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Abstract. We consider the problem of learning argumentation frameworks from a given set of labelings such that every input
is a σ-labeling of these argumentation frameworks. Our new algorithm takes labelings and computes attack constraints for
each argument that represent the restrictions on argumentation frameworks that are consistent with the input labelings. Having
constraints on the level of arguments allows for a very effective parallelization of all computations. An important element of
this approach is maintaining a representation of all argumentation frameworks that satisfy the input labelings instead of simply
finding any suitable argumentation framework. This is especially important, for example, if we receive additional labelings at a
later time and want to refine our result without having to start all over again. The developed algorithm is compared to previous
works and an evaluation of its performance has been conducted.
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1. Introduction

An abstract argumentation framework due to Dung [1] is defined as a graph, where the nodes are
arguments and the edges represent attacks between these arguments. An attack from an argument A
to another argument B means that, if we consider the argument A to be acceptable, then we have to
reject B, since A contradicts B. The goal of this approach is to model human argumentation in a formal
manner and to use this model for reasoning. Abstract argumentation frameworks are interpreted using
the notion of an (argumentation) semantics. A semantics characterizes acceptable sets of arguments
(called extensions), which are supposed to model a valid outcome of the argumentation represented by
an argumentation framework. In particular, they usually require that extensions are conflict-free, i. e., that
there is no conflict between arguments of the extension, and that it defends itself, i. e., it counterattacks all
its attackers (the latter property is called admissibility). While Dung proposed several different semantics
in his seminal paper, like complete, grounded, preferred, and stable semantics, there have since been
many proposals for new semantics [2], all with different goals in mind.

Extension-based semantics focus on the accepted arguments only, so, any extension with respect to
some semantics only consists of the arguments that are considered acceptable. That means we also
get the implicit knowledge that all other arguments are not accepted. However, we do not know for
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what reason these arguments are not accepted. They could be directly attacked by some acceptable
argument, meaning the extension actively contradicts them. In contrast to that they could also be not
accepted because they are part of some conflict, unrelated to the acceptable arguments, which means
these arguments could potentially also be compatible with the acceptable arguments. This additional
information can be encoded in labelings [3]. In a labeling each argument of the argumentation framework
receives a label, if it is considered acceptable the argument is labeled in, if the argument is attacked by
some acceptable argument it gets the label out and otherwise it receives the label undec.

In Inductive Logic Programming [4] we derive from a given set of examples and background knowl-
edge a hypothesized logic program that entails these examples. In a similar manner, algorithms for
Bayesian Network Learning [5, 6] are concerned with inducing a bayesian network from given data.
Overall, both of these approaches are concerned with generalizing from observations or examples to a
program or network which entails this knowledge and therefore also allows for inferring new knowledge
in line with the input knowledge.

This approach is also interesting for the field of argumentation. In general, argumentation semantics
allows us to perform inference with an abstract argumentation framework, by determining semantical
information (extensions or labelings) from given syntactical information (in the form of an argumen-
tation framework). In this work, we are, as already hinted at above, interested in the reverse direction,
i. e., the process of learning a syntactic structure from semantical information. So, given a set of label-
ings we wish to infer a suitable attack relation that explains this input. That means, we want to find an
argumentation framework that has at least those labelings.

This is interesting, if we look for example at the area of argument mining [7] which is concerned with
extracting arguments and their relations from text. There, extracting the relations between arguments is
especially hard [6]. This is one area where inductive learning approaches are useful, since they can aid
us in constructing the attack relation for a set of arguments. Additionally, learning the attack relation for
a set of arguments can also be helpful in terms of explainability [8, 9] since this allows us to construct
better argumentative explanations based on the underlying argumentation framework itself, see e. g.,
[10, 11]. It will also allow us to better understand how the labelings originated and how we could
challenge them, as the following example will highlight.

Assume a situation where we are able to meet up with a person A that has an anti-vax stance. We are
able to discuss with them about the topic of the COVID-19 vaccine and our goal is to understand their
personal reasoning process. Doing so may allow us to find better counterarguments in future discussions
on the topic and it will also aid us in identifying false conclusions that A might have made, so that we
can potentially clear them up. The internal reasoning process of A is represented as an argumentation
framework, which is hidden to us. During the discussion, we may ask A for his opinion on different
statements on the topic. From A’s answers we can then infer a labeling, which essentially assigns to
each argument their stance, i. e., either they agree (in), disagree (out) or their stance is unclear/unknown
(undec). Given such a labeling, our goal is to reconstruct the hidden argumentation framework of A.

For example, lets consider the following four arguments:

(a) The development of the COVID-19 vaccine has been rushed.
(b) The COVID-19 vaccine reduces the risk of infection.
(c) The COVID-19 vaccine does not work at all.
(d) The COVID-19 vaccine is dangerous and has various side effects.

From our first discussion with A we may conclude that they agree with the arguments a and d while
disagreeing with b and c. This would then translate to the complete labeling `1 = {in : {a, d}, out :



{b, c}, undec : ∅}. A complete labeling is defined such that arguments not attacked by an out-labeled
argument must be labeled in, all arguments attacked by an in-labeled arguments are labeled out and other-
wise the argument is labeled undec. If we now try to reconstruct their internal argumentation framework,
for example by simply brute-forcing every possible combination of attacks, we will find that multiple
argumentation frameworks are consistent with this labeling. See for example the three argumentation
frameworks in Figure 1. At this point, it is impossible for us to decide which argumentation framework
correctly represents the reasoning of A. If we were to choose one, we would have to make some addi-
tional assumptions and discard all other argumentation frameworks. This may lead to unintentionally
discarding the actual framework that we are looking for. For that reason, it is sensible to maintain a
representation of all of these argumentation frameworks. This allows us to easily incorporate additional
information in the future.

For example, if we want to refine our understanding of A’s reasoning, we could initiate another dis-
cussion with them so that we can obtain another complete labeling. After our second discussion, we may
get the labeling `2 = {in : {c}, out : {a}, undec : {b, d}}. With this additional labeling, we can again re-
construct argumentation frameworks that are consistent with both `1 and `2. In our example, we will find
that only F2 and F3 from Figure 1 are consistent with both labelings, while F1 is only consistent with
`1. This again highlights the advantage of maintaining a representation of all consistent argumentation
frameworks after each step.
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Fig. 1. Some argumentation frameworks that were reconstructed from the labelings `1 and `2 of the arguments {a, b, c, d} as
defined above. Note that these frameworks are not supposed to model factual information but rather the reasoning process of
someone with potentially flawed logic or limited understanding of the topic at hand.

With the argumentation framework(s) that we have learned from the labelings, we can then for ex-
ample try to identify missing or nonsensical attacks (e. g. there should probably be an attack from b
on c). Another thing we can do, is identify key arguments that we can disprove to sway the opinion of
the person A. For example, if we present some evidence that the vaccine development has in fact not
been rushed, A might change their opinion on the argument a and subsequently this could influence their
stance on arguments b and c.

In this work, we will answer the following research question:
Research Question: For a given set of labelings L = {`1, ..., `n} and a set of semantics S = {σ1, ..., σn},
how can we compute the set of argumentation frameworks F such that for all F ∈ F the following two
conditions hold:

(1) if F ∈ F, then ∀`i ∈ L : `i is a σi-labeling of F, and
(2) if F /∈ F, then ∃`i ∈ L : `i is not a σi-labeling of F.

We explicitly allow the labelings to have different semantics in order to be more general, especially
since different semantics have different advantages depending on the application [2]. In other words, for
a given set of labelings L with respect to different semantics, we want to define a method to construct



the set of all argumentation frameworks F, such that at least all labelings in L are labelings of F. In that
case, we will also say that the argumentation framework F is consistent with L.

The general problem of learning argumentation frameworks has only received limited attention so
far [12, 13] and none of these works are able to address the exact scenario we outlined above. In their
paper, Niskanen et al. [13] investigate the synthesis of argumentation frameworks from positive and
negative examples. These examples are extensions with respect to conflict-free, admissible, complete
or stable semantics. A positive example E is then encoded in some logical formula, representing the
information in E. All positive examples are encoded with a corresponding formula for their semantics
and the negative examples are encoded as the negation of those formulae. Their approach also allows
for the attachment of weights to each example. The encoded examples, together with their weights, are
given to a MaxSAT solver, which returns the optimal solution, i. e., an argumentation framework, which
is consistent with all or most of the positive examples and the least of the negative examples.

On the other hand, Riveret et al. [12] propose an approach for learning attacks from labelings. Their
algorithm is built around the grounded semantics and takes a stream of labelings as input. Since it is
not possible to reconstruct the argumentation framework by only knowing the (uniquely determined)
grounded extension, Riveret et al. decided to extend their scenario as follows. Their algorithm works
with knowledge about the sub-frameworks of the argumentation framework, i. e., restrictions of the
graph on different subsets of arguments. The input of their algorithm therefore consists of grounded
labelings of different sub-frameworks. For the process of learning the hidden argumentation framework
we start with a weighted argumentation framework, where every attack has an initial weight of 0. Then,
for each input labeling we iterate over all combinations of two arguments and check whether they satisfy
one of four rules, which essentially encode the different conditions a grounded labelings has to fulfill. If
a rule is satisfied, the weight of the attacks between these two arguments are updated accordingly. After
examining all input labelings we remove all attacks whose weight is below a certain threshold from
the argumentation framework. The resulting argumentation framework is then the approximation of the
original hidden argumentation framework.

While the above mentioned approaches can be used to construct argumentation frameworks from
labelings or extensions, they only return a single argumentation framework as a result. This might not
always be desirable, as we illustrated in the above example. In the case of the approach by Riveret et al.
[12], their algorithm also relies on additional information about sub-frameworks.

Therefore, in this work, we propose an algorithm that better addresses this scenario by maintaining a
representation of all consistent argumentation frameworks at all times. In general, our algorithm works
according to the following procedure: We are given a set of arguments Arg as well as a set of input
labelings L. For each input labeling ` ∈ L we compute a set of attack constraints C` = {Ca,σ}a∈Arg,
depending on its semantics. Afterwards we combine these constraints, so that we have one constraint Ca

for each argument a ∈ Arg. Finally, they can then be used to construct a set of argumentation frameworks
F which satisfy all constraints. That means every argumentation framework F ∈ F is consistent with the
set of input labelings L.

To summarise, the contributions of this paper are as follows:

(1) We introduce the concept of attack constraints and define semantic constraint functions that com-
pute attack constraints for a given labeling (Section 3.1-3.2).

(2) We define a novel algorithm for learning argumentation frameworks from labelings that utilizes
these constraints to maintain a representation of all consistent argumentation frameworks (Sec-
tion 3.3).



(3) We conduct an experimental evaluation of our algorithm, comparing a naive and a parallelized
implementation (Section 4).

(4) We discuss our algorithm and distinguish it from the existing work on the topic (Section 5).

In Section 2 we introduce the necessary background knowledge on abstract argumentation and
labeling-based semantics and Section 6 concludes the paper. Proofs of technical results can be found
in the appendix.

2. Background

We consider abstract argumentation frameworks [1] defined as follows.

Definition 2.1. An argumentation framework (AF) is a pair F = (Arg,R) where Arg is a finite set of
arguments and where R ⊆ Arg× Arg is a relation of attack between arguments. We denote by F the set
of all argumentation frameworks.

We say that an argument a ∈ Arg attacks an argument b ∈ Arg if (a, b) ∈ R. Given a set S ⊆ Arg we
say S attacks a if for some b ∈ S we have (b, a) ∈ R, and likewise a attacks S if for some b ∈ S we
have (a, b) ∈ R.

A labeling-based semantics maps each argumentation framework to a set of labelings [3, 14]. These
are functions that assign to each argument a label indicating the acceptance status of the argument. The
labeling-based semantics that we focus on in this paper use three labels: in indicates that the argument is
accepted, out that the argument is rejected, and undec that the acceptance of the argument is undecided.
In this paper we use the labeling-based approach since it allows us to distinguish not only accepted
and non-accepted arguments, but also rejected arguments and undecided arguments. We will refer to a
labeling-based semantics simply as a semantics.

Definition 2.2. A labeling of a set Arg of arguments is a total function ` : Arg → {in, out, undec}. We
use L(Arg) to denote the set of labelings of Arg. A labeling of an argumentation framework F = (Arg,R)
is a labeling of Arg. Given a labeling ` we use in(`), out(`) and undec(`) to denote the set of arguments
labeled in, out and undec, respectively.

A semantics σ is represented by a condition that determines whether a labeling ` of F is a σ-labeling.
We now define the semantics that we focus on in this paper, namely the complete, grounded, preferred
and stable semantics. While not typically considered to be a semantics, we also define the notion of a
conflict-free and admissible labeling and treat these conditions as semantics. For that, we will use the
definitions from [14] or definitions that are equivalent to those.

A labeling is conflict-free whenever no two arguments a and b exist such that a attacks b and both are
labeled in.

Definition 2.3. A labeling ` of an argumentation framework F = (Arg,R) is conflict-free if and only if:

(1) if a is labeled in then no attacker of a is labeled in.
(2) if a is labeled out then a has an attacker that is labeled in.



A labeling is admissible whenever it is conflict-free and, in addition, every argument a that is accepted
is attacked only by arguments that are rejected. This amounts to requiring accepted arguments to be
defended: in an admissible labeling, if a is accepted then all attackers of a are rejected and thus (as a
consequence of Condition 2 in Definition 2.3) a is defended from these attackers by other arguments
that are accepted.

Definition 2.4. A labeling ` of an argumentation framework F = (Arg,R) is admissible if and only if:

(1) ` is conflict-free.
(2) if a is labeled in then all attackers of a are labeled out.

A labeling is complete whenever it is admissible and, in addition, (1) every argument attacked by an
accepted argument is rejected, and (2) every argument whose attackers are rejected is accepted. This
condition amounts to requiring defended arguments to be accepted: if all attackers of an argument a are
attacked by some argument that is accepted, then all attackers of a are rejected and hence a is accepted.

Definition 2.5. A labeling ` of an argumentation framework F = (Arg,R) is complete if and only if:

(1) ` is admissible.
(2) if some attacker of a is labeled in then a is labeled out.
(3) if all attackers of a are labeled out then a is labeled in.

The remaining semantics are all defined in terms of complete labelings. Firstly, a labeling is grounded
if it is complete and if it is minimal with respect to accepted arguments. The grounded labeling of an
argumentation framework is unique and represents the most skeptical point of view on which arguments
to accept [1, 14]. A preferred labeling is a complete labeling that is maximal with respect to accepted
arguments. Preferred labelings represent maximally credulous points of view on which arguments to
accept. Finally, a stable labeling is a complete labeling in which no argument is undecided.

Definition 2.6. Let F = (Arg,R) be an argumentation framework and let ` be a labeling of F.

• ` is a grounded if it is complete and if there is no complete labeling `′ of F such that in(`′) ⊂ in(`).
• ` is a preferred if it is complete and if there is no complete labeling `′ of F such that in(`) ⊂ in(`′).
• ` is a stable if it is complete and if undec(`) = ∅

In the following, we will denote with σ(F) the set of all σ-labelings of F. The definitions in this
section immediately imply the following relationships between the different semantics [1, 14].

Proposition 2.1.

(1) Every admissible labeling is conflict-free.
(2) Every complete labeling is admissible.
(3) Every grounded, preferred and stable labeling is complete.
(4) Every stable labeling is preferred.



3. Learning from Labelings

In this section, we introduce a novel algorithm for learning argumentation frameworks from labelings
with the goal of constructing (or representing) all argumentation frameworks that are relevant to the input
labelings. We start with formally defining the AF learning problem that we want to address. Afterwards,
we define the concept of attack constraints and finally describe in detail our algorithm to solve this
problem.

For the remainder of this work, we will consider the set of arguments Arg to be fixed. We also denote
with S the set of all semantics. First, we define the notion of an input, which is a pair of the form (`, σ)
with a labeling ` and some semantics σ ∈ S.

Definition 3.1. An input pair is a pair (`, σ) where ` ∈ L(Arg) is a labeling of Arg and σ ∈ S is a
semantics.

We will also sometimes refer to ` as an input labeling. So, given a set of inputs L =
{(`1, σ1), . . . , (`n, σn)}, our intention is to construct a set of argumentation frameworks F, such that
for all F ∈ F and each i = 1, . . . , n, we have that `i is a σi-labeling of F. More formally, we are
concerned with the following problem:

Problem: AF learning

Input: A set of inputs L = {(`1, σ1), . . . , (`n, σn)}
Output: A set of argumentation frameworks F = {F | `i is a σi-labeling of F, i = 1, . . . , n}

The general idea behind our approach to solve the AF learning problem is as follows. We use propo-
sitional atoms of the form rba to express the existence of attacks (b, a) ∈ R in some argumenta-
tion framework F = (Arg,R). Then, given an input (`, σ), we construct a set of attack constraints
C` = {Ca | a ∈ Arg}. For a labeling ` we will therefore have one attack constraint Ca for each argument
a ∈ Arg. These attack constraints depend on the semantics σ of the input as well as the labeling ` itself.
Together, they express what an argumentation framework F has to satisfy such that ` is a σ-labeling
of F. We will then use the fact that the models of these formulas directly correspond to argumentation
frameworks by using the mapping functions described in Definition 3.3.

This approach can then also be extended to a set of input labelings L = {(`1, σ1), ..., (`n, σn)}. So,
for a given set of input labelings L we compute the constraints C`i for each labeling `i, depending on its
semantics σi. Then, each interpretation that satisfies all attack constraints of all input labelings repre-
sents an argumentation framework F where all labelings `i are σi-labelings of F. It follows, that the set
of models that satisfy all attack constraints exactly corresponds to the set of argumentation frameworks
F as specified in the above scenario description. In other words, we construct the set of all argumenta-
tion frameworks that have at least the given input as their labelings, but they can also have additional
labelings.

3.1. Attack Constraints

The key element of our algorithm are the so called attack constraints. Before we define the concept
of attack constraints, we first introduce the propositional language that we use to represent attacks in
argumentation frameworks.



Let At be a set of propositional atoms. With L(At) we denote the corresponding propositional language
closed under the usual connectives. Furthermore, we will use the concept of an interpretation A, a
function that assigns to each atom a truth value. If an interpretation A satisfies a formula f ∈ L(At),
i. e., it assigns the value true to it, we may also call A a model of f . WithM( f ) we denote the set of
all models of f . If G is a set of formulas, we denote withM(G) the set of all models of the conjunction
g =

∧
f∈G

f .

Definition 3.2. Let Arg be the fixed set of arguments and a ∈ Arg is an argument. Then we define the set
of atoms representing all possible attacks in the argumentation framework F as follows:

attackAtoms(Arg) = {rba | a, b ∈ Arg}

and the set of atoms that represent all possible incoming attacks on the argument a as

inAttacks(a) = {rba | b ∈ Arg}.

A positive occurrence rba represents an attack from b to a in the argumentation framework, i. e.,
(b, a) ∈ R. On the other hand, a negative occurrence ¬rba means there should be no attack from b
on a in the argumentation framework, i. e., (b, a) /∈ R.

Due to the correspondence between the above defined atoms attackAtoms(Arg) and the attacks of
some argumentation framework F = (Arg,R), we can also define a one-to-one mapping between the
models of a formula and attack relations.

Definition 3.3. Arg is the set of arguments and f ∈ L(attackAtoms(Arg)) is a formula. We define the
mapping from a model to an attack relation via the function modelToAttacks :M( f )→ 2Arg×Arg as:

modelToAttacks(A) := R with R = {(a, b) | A(rab) = true}

and the mapping from an attack relation to a model attacksToModel : 2Arg×Arg →M( f ) as:

attacksToModel(R) := A with A(rab) =


true if (a, b) ∈ R

f alse otherwise.

Together with the fixed set of arguments Arg, we can then also recover an argumentation framework
F = (Arg,modelToAttacks(A)).

Example 1. Consider the set of arguments Arg = {a, b, c, d}. Then, an attack constraint for the argu-
ment a could for instance look like this

Ca = ¬raa ∧ (rca ∨ rda).

For an argumentation framework, this constraint enforces that the argument a cannot be attacked by
itself. Furthermore, a must be attacked by either c or d or both. Finally, an attack from b on a might



also exist, since the constraint Ca does not impose any restriction on the variable rba. That means, there
exist multiple different argumentation frameworks that satisfy the above attack constraint for a. These
argumentation frameworks are represented by the set of modelsM(Ca).

Recalling Section 2, under any semantics an argument can only be accepted if it is not attacked by
any other accepted argument (conflict-freeness). In addition to that, the acceptance of an argument also
depends on the label of its attackers. If the attackers of the argument a are labeled out, then a can still be
accepted (i. e., labeled in). On the other hand, if one of its attackers is labeled undec (or in), then a cannot
be accepted under admissible, complete, grounded, preferred or stable semantics. It does not matter in
this context what the outgoing attacks of the argument a are. To summarize, if we want to formulate a
constraint for the acceptance of an argument, under most semantics we only need to consider its direct
attackers and their label in a given labeling.

For that reason, we define the attack constraints from the local perspective of an argument.

Definition 3.4. Let a ∈ Arg be an argument. Then the attack constraint of a is a formula Ca ∈
L(inAttacks(a)).

So, instead of specifying one constraint per input labeling, we will represent a labeling ` with a set of
attack constraints. For this labeling constraint every model corresponds to an argumentation framework
that has ` as a σ-labeling.

Definition 3.5. Let Arg be the fixed set of arguments and (`, σ) is an input. Then we define the labeling
constraint C` of the input labeling ` as a set of attack constraints as follows:

C` = {Ca | a ∈ Arg},

such that we have

A ∈M(C`) =⇒ ` is a σ-labeling of F = (Arg,modelToAttacks(A)).

It is also worth noting that by defining the attack constraints as formulas over inAttacks(a), we ensure
that the constraints for a labeling are mutually independent.

Proposition 3.1. Let (`, σ) be an input and C` is the labeling constraint of ` given σ. The attack con-
straints Ca ∈ C` are mutually independent, i. e., for any two attack constraints Ca,Cb ∈ C`, we have
that atoms(Ca) ∩ atoms(Cb) = ∅.

Finally, we may also say that an argumentation framework F = (Arg,R) satisfies a labeling constraint
C`, if there exists a model A of C` that can be mapped to the attack relation R of F.

Definition 3.6. Let F = (Arg,R) be an argumentation framework. Let (`, σ) be an input and C` is the
labeling constraint of `. We say that F satisfies C`, written as F |= C`, if and only if there is a model A
of C` such that attacksToModel(R) = A.



3.2. Semantic Constraint Functions

To construct the constraints for an input (`, σ), we need a method that given an argument a and a
labeling ` computes a valid attack constraint for each argument. Under different semantics, we have
different conditions under which arguments are accepted or rejected. Therefore, such a function should
be different depending on the associated semantics σ of the input. To compute these constraints for each
argument, we will use a semantic constraint function AttConσ with the following signature:

AttConσ : Arg× L(Arg) −→ L(inAttacks(a)).

This function then takes the input labeling ` and an argument a ∈ Arg and returns the attack con-
straint for this argument. In other words, it computes a formula that represents the information about the
acceptance of a that can be extracted from the labeling ` under the assumption that ` is a σ-labeling.

Recall that in our scenario we want to compute all argumentation frameworks F such that for all
inputs (`i, σi) we have that `i is a σi-labeling of F. In order to satisfy this requirement, we have to
ensure soundness and completeness in the following sense:

The set of arguments Arg is fixed. Let (`, σ) be an input and AttConσ is a semantic constraint function
for σ. The corresponding labeling constraint C`,σ for ` is then the set of attack constraints

C`,σ = {AttConσ(a, `) | a ∈ Arg}.

Whenever the semantics σ is not relevant or follows from context, we denote the labeling constraint
for the labeling ` with just C`.

Then, the following two conditions must hold for all labelings:

(1) The semantic constraint function is sound for all labelings `, i. e.,

∀A ∈M(C`,σ) : ` is a σ-labeling of F = (Arg, modelToAttacks(A)).

(2) The semantic constraint function is complete for all labelings `, i. e.,

∀F = (Arg,R) : ` is a σ-labeling of F =⇒ ∃A ∈M(C`,σ) : R = modelToAttacks(A).

So, if there exists a semantic constraint function AttConσ for a semantics σ that satisfies the above
two conditions, then we can use this function to learn argumentation frameworks as specified in the
AF learning problem. On the other hand, if no such function exists, then labelings with respect to the
semantics σ cannot be used to learn argumentation frameworks.

In the following, we will define the semantic constraint function for conflict-free, admissible, complete
and stable semantics and give some examples to illustrate what kind of restrictions the constraints of each
semantics impose on an argumentation framework.

3.2.1. Conflict-free Semantics
First, we recall the conditions that a labeling ` has to satisfy in order to be considered conflict-free:

(1) if a is labeled in then no attacker of a is labeled in.
(2) if a is labeled out then a has an attacker that is labeled in.



From this we can derive what an attack constraint for a conflict-free input (`, c f ) should include. If an
argument a ∈ Arg is labeled in or undec, then it cannot be attacked by any argument b ∈ in(`). The first
case follows from the definition of conflict-freeness, as there cannot be any attacks between in-labeled
arguments (see condition (1) from above). The case undec follows from the definition of labelings itself,
i. e., if an argument is attacked by an in-labeled argument, then it would have to be labeled out (see
condition (2)). Furthermore, if the argument is labeled out, then it has to be attacked by at least one
argument b ∈ in(`).

In addition to that, every argument a can be attacked by any other argument c, that does not have the
label in, without influencing the label of a. These attacks, which are not relevant in order to have ` as a
σ-labeling are not contained in the attack constraint of a.

Definition 3.7. Let F = (Arg,R) be an argumentation framework and (`, c f ) be an input. We then define
the semantic constraint function for the conflict-free semantics as follows:

AttConc f (a, `) =



∧
b∈in(`)

¬rba if a ∈ in(`)

∨
b∈in(`)

rba if a ∈ out(`)

∧
b∈in(`)

¬rba if a ∈ undec(`)

The attack constraints computed via the semantic constraint function AttConc f are sound and complete
for conflict-free input labelings in the above defined sense.

Theorem 3.1. Let (`, c f ) be a conflict-free input and C` is the labeling constraint of ` computed via
AttConc f . With F we denote the set of argumentation frameworks that satisfy C`, i.e for all F ∈ F we
have that F |= C`.

The semantic constraint function is sound for conflict-free input labelings `, i. e.,

∀F ∈ F : ` is a cf-labeling of F

and the semantic constraint function is complete for conflict-free input labelings `, i. e.,

∀F = (Arg,R) : ` is a cf-labeling of F =⇒ F ∈ F.

Example 2. Consider the set of arguments Arg = {a, b, c, d} and the conflict free input labeling ` =
{in = {a, b}, out = {c}, undec = {d}} over these arguments. We can then use the above defined
function AttConc f (a, `) to compute the attack constraint of each argument in Arg:

Ca = AttConc f (a, `) = ¬raa ∧ ¬rba

Cb = AttConc f (b, `) = ¬rab ∧ ¬rbb

Cc = AttConc f (c, `) = rac ∨ rbc

Cd = AttConc f (d, `) = ¬rad ∧ ¬rbd



These conditions represent the input labeling `. They capture that the in-labeled arguments a and b
are conflict-free, i. e., there is no attack between them in any direction. In addition to that, the undec-
labeled argument d is also not attacked by a and b, because that would mean d would have to be labeled
out. The argument c is labeled out and thus it must be attacked by either a or b in order to satisfy the
corresponding attack constraint.

We may also notice that the attack constraints contain no restrictions on attacks originating from c or
d. That means these attacks are considered possible and we have to consider any combination of those
when constructing the argumentation frameworks consistent with the conditions later.

3.2.2. Admissible Semantics
Recalling the definition from Section 2, a labeling ` is considered admissible if (1) it is a c f -labeling

and (2) we have that if an argument a ∈ Arg is labeled in then all attackers of a are labeled out.
As the above condition (1) suggests, the attack constraint for an admissible input (`, ad) are a strength-

ened version of the conflict-free constraints. The attack constraint for arguments that are labeled out is
the same as in the conflict-free case, it has to be attacked by at least one argument b ∈ in(`). Arguments
that are labeled undec cannot be attacked by arguments that have the label in, just like it was the case
for conflict-free labelings. From condition (2) it follows that if the argument is labeled in the attack con-
straint now includes that it cannot be attacked by any argument which is labeled in or undec. Disallowing
attacks from in-labeled arguments captures the conflict-freeness and is the same as before. Additionally
an argument which is accepted under admissible semantics can no longer be attacked by undec-labeled
argument. This captures the defense property of admissibility. An argument with the label undec is per
definition not attacked by any accepted argument and thus any attack from such an argument would be
undefended.

However, an in-labeled argument can be attacked by any argument with the label out since these
arguments are per definition attacked by some in-labeled argument. Furthermore, arguments that are
labeled out or undec can additionally be attacked by any argument that does not have the label in, just
like before.

Definition 3.8. Let F = (Arg,R) be an argumentation framework and (`, ad) be an input. We then
define the semantic constraint function for the admissible semantics as follows:

AttConad(a, `) =



∧
b∈Arg\out(`)

¬rba if a ∈ in(`)

∨
b∈in(`)

rba if a ∈ out(`)

∧
b∈in(`)

¬rba if a ∈ undec(`)

The attack constraints computed via the semantic constraint function AttConad are sound and complete
for admissible input labelings.

Theorem 3.2. Let (`, ad) be an admissible input and C` is the labeling constraint of ` computed via
AttConad. With F we denote the set of argumentation frameworks that satisfy C`, i.e for all F ∈ F we
have that F |= C`.



The semantic constraint function AttConad is sound for admissible input labelings `, i. e.,

∀F ∈ F : ` is an ad-labeling of F

and the semantic constraint function AttConad is complete for admissible input labelings `, i. e.,

∀F = (Arg,R) : ` is an ad-labeling of F =⇒ F ∈ F.

Example 3. Let us consider the set of arguments Arg = {a, b, c, d} and the admissible input labeling
` = {in = {a}, out = {c}, undec = {b, d}} over these arguments. We can then use the above defined
function AttConad(a, `) to compute the attack constraint of each argument in Arg:

Ca = AttConad(a, `) = ¬raa ∧ ¬rba ∧ ¬rda

Cb = AttConad(b, `) = ¬rab

Cc = AttConad(c, `) = rac

Cd = AttConad(d, `) = ¬rad

These conditions represent the input labeling ` and impose some restrictions on any argumentation
framework that wants to be consistent with the labeling. For the only in-labeled argument a we have
that it must not be attacked by itself, or any of the undec-labeled arguments b an d. Otherwise a would
not be defended and thus not admissible. Like in the case of conflict-free labelings, the undec-labeled
arguments b and d cannot be attacked by the in-labeled argument a. Finally, the argument c with the
label out has to be attacked by a, since that is the only in-labeled argument in this example.

The attacks represented by all atoms r ∈ attackAtoms(Arg) which are not mentioned in the attack
constraints are again considered to be possible but not necessary.

3.2.3. Complete Semantics
We recall that a labeling ` is considered complete if it satisfies the following three conditions:

(1) ` is admissible.
(2) if some attacker of a is labeled in then a is labeled out.
(3) if all attackers of a are labeled out then a is labeled in.

The attack constraints for a complete input (`, co) are therefore a stronger version of the constraints
for admissible labelings. The attack constraints for in-labeled arguments is the same as before, capturing
both conflict-freeness and defense. The constraint for arguments with the label out are also identical and
just require some attack from any in-labeled argument. However, the attack constraint for undec-labeled
arguments is different for complete labelings and now consists of two parts. The first part states that an
undec-labeled argument a cannot be attacked by an in-labeled argument and is the same as before. But in
addition to that the argument a has to be attacked by some undec-labeled argument in order to be labeled
undec. This can be an attack from some other argument or even the argument a itself. This additional
constraint is necessary to capture the completeness property: Every argument that is defended by in(`)
has to be included in in(`). Assuming that there is no attack from another undec-labeled argument, then
the argument a can only be attacked by arguments with the label out. But, in that case the argument
would be defended by in(`) and thus should be labeled in instead of undec.



Definition 3.9. Let F = (Arg,R) be an argumentation framework and (`, co) be an input. We then define
the semantic constraint function for the complete semantics as follows:

AttConco(a, `) =



∧
b∈Arg\out(`)

¬rba if a ∈ in(`)

∨
b∈in(`)

rba if a ∈ out(`)

∧
b∈in(`)

¬rba ∧ (
∨

c∈undec(`)

rca) if a ∈ undec(`)

The attack constraints computed via the semantic constraint function AttConco are sound and complete
for complete input labelings.

Theorem 3.3. Let (`, co) be a complete input and C` is the labeling constraint of ` computed via
AttConco. With F we denote the set of argumentation frameworks that satisfy C`, i.e for all F ∈ F
we have that F |= C`.

The semantic constraint function AttConco is sound for complete input labelings `, i. e.,

∀F ∈ F : ` is a co-labeling of F

and the semantic constraint function AttConco is complete for complete input labelings `, i. e.,

∀F = (Arg,R) : ` is a co-labeling of F =⇒ F ∈ F.

Example 4. Let us consider the set of arguments Arg = {a, b, c, d} and the complete input labeling
` = {in = {c}, out = {a}, undec = {b, d}} over these arguments. We can then use the above defined
function AttConco(a, `) to compute the attack constraint of each argument in Arg:

Ca = AttConco(a, `) = rca

Cb = AttConco(b, `) = ¬rcb ∧ (rbb ∨ rdb)
Cc = AttConco(c, `) = ¬rbc ∧ ¬rcc ∧ ¬rdc

Cd = AttConco(d, `) = ¬rcd ∧ (rbd ∨ rdd)

Like before, the only out-labeled argument a must be attacked by the only in-labeled argument c. The
argument c with the label in can then not be attacked by itself or any of the undec-labeled arguments b
and d. Like in the example for admissible conditions, the arguments b and d are undecided. That means
by definition they cannot be attacked by the in-labeled argument c. However, since the input labeling is
complete in addition to that they have to be attacked by any undec-labeled argument.

We have again a few other possible attacks in this example, for instance the argument a can addition-
ally be attacked by itself, b or d while still satisfying the attack constraints.



3.2.4. Stable Semantics
A labeling ` is considered stable if it is a co-labeling and we have that undec(`) = ∅. So, if we have a

stable input (`, st) we do not have any arguments in undec(`) since every argument of the argumentation
framework is either in the corresponding stable extension or attacked by it. The constraints for in and
out-labeled arguments are the same as in the conflict-free case. An argument that is labeled in cannot
be attacked by any argument that is also labeled in. We longer need to include the defense part of the
admissible or complete attack constraints, since there exists no undec-labeled argument per definition.
If an argument is labeled out it has to be attacked by at least one argument b ∈ in(`).

Definition 3.10. Let F = (Arg,R) be an argumentation framework and (`, st) be an input. We then
define the semantic constraint function for the stable semantics as follows:

AttConst(a, `) =


∧

b∈in(`)

¬rba if a ∈ in(`)

∨
b∈in(`)

rba if a ∈ out(`)

The attack constraints computed via the semantic constraint function AttConst are sound and complete
for stable input labelings.

Theorem 3.4. Let (`, st) be a stable input and C` is the labeling constraint of ` computed via AttConst.
With F we denote the set of argumentation frameworks that satisfy C`, i.e for all F ∈ F we have that
F |= C`.

The semantic constraint function AttConst is sound for stable input labelings `, i. e.,

∀F ∈ F : ` is a st-labeling of F

and the semantic constraint function AttConst is complete for stable input labelings `, i. e.,

∀F = (Arg,R) : ` is a st-labeling of F =⇒ F ∈ F.

3.2.5. Other Semantics
Besides the already mentioned semantics, Dung also introduced the grounded and preferred seman-

tics in his seminal paper [1]. However, for both of these semantics, there exists no semantic constraint
function which is sound and complete. The reason for that lies in the minimality and maximality con-
straints w.r.t. set inclusion for these semantics. The semantic constraint functions are supposed to return
local constraints, i. e., a formula in L(inAttacks(a)). Clearly, such a local formula is not able to express
minimality/maximality among multiple labelings.

Proposition 3.2. There exists no sound and complete semantic constraint function for the grounded
semantics.

Proof. Assume the contrary. Let AttCongr be the semantic constraint function that is sound and com-
plete for gr. Consider the labeling ` = {in = {a, c}, out = {b}, undec = ∅}. One AF which has ` as
its grounded labeling is the AF ({a, b, c}, {(a, b)}). If we add the attack (b, a) then ` is no longer the



grounded labeling of this AF. Soundness then implies that we must have AttCongr(a, `) |= ¬rba. How-
ever, another AF which has ` as its grounded labeling is the AF ({a, b, c}, {(a, b), (c, b)}). This time,
if we add the attack (b, a), then ` is still the grounded labeling of this AF. Completeness then implies
that we have AttCongr(a, `) 6|= ¬rba. This is a contradiction, and hence there is no semantic constraint
function that is sound and complete for the grounded semantics. �

Proposition 3.3. There exists no sound and complete semantic constraint function for the preferred
semantics.

Proof. Assume the contrary. Let AttConpr : Arg × L(Arg) −→ L(inAttacks(a)) be the semantic con-
straint function that is sound and complete for pr. Consider the labeling ` = {in = ∅, out = ∅, undec =
{a, b, c}}. One AF which has ` as a preferred labeling is the AF ({a, b, c}, {(a, a), (a, b), (c, c)}). If we
add the attack (b, a) then ` is no longer a preferred labeling of this AF. Soundness then implies that we
must have AttConpr(a, `) |= ¬rba. However, another AF which has ` as a preferred labeling is the AF
({a, b, c}, {(a, a), (a, b), (c, c), (c, b)}). This time, if we add the attack (b, a), then ` is still a preferred
labeling of this AF. Completeness then implies that we have AttConpr(a, `) 6|= ¬rba. This is a contra-
diction, and hence there is no semantic constraint function that is sound and complete for the preferred
semantics. �

3.3. Algorithm

In the following we will introduce an algorithm for learning argumentation frameworks from labelings.
The input of this algorithm is a set of arguments Arg and a set of inputs L = {(`1, σ1), ...}. Our algorithm
works in an iterative way. That means, each input labeling is processed independently one by one. So,
the algorithm is able to consider a stream of input labelings and provide intermediate results after each
processed labeling. The procedure for the algorithm is shown in Algorithm 1. In each iteration, the input
parameters of the algorithm include a mapping C of the arguments to their current attack constraint.
Before processing the first input labeling we assign to each argument a the initial attack constraint
Ca = >. So, by default no attacks are necessary to satisfy the constraint, which means all argumentation
frameworks F = (Arg,R) are consistent with the empty set of conditions, as would be expected.

The main procedure of the algorithm can essentially be split into three parts:

(1) Computing the labeling constraint C` for the input labeling.
(2) Combining the labeling constraint C` with the input constraints C.
(3) Constructing the set of argumentation frameworks F from the constraints in C.

In each iteration of the algorithm we take a mapping of constraints C, the set of arguments Arg and
some input (`, σ) ∈ L as input. When we reference the mapping as Ca we mean the constraint for
argument a as stored in the mapping C.

For the input we compute the attack constraint Ca,` of each argument a ∈ Arg via the semantic con-
straint function AttConσ.

In the second step, we combine the labeling constraint Ca,` for each argument a with the existing
attack constraint Ca. We want to compute argumentation frameworks that satisfy all input labelings,
therefore the combined constraint for an argument a is just the logical conjunction of the constraints of
the argument for each labeling. The updated constraint overwrites the constraint for the argument in the
mapping C.



Algorithm 1 Iterative algorithm for learning argumentation frameworks from labelings.
1: input mapping of constraints C = {a→ Ca | a ∈ Arg}, set of arguments Arg, an input (`, σ).
2: output updated mapping of constraints C, set of argumentation frameworks F (optional)
3:
4: for each argument a ∈ Arg do
5: Ca,` ← AttConσ(a, `)
6: Ca ← Ca ∧Ca,`

7: end for
8: F← constructFrameworks(C) (optional)
9: return C, (F).

The third and final step is to construct the set of argumentation frameworks F for the updated attack
constraint mapping C. For this, we use the mapping modelToAttacks(A) described in Definition 3.3. In
particular, we compute the set of models Ma for each argument a ∈ Arg. It should be noted that the
model computation for these constraints are independent of each other and thus can be done in parallel. If
we then pick one model Ai ∈ Mai for each argument, we obtain a consistent argumentation framework
F = (Arg,modelToAttacks(A1 ∪ ... ∪ An)). If we consider all different combinations of models we
obtain the set of all consistent argumentation frameworks F.

This step is optional, since we only need the mapping of attack constraints C with the updated con-
straints for each argument for further learning. So, after each learning iteration the algorithm returns the
updated set of attack constraints C and (if wanted) the set of constructed argumentation frameworks F.

Regarding the complexity of constructing argumentation frameworks for a set of attack constraints.
We can consider the constraints in clausal form, which follows easily from the definition of the semantic
constraint functions. A very helpful property of the attack constraints in clausal form is, that all clauses
contain at most one negated literal, i. e., each clause is a dual-horn clause. That means, the process of
constructing an argumentation framework for a given set of attack constraints can be considered as a
Dual-Horn SAT problem, which is P-complete [15]. Thus, the construction argumentation frameworks
can be done in polynomial time, more precisely in linear time with respect to the size of the attack
constraints which is in O(n2|L|), where n is the number of arguments and L is the set of learned labelings.
This can be further improved by using parallel computations, as shown by our experiments in Section 4.

3.3.1. Properties
In the following we will look at some useful properties that the previously defined algorithm satisfies,

namely soundness, completeness and monotonicity.

Theorem 3.5. Let L be a set of inputs and F is the set of argumentation frameworks constructed by the
procedure described in Algorithm 1 by iteratively processing L. For every σi in the set of inputs there
exists a sound and complete semantic constraint function, i. e., σi ∈ {c f , ad, co, st}.

The algorithm is sound for all input labelings, i. e.,

∀F ∈ F : ∀(`i, σi) ∈ L : ` is a σi-labeling of F

The algorithm is complete for all input labelings, i. e.,

∀G = (Arg,R) : (∀(`i, σi) ∈ L : ` is a σi-labeling of G) =⇒ G ∈ F



As shown in Theorem 3.5 the algorithm based on the above defined attack constraints is sound and
complete for any combination of inputs with respect to all four semantics. That means, the algorithm
computes exactly the set of argumentation frameworks that are consistent with the input labelings. From
the proof of Theorem 3.5 it also follows that the order in which the labelings are processed by the
algorithm does not matter.

Proposition 3.4. Let Arg be a set of arguments and `1, `2 are labelings. With F we denote the set of
argumentation frameworks constructed by Algorithm 1 for the input labelings `1 and `2.

Then, the order in which the labelings are learned has no influence on the constructed set of argumen-
tation frameworks F.

Another property of the algorithm is monotonicity (see Theorem 3.6), or more precisely the algorithm
is monotonically refining. That means, if we have a set of labelings L2 with L2 ⊇ L1 then the set of
argumentation frameworks F2 constructed for L2 will be a subset of the frameworks constructed for L1.
In other words, if we learn an additional labeling the number of argumentation frameworks that satisfy
all attack constraints can only stay the same or become smaller.

Theorem 3.6. Let Arg be a set of arguments and L1, L2 are sets of inputs. F1, F2 denote the sets of
argumentation frameworks constructed by Algorithm 1 for the input labelings in L1 and L2 respectively.

The algorithm for constructing argumentation frameworks from labelings is monotonically refining,
i. e.,

∀L1, L2 ∈ L(Arg) : L1 ⊇ L2 =⇒ F1 ⊆ F2

3.4. Example

This section will showcase the application of Algorithm 1. Assume the following situation. Unknown
to us, there is the hidden argumentation framework as shown in Figure 2. Given are only the set of
arguments Arg = {a, b, c, d, e} and the set of inputs L = {(`1, ad), (`2, co), (`3, c f )}. The three input
labelings are shown in Figure 3. Our goal is to construct all argumentation frameworks that are consistent
with these three labelings.

a

b

c

d

e

Fig. 2. The hidden argumentation framework from which the input labelings are generated.

We start the process of learning with the admissible labeling `1 = {in = {a}, out = {b, c}, undec =
{d, e}}. The first step is computing the labeling-specific attack constraint for each argument. The label-
ing `1 is admissible, so we will use the semantic constraint function AttConad from Definition 3.8. The
argument a is labeled in, that means it cannot be attacked by any in- or undec-labeled argument. b and
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`1 = {in = {a}, out = {b, c}, undec = {d, e}}

a

b

c

d

e

`2 = {in = {b, c}, out = {a, d}, undec = {e}}

a

b

c

d

e

`3 = {in = {d}, out = {e}, undec = {a, b, c}}

Fig. 3. The three input labelings: `1 is admissible, `2 is complete and `3 is conflict-free.

c are labeled out, thus they have to be attacked by the only in-labeled argument a. The arguments d and
e are undec which means they cannot be attacked by the in-labeled argument a. That leaves us with the
following attack constraints after the first labeling:

Ca = ¬raa ∧ ¬rda ∧ ¬rea

Cb = rab

Cc = rac

Cd = ¬rad

Ce = ¬rae

After processing the first labeling we know that the argument a must attack b and c. We also know that
some attacks cannot exist, but there are still many possibilities for attacks. For example, the argument a
can still be attacked by b or c and the resulting frameworks would still be consistent with `1. There can
also be many different combinations of attacks between the arguments b, c, d and e. This iteration of the
algorithm would then return the set of attack constraints C = {Ca,Cb,Cc,Cd,Ce}.

Lets consider the next labeling `2 = {in = {b, c}, out = {a, d}, undec = {e}}, which is complete. For
this labeling we will use the semantic constraint function AttConco (see Definition 3.9). This labeling
tells us, for example, that the out-labeled arguments a and d must be attacked by either b or c. The in-
labeled arguments b and c cannot be attacked by any in- or undec-labeled arguments. The argument e is
the only undec-labeled argument and since `2 is complete it follows that e has to attack itself. This gives
us the following set of attack constraints C`2 for the labeling `2:



Ca,`2 = rba ∨ rca

Cb,`2 = ¬rbb ∧ ¬rcb ∧ ¬reb

Cc,`2 = ¬rbc ∧ ¬rcc ∧ ¬rec

Cd,`2 = rbd ∨ rcd

Ce,`2 = ¬rbe ∧ ¬rce ∧ ree

We now have to combine the constraints C from the last step with the contraints C`2 from this step.
Since the argumentation frameworks we are looking for should be consistent with all input labelings we
use a conjunction to combine the attack constraints. So, for each argument we set Ca = Ca ∧Ca,`2 . If we
do this for all arguments, we obtain the following attack constraints:

Ca = ¬raa ∧ ¬rda ∧ ¬rea ∧ (rba ∨ rca)

Cb = rab ∧ ¬rbb ∧ ¬rcb ∧ ¬reb

Cc = rac ∧ ¬rbc ∧ ¬rcc ∧ ¬rec

Cd = ¬rad ∧ (rbd ∨ rcd)

Ce = ¬rae ∧ ¬rbe ∧ ¬rce ∧ ree

We have now reduced the number of possibilities even further. The argument a has to be attacked by
either b or c and cannot be attacked by any other argument. The arguments b and c have to be attacked
by a. They could also be attacked by d, but this attack is optional. d has to be attacked by b or c and
optionally can also be attacked by itself or e. Finally, e has to attack itself and can also optionally be
attacked by d. One observation we can make is that most of the uncertainty in the attack constraints is
related to the argument d as it can still optionally attack b, c, e and itself. The algorithm then returns the
updated set of attack constraints C.

The third and last input labeling `3 = {in = {d}, out = {e}, undec = {a, b, c}} is conflict-free. In our
current situation it is very helpful to learn this labeling, because the fact that d is labeled in allows us to
clear the uncertainty regarding its outgoing attacks. The labeling tells us that d cannot attack a, b, c and
itself. In addition to that, we now know that d has to attack the out-labeled argument e since d is the only
argument with the label in. For the labeling `3 we obtain the following attack constraints:

Ca,`3 = ¬rda

Cb,`3 = ¬rdb

Cc,`3 = ¬rdc

Cd,`3 = ¬rdd

Ce,`3 = rde

Again, we combine the attack constraints C` with the constraints C from the previous step via a
conjunction. When combining the constraints we can also apply simplifications, however this is not
necessary in this example. So, the attack constraints after learning all three labelings look like this:



Ca = ¬raa ∧ ¬rda ∧ ¬rea ∧ (rba ∨ rca)

Cb = rab ∧ ¬rbb ∧ ¬rcb ∧ ¬rdb ∧ ¬reb

Cc = rac ∧ ¬rbc ∧ ¬rcc ∧ ¬rdc ∧ ¬rec

Cd = ¬rad ∧ ¬rdd ∧ (rbd ∨ rcd)

Ce = ¬rae ∧ ¬rbe ∧ ¬rce ∧ rde ∧ ree

These attack constraints now represent exactly the set of argumentation frameworks that are consistent
with all three input labelings. The final step of the algorithm is now to construct these argumentation
frameworks. Here, we use the fact that the atoms used in the attack constraints directly correspond to
attacks in an argumentation framework, as described in Definition 3.3. First, we compute the models of
the attack constraints of each argument:

Ma = {[rba → true], [rca → true], [rba, rca → true]}
Mb = {[rab → true]}
Mc = {[rac → true]}
Md = {[rbd → true], [rcd → true], [rbd, rcd → true],
[rbd, red → true], [rcd, red → true], [rbd, rcd, red → true]}
Me = {[rde, ree → true]}

The next step is constructing the corresponding partial attack relations for each model with the method
modelToAttacks(A). This is quite simple, since every atom directly represents an attack. For example,
the model Aa,1 = [rba → true] would have the corresponding partial attack relation Ra,1 = {(b, a)},
since rba is the only atom which is valuated as true in Aa,1. Overall, we construct the following partial
attack relations for each argument:

Ra = {{(b, a)}, {(c, a)}, {(b, a), (c, a)}}
Rb = {{(a, b)}}
Rc = {{(a, c)}}
Rd = {{(b, d)}, {(c, d)}, {(b, d), (c, d)},
{(b, d), (e, d)}, {(c, d), (e, d)}, {(b, d), (c, d), (e, d)}}
Re = {{(d, e), (e, e)}}

Here, we can see that b, c and e only have one partial attack relation while a has 3 and the argument
d has 6 corresponding partial attack relations. That means, overall we will have 3 ∗ 6 = 18 different
argumentation frameworks. These frameworks are constructed by taking all possible combinations while
taking one partial attack relation from each argument, i. e., we obtain the set of all attack relations
RL = Ra×Rb×Rc×Rd×Re. We then take these attack relations Ri ∈ RL and assemble the corresponding
argumentation framework Fi = (Arg,Ri). The set F of all argumentation frameworks that are consistent
with L then consists of exactly these argumentation frameworks.
All constructed argumentation frameworks are shown in Figure 4. In the figure, each framework Fi

represents two actual argumentation frameworks: Fi which is the depicted framework without the attack
(e, d) and F′

i which does include the optional attack (e, d). All of these argumentation frameworks are
consistent with the three input labelings.
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Fig. 4. All 18 constructed argumentation frameworks which are consistent with the labelings `1, `2 and `3. Each framework Fi
represents two actual argumentation frameworks: Fi does not have the attack (e, d) and F′

i includes the optional attack (e, d).

4. Experiments

In this section we will conduct an experimental feasibility study of the approach introduced in Sec-
tion 3. For that, we will consider both a naive implementation of the algorithm, as well as an optimized
implementation with parallelized learning and construction steps. For the evaluation we will measure
the performance of the algorithm, i. e., the time the algorithm takes to learn the input labelings and the
time for constructing an argumentation framework that satisfies the learned constraints.

We will look at two different scenarios for our experiments. In the first scenario, we will use argu-
mentation frameworks generated with the AFBenchGen2 generators [16] in order to measure how the
algorithm’s performance scales with the number of arguments. In the second scenario, we will use the



benchmark argumentation frameworks from the ICCMA’19 competition [17] to measure the perfor-
mance of the algorithm in a more realistic application scenario.

In the following, we briefly describe the system, both implementations and the two main metrics used
for the evaluation.

System Setup. The experiments were run on a machine with the Ubuntu 20.04 operating system. The
machine has a 3.4 GHz Intel Xeon E5-2643v3 CPU with 12 cores and 24 threads and a total of 192 GB
DDR4 memory.

Implementation. The implementation1 has been done in Java as part of the TweetyProject library [18].
For the computation of the models of the attack constraints, needed for the construction of argumentation
frameworks in the final step of the algorithm, the Java-based SAT-solver Sat4j2 is used. In the naive
version, all computations are done sequentially. On the other hand, in the optimized implementation,
the learning of a labeling is done in parallel, i. e., the computation of the attack constraints for each
argument. In addition to that, the computation of models of the constraints in the construction step is
also done in parallel.

Metrics. In the following we define some questions that we want to answer with the experiments. Each
question has a corresponding metric that will be investigated in order to answer it:

(1) How does the time to learn a single input labeling scale with the number of arguments?
The goal of this question is measuring how the algorithm’s performance scales with the number of
arguments that are considered. In order to do that, we consider the time tlearn the algorithm needs
for learning all input labelings and set it in relation to the number of processed input labelings |L|.
This removes the distortion of the results caused by the number of learned labelings. That means,
we compute the learning time per labeling (TPL) as

tT PL =
tlearn

|L|
.

(2) How much time does it take to construct an argumentation framework that is consistent with all
input labelings?
For this question we measure the time tconstr it takes to construct some argumentation framework
F ∈ F that is consistent with the input labelings. This includes the computation of a model for
each attack constraint. This allows us to get an idea of how the construction time scales with the
number of arguments and also how effective the parallelization of the model computation is.

(3) How close is the constructed argumentation framework to the original argumentation framework?
For that, we compare the attack relation of the constructed argumentation framework F′ =
(Arg,R′) to that of the original framework F = (Arg,R) by counting the number of different
attacks datt between them normalized by the number of possible attacks, computed as

datt =
|R \ R′|+ |R′ \ R|
|Arg× Arg|

.

1Link to implementations: https://e.feu.de/aflearner
2http://www.sat4j.org

https://e.feu.de/aflearner
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(a) The learning time per labeling tT PL in relation to the
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(b) The construction time tconstr in relation to the number
of arguments |Arg|.

Fig. 5. Learning time per labeling and construction time in relation to the number of arguments for the AFs generated via
AFBenchGen2.

Essentially, this will give us some insight on how many uncertainty is still left after learning the
input labelings. If the constructed argumentation framework is very far from the original one,
i. e., datt � 0, then the input labelings leave many possibilities for attacks open. On the other
hand, if they are close to each other, then we can assume not many argumentation frameworks are
consistent with all input labelings.

4.1. Experiment 1: AFBenchGen2

The main goal of our first experiment is to investigate how our algorithm scales with the number of
arguments. In particular, we are interested in how the parallelization affects the performance.

For this experiment, we generated a total of 1200 argumentation frameworks F = (Arg,R) with
n = |Arg| = 20, 40, ..., 200 arguments with the three AFBenchGen2 generators [16]. So, for each n
we have 120 argumentation frameworks, one third generated by each of the generators: WattsStrogatz,
ErdösRenyi and BarabasiAlbert. For each argumentation framework we compute all inputs (`, σ) with
σ ∈ {ad, co, st}. Then, we iteratively learn up to 1000 of these input labelings and measure the time the
algorithm takes to learn them and to construct a consistent argumentation framework.

4.1.1. Results
Let us first consider the median learning time per labeling tT PL. For the naive implementation, the

median time per labeling scales from 2 ms for the instances with 20 arguments up to 361 ms for the
instances with 200 arguments. While the number of arguments has increased tenfold, the time per la-
beling has increased by a factor of 172. Figure 5(a) shows the learning time per labeling in relation to
the number of arguments. Note the logarithmic scale of the vertical axis. We can quite clearly see that
the time per labeling scales polynomially with the number of arguments for the naive implementation.
This is also supported by the fact that the complexity of computing the labeling constraint is in O(n2),
as we have to compute n attack constraints, one for each argument a, and for each computation we have
to consider all n arguments once to determine their relation to a.
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Fig. 6. The total learning time tlearn per instance in relation to the number of arguments |Arg| of the optimized version for larger
AFs generated via AFBenchGen2.

On the other hand, in the optimized implementation the median time per labeling ranges from 477
µs at 20 arguments to only 35 ms at 200 arguments, which is an increase by a factor of 73. That also
means, for the smaller instances the parallelization reduces the computing time by approx. 77 % and for
the largest instances with 200 arguments by over 90 %.

For the instances with 120 or more arguments we can observe outliers with significantly lower learning
times per labeling. In these cases the argumentation frameworks had only very few labelings and thus
less than the intended 1000 labelings were learned. This suggest that there is a positive correlation
between the number of learned labelings and the time per labeling tT PL.

To ensure the observed scaling of the algorithm is accurate and not due to hardware, we consider larger
and thus harder instances with up to 2000 arguments, generated in a similar fashion. The results for the
total learning time tlearn for the optimized version of the algorithm are shown in Figure 6. While the
instances with 200 arguments have a total learning time of 13.4 s on average, the largest instances with
2000 arguments have an average total learning time of 1524 s. As before, we can observe a polynomial
scaling of the learning time with the number of arguments, even for the harder instances.

We now look at the time it takes to construct an argumentation framework that is consistent with the
attack constraints of the learned labelings. This includes computing a model for the attack constraint of
each argument as well as converting these models to an attack relation. The time tconstr it takes to do this
has been measured, depending on the number of arguments, and the results are shown in Figure 5(b).
For the naive implementation, the time for constructing ranges from a median of 62 ms for n=20 to 9.7
s for the instances with 200 arguments. Similar to the time per labeling tT PL, the construction time tconstr

scales polynomially with the number of arguments as already discussed in Section 3.3. The optimized
implementation scales a lot better with the number of arguments. The smaller instances with 20 argu-
ments only require about 23 ms on average while the instances with 200 arguments take up to an average
of 250 ms for the construction step. This is a near linear increase (factor of 11) of construction time from
20 to 200 arguments, while the naive implementation increased by a factor of 158 over the same span.
Furthermore, at 200 arguments the optimized version reduces the computing time by over 97 %.

Regarding the difference between original and learned argumentation framework we can observe the
following. On average, less than 2% of the possible attacks were different for the instances in this
experiment with a standard deviation of 0.01. The biggest difference was only 5.67%. In general, we can
observe that the learned argumentation frameworks contained about 55% less attacks than the original
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(b) The construction time tconstr in relation to the number
of arguments |Arg|.

Fig. 7. Learning time per labeling and construction time in relation to the number of arguments in the experiment with the
ICCMA’19 instances.

one. This is to be expected, since in our scenario we are interested in the argumentation frameworks
that produce at least the input labelings. That means, we explicitly allow other labelings to exist in
the learned framework. This allows for a less restrictive attack relation, leading to fewer attacks being
necessary to represent the labelings.

Overall, we can say that the paralellization is very effective in reducing the computation time for
both processing a labeling as well as constructing a consistent argumentation framework in this artificial
scenario. It is however more effective in the construction step than in the learning step.

4.2. Experiment 2: ICCMA’19

In the second experiment we will learn argumentation frameworks on the basis of some more realis-
tic data in order to get an idea of the general performance of our algorithm. For that, we will use the
argumentation frameworks from the ICCMA’19 competition [17]. In this experiment we consider only
admissible, complete and stable labelings. It would not be feasible to construct all argumentation frame-
works since there may be millions of frameworks that may be consistent with the input labelings, thus
we only construct one argumentation framework that satisfies the attack constraints.

From the benchmark set, we consider all argumentation frameworks that have less than 1,000 argu-
ments. Thus, we have 276 argumentation frameworks with the number of arguments ranging from 4 to
1,000. For each argumentation framework, we compute the inputs (`, σ) with σ ∈ {ad, co, st} and ran-
domly learn from up to 1000 input labelings. After learning, we construct one argumentation framework
F ∈ F that satisfies all learned attack constraints, i. e., we simply take the first model computed by the
SAT solver.

4.2.1. Results
In the following, the results of the first experiment are summarized and we look at each of the above

defined questions and metrics.
We consider again the time per labeling tT PL = tlearn

|L| . Figure 7(a) shows the time per labeling in relation
to the number of arguments of the corresponding ICCMA instance.



For the naive version, the time per labeling ranges from 10 µs to 10.6 s with a median of 42.25 ms per
labeling. On the other hand the time per labeling ranges from 28 µs to 733 ms with a median of 3.82 ms
per labeling for the optimized implementation.

On average, the optimization brings a decrease in computation time by a factor of about 10. The
higher the number of arguments the higher the performance improvement. For the smallest instances
with less than 10 arguments the naive implementation actually performs better. This is likely due to some
computational overhead of the parallelization, but already for instances with 10 or more arguments the
optimized implementation consistently and significantly outperforms the naive version.

One observation we can make for both implementations is that there are some instances for which the
time per labeling is significantly lower compared to other instances of similar size. Like in the previous
experiment, these are instances where less than the intended 1000 labelings have been processed (simply
due to the fact that there where not enough labelings for those instances). This is likely due to the fact,
that with a growing number of input labelings the attack constraints get more complex and thus it takes
longer to check satisfiability.

We now consider the construction times tconstr for the ICCMA’19 dataset which are shown in Fig-
ure 7(b). The time for constructing a consistent argumentation framework ranges from 94.37 ms to 5527
s with a median of 6 s for the naive implementation. For the optimized version the times range from
51.75 ms to 16.6 s with a median of 996.8 ms. As we have already observed in the previous experiment
the effect of the parallelization is even greater for the construction step where the optimized implemen-
tation is on average about 22 times faster than the naive version. Even for the smallest instances the
optimized implementation is between 1.5 and 2 times faster while for the worst instances it reduces the
construction time by a factor of over 200. It should be noted that we can again see the instances with
less labelings learned, also being faster than comparable instances in the construction step. However,
this seems to only effect the naive algorithm and the optimized algorithm has a lot less variance in its
construction times.
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Fig. 8. The frequency distribution of the normalized number of different attacks datt for the ICCMA’19 instances.

Finally, Figure 8 shows the distribution of the normalized number of different attacks datt for the IC-
CMA’19 instances. On average We can see that for the majority of instances the constructed argumenta-
tion framework is quite close to the original framework. This suggests that after learning 1000 labelings
for these instances, there is not much uncertainty left and only a few argumentation frameworks are



consistent with these labelings. However, only very few instances yield the exact same argumentation
framework. If we would want to reconstruct the exact argumentation framework, we would either need
additional labelings or some other information, e. g., negative examples. Interestingly, there are also a
number of instances with a proportion datt of over 90%. They all have in common that the attack relation
is very dense, i. e., over 90% of all possible attacks are present in the original argumentation framework.
That also means these frameworks have only few labelings. Learning these labelings then means we
only need very few attacks to ensure consistency with them, since we do not require there to be no
further labelings for the constructed argumentation framework. In general, we can observe that the con-
structed argumentation frameworks contain on average 70% less attacks than the original framework.
This is again related to the fact that we allow further labelings to exist in the learned argumentation
frameworks.

Overall, this experiment on the ICCMA’19 dataset has confirmed the observation from the first exper-
iment. Our findings suggest a time complexity within O(n2|L|) for learning argumentation frameworks
from labelings. The parallelization of both the learning and construction step is very effective and sig-
nificantly improves performance, especially for larger argumentation frameworks.

5. Discussion

In the previous sections we have introduced and discussed an algorithm for learning a set of argumen-
tation frameworks from a given set of labelings. This algorithm computes a set of attack constraints for
each labeling. These constraints represent the acceptability of each argument with regards to the labeling.
Afterwards they are combined into a single attack constraint per argument. This set of attack constraints
then represents all input labelings and can then be used to construct the argumentation frameworks that
are consistent with the input labelings.

In this section we will take a closer look at our algorithm and discuss its strengths and weaknesses.
Furthermore, we will discuss some existing algorithms from Riveret et al. [12] and Niskanen et al. [13]
and the recent work of Mumford et al. [19] on the computational complexity of the AF learning problem.

We will first discuss some key advantages that distinguish our algorithm proposed in this work from
the existing algorithms. One key point is the structure of the algorithms. Our algorithm works in an
iterative way and can be applied on a stream of input labelings similarly to the algorithm of Riveret
et al. [12]. This is an important difference to the algorithm of Niskanen et al. [13] which only works
with a set of input extensions. An iterative approach means we are able to get intermediate results after
each processed input labeling. It also means that we are able to refine our result at any point by learning
more labelings. This would not be possible in the algorithm of Niskanen et al. [13] where we would
have to start over and learn all labelings again. The iterative approach also allows us to choose the order
in which the labelings are processed. This means we can add an additional layer to the algorithm by
deciding which labeling to learn next based on the current status (i. e., the last intermediate result).

Another important difference is related to the conditions that are used to encode the labelings. The
algorithm of Niskanen et al. [13] also uses conditions based on the input, however there is an important
difference: these conditions model one extension as a whole. So, using the terminology introduced in
Section 3, these conditions are formulae over the set attackAtoms(Arg), i. e., the set of atoms representing
all possible attacks over Arg. On the other hand, in our algorithm we have one condition per argument
which are formulae over the set of atoms inAttacks(a), i. e., all attacks onto the argument. In other words,
the algorithm of Niskanen et al. [13] uses global conditions while our algorithm uses local conditions



from the perspective of arguments. These local conditions are important because they enable us to define
the iterative approach mentioned above, since we can easily combine formulae for the same argument.
This is considerably harder in the algorithm of Niskanen et al. [13]. The fact that the conditions are
local and from the perspective of the individual arguments also makes them easier to understand and
modify. Furthermore, as we have seen in Section 4, the local conditions also lead to a significantly
better performance both while learning a labeling as well as during the construction of an argumentation
framework that satisfies the constraints.

The most important advantage of our algorithm compared to those of Riveret et al. and Niskanen et
al. is the following: Our algorithm maintains a representation of all argumentation frameworks that are
consistent with the input labelings while both other algorithms simply return one fitting argumentation
framework. The algorithm of Riveret et al. [12] only maintains one representation of a weighted argu-
mentation framework internally and returns this at the end. On the other hand, the algorithm of Niskanen
et al. [13] computes one condition per labeling and as a result returns just one model that represent an
argumentation framework. Our algorithm preserves all of the information that is given to it via the in-
put labelings. This is done by translating the input labelings into a set of attack constraints and then
combining and simplifying them. So, internally the algorithm only stores one set of mutually indepen-
dent attack constraints that represent the set of argumentation frameworks. This approach enables us
to incorporate additional input labelings at any point and refine the set of argumentation frameworks
further. It also ensures that we do not discard any correct argumentation framework during the learning
process, something that can happen in both the algorithms of Riveret et al. [12] and Niskanen et al. [13].
It should be mentioned however, that the algorithm of Niskanen et al. [13] can be modified to also return
all consistent argumentation frameworks.

We will now look at some other minor differences between all three algorithms. The input of our
algorithm is a set of arguments and a set of input labelings. That means, we assume that all arguments
of the hidden framework are known. The same assumption is also made by both other algorithms. The
second part of the input is the set of input labelings. In the iterative version this can also be a stream of
input labelings, similarly to the algorithm of Riveret et al. [12]. This is a different approach compared
to the algorithm of Niskanen et al. [13], which uses positive and negative examples in the form of
extensions.

Furthermore, all approaches differ in the semantics that are accepted for the input. The algorithm
of Riveret et al. [12] only allows grounded labelings as input, while the algorithm of Niskanen et al.
[13] accepts conflict-free, admissible, complete, stable, grounded and preferred extensions. Our algo-
rithm accepts conflict-free, admissible, complete and stable labelings. While the algorithm covers many
semantics, it does not support grounded and preferred semantics. The reason for that is related to the
definition of these semantics. The grounded labeling is defined as the minimal complete labeling and
the preferred labelings are maximally complete. These constraints cannot be encoded in the attack con-
straints and thus it is not possible to learn these labelings with our algorithm, as already discussed in
Section 3.2.5. The same applies to some other semantics proposed in the literature, such as semi-stable
[20] which maximizes the attacked arguments of an extension. Similarly, the naive semantics and the
semantics based on it, like CF2 [21], work with maximal conflict-free sets and thus cannot be modeled
by the algorithm in its current form. However, it might be possible to address these issues by extending
the algorithm with some form of global conditions. One possibility would be to use conditions similar to
those used by Niskanen et al. [13] for modeling the grounded and preferred extensions and adjust them
for the respective labelings. It should be mentioned, that this would of course weaken the advantages of
our local constraints.



The algorithm of Riveret et al. [12] uses grounded sub-framework labelings as input. This considerably
eases the task of learning from labelings since we can just consider all sub-frameworks with just two
arguments and take the grounded labeling of these as input. Our algorithm does not rely on such labelings
and is able to reconstruct argumentation frameworks from standard labelings.

Argumentation frameworks may contain self-attacking arguments. The algorithm of Riveret et al. [12]
does have problems with such argumentation frameworks and there are cases where this algorithm is
not able to reconstruct the hidden argumentation framework if there are self-attacking arguments. Our
algorithm does not have any problems in that case and is able to work with self-attacking arguments.

Finally, we will also discuss some weaknesses of our algorithm compared to the existing work. The
fact that our algorithm requires labelings instead of extensions as input can be considered a weakness.
Labelings are more specific than extensions and hold more information about the argumentation frame-
work that produced them. They make a distinction between directly rejected (out) and indirectly re-
jected (undecided) arguments. Without this distinction it would not be possible to compute the attack
constraints in their current form. This is something that can potentially be worked on in the future.

Another observation regarding the input of the algorithm can be made. Our algorithm cannot handle
input noise, i. e., some ’wrong’ labelings that are not actually produced by the hidden argumentation
framework. This is something that the algorithms of Riveret et al. [12] and Niskanen et al. [13] are able
to handle. The algorithm of Riveret et al. [12] does this by using an internal weighted argumentation
framework. This leaves more room to handle inconsistent input but might also lead to returning an ar-
gumentation framework which is not consistent with all of the correct input labelings. The algorithm
of Niskanen et al. [13] uses weighted MaxSAT encodings for the input extensions. This allows them
so find the argumentation framework which is consistent with the highest number of input extensions
even if there are some noisy inputs. It might be possible to apply a similar concept to our attack con-
straints which is also something that can be tackled in the future. Alternatively, we could consider some
paraconsistent logic [22] to interpret the attack constraints instead of the classical propositional logic.

The recent work of Mumford et al. [19] investigates the computational complexity of learning argu-
mentation framework both from labelings and extensions. They focus on the complete semantics, but
also consider grounded, preferred and stable semantics. Their results show that learning argumentation
frameworks from extensions is NP-complete while learning from labelings is solvable in polynomial
time. More specifically, they present an algorithm for constructing one consistent argumentation frame-
work from labelings with a time complexity in O(n2|L|). This nicely complements our experimental
findings, which suggest the same time complexity dimension for our algorithm. However, our algorithm
can be parallelized, which significantly improves its performance. In addition to that, our approach is
also capable of producing all consistent solutions instead of just one. This has one disadvantage how-
ever, as the algorithm by Mumford et al. has a space complexity within O(n2), while our algorithm
needs more space to maintain a representation of multiple argumentation frameworks. In the worst case,
our algorithm has a space complexity in O(n2|L|), which easily follows from the fact that we have one
attack constraint Ca with at most n atoms for each of the n arguments and labelings. However, in practice
we will often need less space than that since the attack constraints may be simplified due to overlap or
contradictions in the learned labelings.

A final related work worthwhile to mention is [23], where an approach is presented that incrementally
computes extensions when changes on the initial argumentation framework are observed, such as adding
an attack. The problem faced in this work is somewhat orthogonal to ours, since we consider the argu-
mentation framework to be unknown but fixed, and we process extensions (or more precisely labelings)
incrementally.



6. Conclusion

We investigated the AF learning scenario, where we want to reconstruct argumentation frameworks
from given labelings. The goal in this scenario is to find all argumentation frameworks that are consistent
with at least all input labelings. To address this problem, we introduced a novel algorithm that iteratively
processes labelings and translated them to attack constraints for each argument. These attack constraints
are mutually independent and together they represent the set of all consistent argumentation frameworks.
The independence of these constraints allows us to parallelize both the learning and construction part
of the algorithm. Our experiments showed that this leads to a significant increase in performance. In
particular, for the ICCMA’19 dataset the learning time has been improved by a factor of 10 while the
construction time showed an even greater improvement with it being over 22 times faster. We also
highlighted some of the key advantages of our approach compared to other similar existing approaches.
These advantages are, among others, the ability to fully parallelize all computations and the fact that the
attack constraints maintain a representation of all consistent argumentation frameworks at all times.

For future work, there are several possibilities. One such possibility is extending our algorithm to other
AF-based formalisms, such as bipolar argumentation frameworks [24] or attack-support argumentation
frameworks [25]. For these frameworks, there also exist acceptability semantics from whose labelings
we can learn the respective frameworks. In particular, instances of these formalisms can be transformed
into semantically equivalent meta argumentation frameworks [26]. That means, one only needs to deal
with the meta arguments that are created by this transformation.

Another direction is to extend the capabilities of our algorithm. This could be done by defining se-
mantic constraint functions for other semantics, e. g., for the strong admissible semantics [2]. We are
however not limited to specific semantics. Alternatively, we can define semantic constraint functions
for other concepts from the literature such as credulous or skeptical acceptance with respect to some
semantics σ or properties like unattackedness. Another possibility would be to adapt the algorithm to be
able to process negative examples, like the algorithm of Niskanen et al. [13]. It would also be interest-
ing to convert the algorithm to a extension-based approach, if possible. One weakness of our approach
is the inability to deal with noisy input. As already mentioned in Section 5, this could for example be
addressed by using some paraconsistent logic [22].

Furthermore, it would also be interesting to consider a scenario where we can only obtain incomplete
information in the form of a partial labeling wrt. some semantics where some of the arguments have
no specified label. For a scenario like that, we would have to explore under which circumstances it is
possible to recover information about the framework from the partial labeling and adapt the semantic
constraint functions accordingly.

Another interesting thing to explore would be the relationship of the number of learned labelings and
the difference between attacks in the hidden and the constructed argumentation framework. Meaning,
we look at how many labelings we would need to learn in order to obtain construct exactly the hidden
argumentation framework or some framework with at most k different attacks.

Finally, another interesting direction would be to make the scenario of learning argumentation frame-
works from labelings more interactive, similar to the scenario of eliciting argumentation frameworks
[27]. In that scenario the goal is to elicit a hidden argumentation framework from an entity by asking
questions about the extensions of this framework. In our scenario, we could also include user input to
control which labeling to learn next. This can then be used to steer the learning process to learn more
"effectively", i. e., by choosing labelings that shrink the set of consistent argumentation frameworks the
most.
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Appendix A. Proofs

Theorem 3.1. Let (`, c f ) be a conflict-free input and C` is the labeling constraint of ` computed via
AttConc f . With F we denote the set of argumentation frameworks that satisfy C`, i.e for all F ∈ F we
have that F |= C`.

The semantic constraint function is sound for conflict-free input labelings `, i. e.,

∀F ∈ F : ` is a cf-labeling of F

and the semantic constraint function is complete for conflict-free input labelings `, i. e.,

∀F = (Arg,R) : ` is a cf-labeling of F =⇒ F ∈ F.

Proof of Theorem 3.1 (Soundness). Let (`, c f ) be a conflict-free input and Arg denotes the set of ar-
guments. C` = {Ca = AttConc f (a, `)}a∈Arg is the set of attack constraints computed for ` and F is the
set of argumentation frameworks consistent with C`.

We will proof by contradiction that the set of argumentation frameworks F consistent with the attack
constraints (i. e., constructed by the algorithm) is sound for conflict-free labelings, i. e., every argumen-
tation framework F ∈ F is consistent with the conflict-free labeling `.

Assume there exists an argumentation framework F = (Arg,R′) ∈ F which is not consistent with the
labeling `, i. e., ` is not a conflict-free labeling of F. Then, one of the following three cases must apply:

(1) There is an attack between two in-labeled arguments a and b in F.
(2) There is an out-labeled argument a which is not attacked by any in-labeled argument b in F.
(3) There is an undec-labeled argument a which is attacked by any in-labeled argument b in F.

Case 1: There is an attack between two in-labeled arguments a and b in F.
The algorithm constructs the argumentation frameworks based on the models of the attack constraints.

We consider any argument a ∈ in(`). That means, there must be a model A of the attack constraint Ca

such that A(rba) = true. However, according to Definition 3.7 the attack constraint of a is defined as
Ca =

∧
b∈in(`)

¬rba. Thus, it holds that A(rba) = f alse for any argument b ∈ in(`) and therefore there can

be no attack between two in-labeled arguments in F.

Case 2: There is an out-labeled argument a which is not attacked by any in-labeled argument b in F.
That means, there exists an argument a ∈ out(`) such that for all arguments b ∈ in(`) it holds that

(b, a) /∈ R′. So, there must be a model A of the attack constraint Ca such that A(rba) = f alse for
all arguments b ∈ in(`). However, according to Definition 3.7 the attack constraint of a is defined as
Ca =

∨
b∈in(`)

rba. From this it follows that there has to be at least one argument b ∈ in(`) for which

A(rba) = true. Thus, we have a contradiction and it holds that any argument a ∈ in(`) is always at-
tacked by at least one in-labeled argument b.

Case 3: There is an undec-labeled argument a which is attacked by any in-labeled argument b in F.



That means, there exists an argument a ∈ undec(`) such that for any argument b ∈ in(`) it holds
that (b, a) ∈ R′. So, there must be a model A of the attack constraint Ca such that A(rba) = true for
any arguments b ∈ in(`). However, according to Definition 3.7 the attack constraint of a is defined as
Ca =

∧
b∈in(`)

¬rba. It follows that A(rba) = f alse for all arguments b ∈ in(`). Thus, we have a contradic-

tion and it holds that every argument a ∈ undec(`) is not attacked by any in-labeled argument b.

All in all, it follows that every F ∈ F must produce the input labeling ` and thus the algorithm is
sound for conflict-free input labelings. �

Proof of Theorem 3.1 (Completeness). Let (`, c f ) be a conflict-free input and Arg denotes the set of
arguments. C` = {Ca = AttConc f (a, `)}a∈Arg is the set of attack constraints computed for ` and F is the
set of argumentation frameworks consistent with C`.

We will proof by contradiction that the algorithm is complete for conflict-free labelings, i. e., for every
argumentation framework F it holds that, if F is consistent with ` then F ∈ F.

Assume there exists an argumentation framework F = (Arg,R′) which is consistent with the labeling
` and F /∈ F.

Then, according to Definition 2.3 the following three conditions hold for all arguments a ∈ Arg in F:

(1) If a ∈ in(`), then ∀b ∈ Arg : (b, a) ∈ R′ → b /∈ in(`)
(2) If a ∈ out(`), then ∃b ∈ in(`) : (b, a) ∈ R′

(3) If a ∈ undec(`), then ∀b ∈ in(`) : (b, a) /∈ R′

According to the first condition, there can be no attack between any in-labeled arguments in F, i. e.,
∀a, b ∈ in(`) : (a, b) /∈ R′ ∧ (b, a) /∈ R′. The attack (a, b) corresponds to the atom rab and (b, a) cor-
responds to rba. However, the attack constraint Ca for the in-labeled argument a is a conjunction and
contains the literal ¬rba. This means that A(rba) = f alse for all models A of Ca. Similarly, the attack
constraint for b enforces thatA(rab) = f alse for all modelsA. Thus, since F satisfies the first condition
from above, it must also satisfy the attack constraint Ca for any in-labeled argument a.

Furthermore, every out labeled argument must be attacked by some in-labeled argument in F, i. e.,
∀a ∈ out(`) : ∃b ∈ in(`) : (b, a) ∈ R′. However, if that is the case, then F must also satisfy the attack
constraint Ca =

∨
b∈in(`)

rba. It follows that F always satisfies the attack constraints of every out-labeled

argument.

The third condition states that an undec-labeled argument cannot be attacked by an argument with
the label in. Assume the undec-labeled argument a, then it holds for every argument b ∈ in(`) that the
corresponding attack atom rba must be false. This matches exactly with the attack constraint for undec-
labeled argument in conflict-free labelings Ca =

∧
b∈in(`)

¬rba. Thus every undec-labeled argument and its

incoming attacks in F always satisfy all related attack constraints.

It follows that, if the argumentation framework F is consistent with the conflict-free labeling ` it
also satisfies the attack constraints for all arguments as defined in Definition 3.7. Thus, it holds for all
conflict-free labelings that, if F is consistent with `, then F ∈ F. �



Theorem 3.2. Let (`, ad) be an admissible input and C` is the labeling constraint of ` computed via
AttConad. With F we denote the set of argumentation frameworks that satisfy C`, i.e for all F ∈ F we
have that F |= C`.

The semantic constraint function AttConad is sound for admissible input labelings `, i. e.,

∀F ∈ F : ` is a ad-labeling of F

and the semantic constraint function AttConad is complete for admissible input labelings `, i. e.,

∀F = (Arg,R) : ` is a ad-labeling of F =⇒ F ∈ F.

Proof of Theorem 3.2 (Soundness). Let (`, ad) be an admissible input and Arg denotes the set of argu-
ments. C` = {Ca = AttConad(a, `)}a∈Arg is the set of attack constraints computed for ` and F is the set
of argumentation frameworks consistent with C`.

We will proof by contradiction that the set of argumentation frameworks F constructed by the algo-
rithm is sound for admissible labelings, i. e., every argumentation framework F ∈ F is consistent with
the labeling `.

Assume there exists an argumentation framework F = (Arg,R′) ∈ F which is not consistent with the
labeling `, i. e., ` is not a admissible labeling of F. Then, one of the following four cases must apply:

(1) There is an attack between two in-labeled arguments a and b in F.
(2) There is an out-labeled argument a which is not attacked by any in-labeled argument b in F.
(3) There is an undec-labeled argument a which is attacked by any in-labeled argument b in F.
(4) There is an in-labeled argument a which is not defended by in(`) against any argument b.

Cases 1-3 are the same as for the conflict-free semantics. So, we only have to consider case 4 here.
Case 4: There is an in-labeled argument a which is not defended by in(`) against any argument b. That
means, there exists an argument a ∈ in(`) such that ∃b ∈ Arg : (b, a) ∈ R′ and @c ∈ in(`) : (c, b) ∈ R′.
There are three possible labels for the argument b that we have to differentiate: in, out and undec. If
b ∈ in(`), then we would have a conflict between in-labeled arguments, which is not possible as shown
already in Case 1. If b ∈ out(`), then b cannot have any incoming attack from an argument c ∈ in(`).
We have already shown in Case 2 that this is not possible. Finally, assume b ∈ undec(`) with (b, a) ∈→′

and there is no c ∈ in(`) with (c, b) ∈ R′. Then there must be a model A of the attack constraint Ca

such that A(rba) = true. However, according to Definition 3.8 the attack constraint of a is defined as
Ca =

∧
b∈Arg\out(`)

¬rba. Thus, it holds that A(rba = f alse for any argument b ∈ undec(`) and therefore

there can be no attack from an undec-labeled argument on an in-labeled argument.

To summarize, it follows that every F ∈ F must be consistent with the input labeling ` and thus the
algorithm is sound for admissible input labelings. �

Proof of Theorem 3.2 (Completeness). Let (`, ad) be an admissible input and Arg denotes the set of
arguments. C` = {Ca = AttConad(a, `)}a∈Arg is the set of attack constraints computed for ` and F is the



set of argumentation frameworks consistent with C`.

We proof by contradiction that the algorithm is complete for admissible labelings, i. e., for every
argumentation framework F it holds that, if F is consistent with ` then F ∈ F.

Assume there exists an argumentation framework F = (Arg,R′) which is consistent with the labeling
` and F /∈ F.

Then, according to Definition 2.4 the following three conditions hold for all arguments a ∈ Arg in F:

(1) If a ∈ in(`), then ∀b ∈ Arg : (b, a) ∈ R′ → b ∈ out(`).
(2) If a ∈ out(`), then ∃b ∈ in(`) : (b, a) ∈ R′.
(3) If a ∈ undec(`), then ∀b ∈ in(`) : (b, a) /∈ R′.

Conditions 2 and 3 are the same as for conflict-free semantics. So, we only have to proof that the first
condition also holds in F.

According to the first condition, any in-labeled argument can only be attacked by out-labeled argu-
ments in F, i. e., ∀a, b ∈ Arg : (b, a) ∈ R′ ∧ a ∈ in(`)→ b ∈ out(`). The attack (b, a) corresponds to the
atom rba. The attack constraint Ca for the in-labeled argument a is a conjunction and contains the literal
¬rba for every argument b with the label in or undec. This means, for every argument b /∈ out(`) it holds
that A(rba) = f alse for all models A of Ca.

This is exactly what the first condition states and thus F must also satisfy the attack constraint Ca for
any in-labeled argument a.

It follows that, if the argumentation framework F is consistent with the admissible labeling ` it also
satisfies the attack constraints for all arguments as defined in Definition 3.8. Thus, it holds for all admis-
sible labelings that, if F is consistent with `, then F ∈ F. �

Theorem 3.3. Let (`, co) be a complete input and C` is the labeling constraint of ` computed via
AttConco. With F we denote the set of argumentation frameworks that satisfy C`, i.e for all F ∈ F
we have that F |= C`.

The semantic constraint function AttConco is sound for complete input labelings `, i. e.,

∀F ∈ F : ` is a co-labeling of F

and the semantic constraint function AttConco is complete for complete input labelings `, i. e.,

∀F = (Arg,R) : ` is a co-labeling of F =⇒ F ∈ F.

Proof of Theorem 3.3 (Soundness). Let (`, co) be a complete input and Arg denotes the set of argu-
ments. C` = {Ca = AttConco(a, `)}a∈Arg is the set of attack constraints computed for ` and F is the set
of argumentation frameworks consistent with C`.

The proof of the soundness of the algorithm for complete input labelings is similar to the proof for
admissible input labelings. The only difference is that we have to consider an additional fifth possibility
for the case distinction:



(5) There is an argument a /∈ in(`) which is defended by in(`) in F.

Cases 1-4 have been shown in the proofs for conflict-free and admissible semantics.
Case 5: There is an argument a /∈ in(`) which is defended by in(`) in F. That means, there exists an
argument a with the label out or undec such that ∀c ∈ Arg : (c, a) ∈ R′ → ∃d ∈ in(`) : (d, c) ∈ R′.
Assume a ∈ out(`), then it follows that there must be an argument c ∈ in(`) that attacks a. Then, we also
know from Case 1 earlier that there can be no argument d ∈ in(`) that attacks the in-labeled argument c.
Thus, if a has the label out it is never defended by in(`) at the same time.
Assume a ∈ undec(`), then the attack constraint of a is defined as Ca =

∧
b∈in(`)

¬rba ∧ (
∨

c∈undec(`)

rca).

From that it follows that in every model A of Ca there exists some argument c ∈ undec(`) such that
A(rca) = true. However, from the attack constraint Cc of c it would then follow that A(rdc) = f alse for
any in-labeled argument d, i. e., an undec-labeled argument is never attacked by an in-labeled argument.
Thus, if a has the label undec it is never defended by in(`).

It follows, there is no argument a /∈ in(`) that is defended by in(`) and thus it holds that every F ∈ F
must be consistent with the input labeling `, i. e., the algorithm is sound for complete input labelings. �

Proof of Theorem 3.3 (Completeness). Let (`, co) be a complete input and Arg denotes the set of ar-
guments. C` = {Ca = AttConco(a, `)}a∈Arg is the set of attack constraints computed for ` and F is the
set of argumentation frameworks consistent with C`.

We proof that the algorithm is complete for complete input labelings, i. e., for every argumentation
framework F it holds that, if F is consistent with ` then F ∈ F.

Assume there exists an argumentation framework F = (Arg,R′) which produces the labeling ` and
F /∈ F.

Then, according to Definition 2.5 the following four conditions hold for all arguments a ∈ Arg in F:

(1) If a ∈ in(`), then ∀b ∈ Arg : (b, a) ∈ R′ → b ∈ out(`).
(2) If a ∈ out(`), then ∃b ∈ in(`) : (b, a) ∈ R′.
(3) If a ∈ undec(`), then ∀b ∈ in(`) : (b, a) /∈ R′.
(4) If a ∈ undec(`), then ∃b ∈ undec(`) : (b, a) ∈ R′.

As shown in the proof for admissible and conflict-free labelings, from the conditions for in- and out-
labeled arguments it follows that F must satisfy the respective attack constraints. We now show that from
the third and fourth condition it follows that F also satisfies the attack constraint for complete semantics
of any undec-labeled argument.
As shown in the proof for admissible labelings from the third condition it follows that F satisfies the
admissible attack constraint Ca,1 =

∧
b∈in(`)

¬rba for any undec-labeled argument. This also equals the first

part of the attack constraint for undec-labeled arguments under complete semantics. The fourth condi-
tion states that there must be some undec-labeled argument c that attacks the undec-labeled argument
a. That means there exists an argument c ∈ undec(`) such that the corresponding atom rca is true, i. e.,
the formula Ca,2

∨
c∈undec(`)

rca must be true. If we take the conjunction Ca = Ca,1 ∧ Ca,2, then Ca is ex-

actly the attack constraint for undec-labeled arguments in complete labelings as defined in Definition 3.9.



It follows that, if the argumentation framework F is consistent with the complete labeling ` it also
satisfies the attack constraints for all arguments. Thus, it holds for all complete labelings that, if F is
consistent with `, then F ∈ F. �

Theorem 3.4. Let (`, st) be a stable input and C` is the labeling constraint of ` computed via AttConst.
With F we denote the set of argumentation frameworks that satisfy C`, i.e for all F ∈ F we have that
F |= C`.

The semantic constraint function AttConst is sound for stable input labelings `, i. e.,

∀F ∈ F : ` is a st-labeling of F

and the semantic constraint function AttConst is complete for stable input labelings `, i. e.,

∀F = (Arg,R) : ` is a st-labeling of F =⇒ F ∈ F.

Proof of Theorem 3.4 (Soundness). Let (`, st) be a stable input and Arg denotes the set of arguments.
C` = {Ca = AttConst(a, `)}a∈Arg is the set of attack constraints computed for ` and F is the set of
argumentation frameworks consistent with C`.

We proof by contradiction that the attack constraints and thus the algorithm are sound for stable input
labelings. Assume there exists an argumentation framework F = (Arg,R′) ∈ F which is not consistent
with the labeling `. Then, one of the following three cases must apply:

(1) There is an attack between two in-labeled arguments a and b in F.
(2) There is an out-labeled argument a which is not attacked by any in-labeled argument b in F.
(3) There is an argument a which is not labeled in and is also not attacked by any in-labeled argument.

Cases 1 and 2 are the same as for the conflict-free semantics. So, we will only look at the third case
here.
Case 3: There is an argument a which is not labeled in and is also not attacked by any in-labeled argu-
ment. We know that F satisfies all attack constraints in C. Every attack constraint Ca ∈ C is defined as
Ca = AttConst(a, `). Per Definition 3.10 the attack constraint for a is then either Ca =

∧
b∈in(`)

¬rba or

C′
a =

∨
b∈in(`)

rba. In the first case it follows for any model A of Ca that A(rba) = true for all argument

b ∈ in(`). However, this means a can only be attacked by out labeled arguments and thus a must be part
of any stable labeling of F.
For the second case with the attack constraint C′

a it holds for every model A that there exists some ar-
gument b ∈ in(`) such that A(rba) = true. Thus, a is always attacked by some in-labeled argument and
has to be labeled out.

To summarize, there can be no undec-labeled argument in an argumentation framework F that is
consistent with the attack constraints C computed for a stable labeling `. Thus, it follows that every F ∈
F must be consistent with the input labeling ` and the algorithm is sound for stable input labelings. �



Proof of Theorem 3.4 (Completeness). Let (`, st) be a stable input and Arg denotes the set of argu-
ments. C` = {Ca = AttConst(a, `)}a∈Arg is the set of attack constraints computed for ` and F is the set
of argumentation frameworks consistent with C`.

We proof that the algorithm is complete for stable input labelings `, i. e., for every argumentation
framework F it holds that, if F is consistent with ` then F ∈ F.

Assume there exists an argumentation framework F = (Arg,R′) which is consistent with the labeling
` and F /∈ F.

Then, according to Definition 2.6 the following two conditions hold for all arguments a ∈ Arg in F:

(1) If a ∈ in(`), then ∀b ∈ Arg : (b, a) ∈ R′ → b ∈ out(`).
(2) If a ∈ out(`), then ∃b ∈ in(`) : (b, a) ∈ R′.

This proof is rather trivial. From the proofs for conflict-free and admissible semantics we know that
any F that satisfies the above conditions for in- and out-labeled must also satisfy the attack constraints
of these arguments. Since ` is a stable labeling, there is no undec-labeled argument and thus we do not
need to proof anything else.

That means, if the argumentation framework F is consistent with the stable labeling ` it also satisfies
the attack constraints for all arguments as defined in Definition 3.10. Thus, it holds for all stable labelings
that, if F is consistent with `, then F ∈ F. �

Theorem 3.6. Let Arg be a set of arguments and L1, L2 are sets of inputs. F1, F2 denote the sets of
argumentation frameworks constructed by Algorithm 1 for the input labelings in L1 and L2 respectively.

The algorithm for constructing argumentation frameworks from labelings is monotonically refining,
i. e.,

∀L1, L2 ∈ L(Arg) : L1 ⊇ L2 =⇒ F1 ⊆ F2

Theorem 3.5. Let L be a set of inputs and F is the set of argumentation frameworks constructed by the
procedure described in Algorithm 1 by iteratively processing L. For every σi in the set of inputs there
exists a sound and complete semantic constraint function, i. e., σi ∈ {c f , ad, co, st}.

The algorithm is sound for all input labelings, i. e.,

∀F ∈ F : ∀(`i, σi) ∈ L : ` is a σi-labeling of F

The algorithm is complete for all input labelings, i. e.,

∀G = (Arg,R) : (∀(`i, σi) ∈ L : ` is a σi-labeling of G) =⇒ G ∈ F

Proof of Theorem 3.5. It follows from Theorems 3.1, 3.2, 3.3 and 3.4 that the attack constraints are
sound and complete for labelings with respect to conflict-free, admissible, complete and stable seman-
tics. We need to prove that a set of attack constraints, and thus Algorithm 1, is sound and complete for
any combination of input labelings with respect to different semantics. This follows from the fact that



combining the attack constraints of each labeling is done by conjunction as shown below:

Let L be a set of inputs and F be the set of argumentation frameworks constructed by Algorithm 1 for
the inputs L.

Consider two inputs (`1, σ1), (`2, σ2) ∈ L with respect to different semantics. The corresponding
attack constraints for any argument a are denoted Ca,`1 and Ca,`2 . The attack constraint for a in the
algorithm would then be computed as Ca = Ca,`1∧Ca,`2 . The models of Ca are thenMa =Ma,`1∩Ma,`2 .
We know that any argumentation framework F ∈ F satisfies Ca. Thus, it follows that F must also satisfy
both Ca,`1 and Ca,`2 . We have proven that the attack constraints are sound and complete for labelings
with respect to a semantics σ ∈ {c f , ad, co, st}. Therefore, the soundness and completeness also holds
for any combination of labelings with respect to those semantics. �

Proof of Theorem 3.6 (Monotonicity). Let L1, L2 be sets of input labelings and Arg denotes the set of
arguments. C1,C2 are sets of attack constraints computed for L1 and L2 while F1 and F2 denote the set
of argumentation frameworks consistent with C1 and C2 respectively.

We proof that the algorithm defined in subsection 3.3 is monotonically refining. Consider any argu-
ment a. Per definition the attack constraint for a with respect to L2 is then Ca,2 =

∧
`σ∈L2

AttConσ(a, `).

That means, the models of Ca,2 are then computed as the intersection of the models of the conditions for
the individual labelings, i. e.,

Ma,2 =
⋂
`σ∈L2

M(AttConσ(a, `)).

Similarly, the set of all models of the attack constraint Ca,1 for the argument a with respect to the
labelings L1 is then defined as

Ma,1 =
⋂
`σ∈L1

M(AttConσ(a, `)).

We know that L2 ⊆ L1 and thus can also write L1 = L2 ∪ L′, where L′ = L1 \ L2 is the set of labelings
in L1 but not in L2. Then, we may also write

Ma,1 =
⋂

`σ∈L2∪L′

M(AttConσ(a, `)).

We can now split up this formula and write it as

Ma,1 =
⋂
`σ∈L2

M(AttConσ(a, `)) ∩
⋂
`σ∈L′

M(AttConσ(a, `)).

The first part is then exactly the set of modelsMa,2 of Ca,2. In short, we can also writeMa,1 =Ma,2 ∩
M′

a, where M′
a corresponds to the second part of the above formula for Ma,1. The models of the

argument a for the labelings L1 are computed as the intersection of the modelsMa,2 for the labelings L2

intersected with the modelsM′
a for the labelings L′. That means, every model of Ca,1 is a model of Ca,2



and has to additionally satisfy the attack constraint for every labeling ` ∈ L1 \ L2.
From that we can easily see: it holds for every argument a ∈ Arg that the models for L1 must be a
subset of the models for L2 for every attack constraint, i. e., Ma,1 ⊆ Ma,2. Since the models of an
attack constraint correspond per definition exactly to the set of argumentation frameworks the algorithm
constructs, it follows that F1 ⊆ F2.
Thus, we have shown for all sets of labelings L1, L2, that F1 ⊆ F2 if L2 ⊆ L1, i. e., the algorithm is
monotonically refining. �
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