
⊥ (K ∪ {α}). Thus, there is a π′ ∈ T min

⊥ (K ∪ {α}) such that π′ ≺ π[α]. This means
that there is some leaf nodes n′ ∈ π′ and n ∈ π[α] such that

λπ′(n′) ⊂ λπ[α](n). (4)

Observe that α ∈ λ(m), for all node m of every tableau of K ∪ {α}. This means that,

{α} ⊆ λπ′(n′) ∩ subs(α) and {α} ⊆ λπ[α](n) ∩ subs(α)

Thus, we have two cases: either (i) {α} = λπ′(n′) ∩ subs(α) or (ii) {α} ⊂ λπ′(n′) ∩
subs(α). We get a contradiction in either case:

• (i) {α} = λπ′(n′) ∩ subs(α). Thus from Proposition A.6, there is a a tableau πy for
K such that π′ = πy[α]. From Proposition A.7 we get that πy ≺ π iff πy[α] ≺ π[α].
Thus, as π′ = πy[α], we get

πy ≺ π iff π′ ≺ π[α].

By hypothesis, π′ ≺ π[α] which implies that πy ≺ π. Therefore, π ̸∈ T min
⊥ (K)

which is a contradiction.

• (ii) {α} ⊂ λπ′(n′) ∩ subs(α). It follows from Eq. (4) above that λπ′(n′) ∩ subs(α) ⊆
λπ[α](n) ∩ subs(α). Therefore,

{α} ⊂ λπ′(n′) ∩ subs(α) ⊆ λπ[α](n) ∩ subs(α)

which implies that {α} ⊂ λπ[α](n) ∩ subs(α). This means that {α} ̸= λπ[α](n) ∩
subs(α). However, from Proposition A.5, we have that {α} = λπ[α](n) ∩ subs(α)
which is a contradiction.

Theorem 16. The inconsistency measures Imin, I# and I
∑

satisfy NM.
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Proof. It follows directly from MO that Iminsatisfies NM. For the other two measures, we
prove compliance with NM separately:

• I#: Let K be a knowledge base and α a non-redundant formula with K. Therefore,
from Proposition A.8, we get that |T min

⊥ (K)| ≤ |T min
⊥ (K ∪ {α})|. Thus, I#(K) ≤

I#(K ∪ {α}).

• I
∑

: Let K be a knowledge base and α a non-partially-redundant formula with K.
Observe that |π| = |π[α]|. Therefore,

∑
π∈T min

⊥ (K)

1
|π|

=
∑

π∈T min
⊥ (K)

1
|π[α]|

which implies

I
∑

(K) =
∑

π∈T min
⊥ (K)

1
|π[α]| (5)

Let X =
⋃

π∈T min
⊥ (K) π[α]. From Proposition A.8, we get X ⊆ T min

⊥ (K ∪ {α}).
Thus, T min

⊥ (K ∪ {α}) = X ∪ (K ∪ {α} \X). Therefore,

I
∑

(K ∪ {α}) =
(∑

π∈X

1
|π|

)
+

 ∑
π∈X\T min

⊥ (K∪{α})

1
|π|


=

 ∑
π∈T min

⊥ (K)

1
|π[α]|

+

 ∑
π∈X\T min

⊥ (K∪{α})

1
|π|

 .
Thus, from Eq. (5), we get

I
∑

(K ∪ {α}) = I
∑

(K) +

 ∑
π∈X\T min

⊥ (K∪{α})

1
|π|

 .
Thus, I

∑
(K ∪ {α}) ≥ I

∑
(K).

Proposition A.9. If a formula α is safe within K then α is not partially-redundant with
K \ {α}.
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Proof. Let π be a tableau for K \ {α}, and π′ a tableau for {α}, we will show that there is
no formula φ that is labelled in both π and π′. From Lemma A.1, we have that At(φ) ⊆
At(K\{α}) and At(ψ) ⊆ At(α), for all φ that appears in π and all ψ ∈ π′. Thus, as α is safe
with K, we have that At(K\{α})∩At(α) = ∅, which means At(φ)∩At(ψ) = ∅. Therefore,
there is no common formula between π and π′, that is, α is not-partially-redundant.

Proposition A.10. If a formula α is not partially-redundant with a knowledge base K and
α is consistent then α is safe in K ∪ {α}.

Proof. Let us suppose for contradiction that for some knowledge base K there is a consistent
formula α that is not partially-redundant with K, but it is not safe in K ∪{α}. First, observe
that each propositional atom in α appears in some tableau of α. By hypothesis, α is not safe
in K ∪ {α}, which means there is a formula φ ∈ K that shares some atomic proposition
p with α, that is p ∈ At(φ) ∩ At(α). But then p appears in some tableau of K and in
some tableau of α which means that α is partially-redundant with K. This contradicts our
hypothesis. Therefore, α is safe.

To prove compliance of our measures with the postulate SI, we will need some extra
constructions. First, given a tableau π for a knowledge base K, and a node n of π, we denote
by subT(n) all the nodes of the subtree rooted on n. A node n has two children, say n1
and n2, only when such children were obtained by applying the disjunction rule DM∨, that
is, λ(n1) \ λ(n) = {φ}, λ(n2) \ λ(n) = {ψ}, and either φ ∨ ψ ∈ λ(n) or ψ ∨ φ ∈ λ(n).
We say that such a node n is a disjunctive node. In addition, if At(φ ∨ ψ) ∩ At(α) ̸= ∅
then we say that such a disjunctive node n is α-connected. Given a tableau π for K, let
π[\α] = (N,E, λ) be a sub-labelled tree of π, such that for each α-connected disjunctive
node n of π, we remove exactly one of the sub-trees rooted on one of the two children of
n. Given a π[\α], we define the function fπ[α] : N → 2N where f(n) = {n′ ∈ N |
(λ(n) \ forms(α)) ∪ α}. Imagine that we re-label each node of the tableau by removing
any formula that shares some atomic proposition with α, except α itself. By doing so, some
nodes might present the same new label. The function fπ[α] identifies such nodes whose
new labels collapse. The image of fπ[α] is denoted by Img(fπ[α]).

We define the collapsed sub-labelled tree of π[\α] = (N ′, E′, λ′) as the labelled tree
π̃[\α] = (Ñ , Ẽ, λ̃), where

• Ñ = Img(fπ[α]);

• Ẽ = {(A,B) ∈ Ñ × Ñ | A ̸= B, (n, n′) ∈ E′, for some n ∈ A and n′ ∈ B};

• λ̃(A) = (λ(n′) \ forms(α)) ∪ {α}, for some n′ ∈ A

Lemma A.11. If n is a disjunctive α-connected node, and n′ is a child of n then (λ(n′) \
forms(α)) ∪ {α} = (λ(n) \ forms(α)) ∪ {α}.
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Proof. As n is a disjunctive node and n′ is a child of it, we get that λ(n′) = λ(n) ∪ {φ}.
As n is α-connected, we get that φ ∈ forms(α). Thus,

(λ(n) ∪ {φ}) \ forms(α) = λ(n) \ forms(α)
λ(n′) \ forms(α) = λ(n) \ forms(α)

(λ(n′) \ forms(α)) ∪ {α} = (λ(n) \ forms(α)) ∪ {α}

Proposition A.12. If π is a tableau of a knowledge base K, and α ∈ K is safe then the
collapsed sub-labelled tree π̃[\α] = (Ñ , Ẽ, λ̃), is a tableau of K, for every π[\α].

Proof. Let us show that each condition of the tableau is satisfied:

• λ̃(r) = K. By definition, λ̃(r) = (λ(r)\ forms(α))∪α and λ(r) = K. Thus, λ̃(r) =(
K \ forms(α)

)
∪ α. By hypothesis, α is safe in K, therefore,

(
(K) \ forms(α)

)
=

K \ {α}. This implies that λ̃(r) = (K \ α) ∪ α = K.

• let A ∈ Ñ :

1. λ̃(A) ̸= λ̃(A′), for all children A′ of A. By definition, A ̸= B.

2. if children(A) = {A1}, then λ(A1) ∈ σ(ε, λ(A)), for some derivation rule
ϵ ∈ RT B . As A′ is single child of A, we have that there are some n ∈ A and
n′ ∈ A′ such that n′ is child of n in π. Let us fix such a n and n′. As A1 is child
of A, we have that A ̸= A1 which implies that

(λ(n) \ forms(α)) ∪ {α} ≠ (λ(n′) \ forms(α)) ∪ {α}.

Thus, from the contrapositive of Lemma A.11, we have that n is not a disjunc-
tive α-connected node. By definition, λ̃(A) = (λ(n) \ forms(α)) ∪ {α} and
λ̃(A1) = (λ(n′) \ forms(α)) ∪ {α}. Therefore,

λ̃(A) ̸= λ̃(A1).

Therefore, n has only one single node which means that λ(n′) ∈ σ(ε, λ(n)),
for some derivation rule ϵ ∈ RT B:

– λ(n′) = λ(n) ∪ {φ}, with ¬¬φ ∈ λ(n). Observe that if φ ∈ forms(α),
then we would have (λ(n)\ forms(α))∪{α} = (λ(n′)\ forms(α))∪{α}.
But we have from above that this is not the case, therefore φ ̸∈ forms(α),
which means {φ} \ forms(α) = {φ}. This implies that,

λ(n′) \ forms(α) = (λ(n) ∪ {φ}) \ forms(α)
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= (λ(n) \ forms(α)) ∪ {φ}

Thus,

λ(n′) \ forms(α) ∪ {α} = (λ(n) \ forms(α)) ∪ {α} ∪ {φ}
λ̃(A1) = λ̃(A1) ∪ {φ}.

Thus, λ̃(A1) ∈ σ(DM∧, λ(A)).
– the other cases are analogous.

3. if children(A) = {A1, A2} with A1 ̸= A2 then there are nodes n ∈ A, n1 ∈ A1
and n2 ∈ A2 such that both n1 and n2 are children of n is π. The proof is
analogous to item 2 above.

Proposition A.13. Let π be a tableau for a knowledge base K. If α is safe in K and there
is a node n such that At(λ(n) \ {α}) ̸= ∅ then π is not minimal.

Proof. The idea is simple, let us take a collapsed tableau π̃ of π. As At(λ(n) \ {α}) ̸= ∅,
there is some formula β ∈ λ(n) such that β ∈ forms(α) and β ̸= α. Consider the following
injection g : leaf(π̃) → leaf(π) with g(A) = m ∈ A such that m is a leaf. By definition,
λ̃(A) = λ(m)\ forms(α)∪{α} ⊆ λ(m). Therefore, π̃ ⪯ π. As both π and π̃ are tableaux,
we have that all leaf nodes reachable from n in π contains β. Let m be one of such leaf
nodes reachable from n. Thus, λ̃(A) = λ(m) \ forms(α) ∪ {α}. As β ∈ forms(α), β ̸= α
and β ∈ λ(m), we get that λ(m) \ forms(α) ∪ {α} ⊂ λ(m). This means λ̃(A) ⊂ λ(m).
Therefore, π ̸⪯ π̃. Thus, π̃ ≺ π which means π is not minimal.

Theorem A.14. If α is safe in K then

T min
⊥ (K) =

⋃
π∈T min

⊥ (K\α)
π[α]

Proof. As α is safe in K,we have that α is consistent and non-partially-redundant in K \
{α} which implies from Proposition A.8 that

⋃
π∈T min

⊥ (K\α)π[α] ⊂ T min
⊥ (K). Let X =⋃

π∈T min
⊥ (K\α) π[α]. Thus, T min

⊥ (K) = X ∪ (T min
⊥ (K) \X). As α is safe in K, it follows

from Lemma A.1 that for every tableau π ∈ X , and each node n of π: At(λ(n))∩At(α) = ∅.
Therefore, from Proposition A.13, we get that (T min

⊥ (K)\X) = ∅. Therefore, T min
⊥ (K) =

X .

Theorem 20. For all n > 0 and I ∈ {Imin, I#, I
∑

}, Cv(I, n) = Cf (I, n) = Cp(I, n) =
∞.
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Proof. We will have to split the proof for I# from Imin and I
∑

, for each item 1 and 2.

• I#. Let us consider the following formulae

αi = (
i∧
1
a)

And for i ∈ N, consider the family of knowledge bases Ki defined via

Ki = {(α1 ∧ ¬α1) ∧ (α2 ∧ ¬α2) ∧ · · · ∧ (αi ∧ ¬αi)}

For example,

K1 = {(a ∧ ¬a)}
K2 = {(a ∧ ¬a) ∧

(
(a ∧ a) ∧ ¬(a ∧ a)

)
}

K3 = {(a ∧ ¬a) ∧
(
(a ∧ a) ∧ ¬(a ∧ a)

)
∧
(
(a ∧ a ∧ a) ∧ ¬(a ∧ a ∧ a)

)
}

Each Ki has exactly iminimal closed tableaux. To see this, observe that we can apply
rule ∧e to obtain one of the conjunctions αj ∧¬αj , for 1 ⩽ j ⩽ i. Then we can apply
rule ∧e again to get a clash. This generates a minimal closed tableau. As we have i
conjunctions αj ∧ ¬αj , we obtain i minmal closed tableaux.

Thus, I#(Ki) = i, for all i > 0. This means that each {I#(Ki) | i > 0} is an
infinite set. Also note that |Ki| = 1, At(Ki) = {a}, and for all φ ∈ Ki, At(φ) = {a}.
Therefore, for n > 0, Cv(I#, n) = Cf (I#, n) = Cp(I#, n) = ∞.

• Imin, I
∑

. Consider the following family of knowledge bases

K+
i = {α+

i ∧ ¬a},

where

α+
1 = a

α+
i+1 = a ∨ (α+

i )

For example,

K1 = {a ∧ ¬a}
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K2 = {(a ∨ a) ∧ ¬a}
K3 = {

(
a ∨ (a ∨ a)

)
∧ ¬a}

Each Ki has only one minimal closed tableau, and its size is 2i, thus Imin(Ki) =
I
∑

(Ki) = 1
2i . This implies that for all i, j > 0, if i ̸= j then Imin(Ki) ̸= Imin(Kj)

and I
∑

(Ki) ̸= I
∑

(Kj). Thus, the sets {Imin(Ki) | i > 0} and {I
∑

(Ki) | i >
0} are infinite sets. Also note that |Ki| = 1, At(Ki) = {a}, and for all φ ∈ Ki,
At(φ) = {a}. Therefore, for n > 0, Cv(I, n) = Cf (I, n) = Cp(I, n) = ∞, for
I ∈ {Imin, I

∑
}.

Theorem 21.

1. For all n > 1, Cl(I#, n) = ∞.

2. For all n > 3, and I ∈ {Imin, I
∑

}, Cl(I, n) = ∞.

Proof. 1. Consider the following family of knowledge bases

K1 = {a1,¬a1}
Ki+1 = Ki ∪ K{ai+1,¬ai+1}

Each Ki has exactly i minimal closed tableaux. Thus, I#(Ki) = i, for all i > 0.
Observe that for all i > 0, and φ ∈ Ki, |φ| ≤ 2. Thus, the set {I#(Ki) | i > 0} is
infinite which implies that Cl(I#, n) = ∞, for all n > 1.

2. Consider the following family of knowledge bases

K+
1 = {a1,¬a1}

K+
2 = {a1,¬a1 ∨ a2,¬a2}

K+
3 = {a1,¬a1 ∨ a2,¬a2 ∨ a3,¬a3}
. . .

K+
i+1 = {a1,¬a1 ∨ a2,¬a2 ∨ a3, . . . ,¬ai ∨ ai+1,¬ai+1}

For, i > 0, each Ki has exactly one minimal closed tableau π, and it is size is |πi| =
2i+ 1. Thus, Imin(Ki) = I

∑
(Ki) = 1

2i+1 . Observe that, if i ̸= j, then Imin(Ki) ̸=
Imin(Kj) and I

∑
(Ki) ̸= I

∑
(Kj). Therefore, the set {I(Ki) | i > 0} is infinite,

for every I ∈ {Imin, I
∑

}. Also note that for all i > 0, and φ ∈ Ki, |φ| ≤ 4. Thus,
Cl(I, n) = ∞, for all n > 3, and I ∈ {Imin, I

∑
}.
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MEASURING INCONSISTENCY WITH THE TABLEAU METHOD

Theorem 22. For I ∈ {I#, Imin, I#}, EXACTI , UPPERI , and LOWERI are in EX-
PSPACE, while VALUEI is in FEXPSPACE (the functional variant of EXPSPACE).

Proof. First, we show that VALUEI is in FEXPSPACE. From this, we prove that the other
problems are in EXPSPACE.

• VALUEI is in FEXPSPACE, for all I ∈ {I#, Imin, I#}.

Given a knowledge base K, we will show first how one can compute I(K), for all
I ∈ {I#, Imin, I#}. The idea is simple, we enumerate all tableaux, and we mark all
minimal tableaux, thereafter we count and check the size of each minimal tableaux.
First, note that we do not allow two nodes on the same branch of a tableau to have
the same label (if the application of a rule repeats some label on the branch, we
ignore this application and look for another rule application). As K is finite and each
formula is finite, at each derivation step there is only a finite number of possible
derivations and the number of possibilities reduces in the following derivation step.
Therefore, the procedure eventually finishes. Each branch has at most linear size on
the sum of the sizes of the formulae in K, while a tableau can have exponential size
on the sum of the sizes of the formulae in K. And we have an exponential number of
tableaux on the size of the sum of the sizes of the formulae in K. To determine I(K),
for any I ∈ {I#, Imin, I#}, we (1) enumerate all such tableaux, (2) check which
ones of them are minimal, and (3) for I#(K), we count the number of such minimal
tableaux. For Imin, we visit each minimal tableaux, keeping the size of the minimal
tableau visited so far. The value of Imin(K) corresponds to the value obtained when
we finish visiting all minimal tableaux. For I

∑
, the process is analogous, we just

need to keep a counter that is incremented every time that we find a minimal tableau
with the same size as the least tableau so far computed. However, if a smaller tableau
is found, then we reset this counter to one. At the end of the procedure, we obtain the
correct value of I

∑
(K). This strategy takes an exponential space, since we have an

exponential number of tableaux (as explained above), and each of them has at most
exponential size.

• The problems LOWER, UPPER and EXACT are easily solved by using the TM that
computes VALUEI . In the input K ∈ K, x ∈ R∞

≥0 \ {0}, simulate the TM M that
solves VALUEK, that we presented above. To compute LOWER, UPPER and EXACT,
we only need to compare x with the value returned by M .
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