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Abstract

We consider the recently proposed notion of serialisability of
semantics for abstract argumentation frameworks. This no-
tion describes a method for the serialised non-deterministic
construction of extensions through iterative addition of non-
empty minimal admissible sets. Depending on the semantics,
the task of enumerating all extensions for an argumentation
framework can be computationally complex. Serialisability
provides a natural way of parallelising the construction of ex-
tensions for most admissible-based semantics. In this work,
we investigate the feasibility of using the serialisable con-
struction scheme for a more efficient enumeration of exten-
sions on the example of the recently introduced unchallenged
semantics and provide an experimental evaluation.

1 Introduction
The formalism of abstract argumentation (Dung 1995) has
received a lot of attention in the literature and has become
an important tool for knowledge representation and reason-
ing. An abstract argumentation framework (AF) consists of
a set of arguments and an attack relation representing con-
flicts between arguments. One of the main objectives in ab-
stract argumentation is computing acceptable sets of argu-
ments, also called extensions. For that purpose, there exist
many different semantics that impose varying constraints on
the acceptable extensions (Baroni, Caminada, and Giacomin
2018). For a lot of these semantics, tasks like enumerat-
ing all extensions are intractable (Dvorák and Dunne 2018;
Kröll, Pichler, and Woltran 2017). Thus, there is an in-
creased interest in algorithms for solving these tasks, see for
example the ICCMA competition (Bistarelli et al. 2020) for
comparing argumentation solvers.

However, only few approaches utilise parallel computing
to solve argumentation problems. There are, for example,
SAT-based solvers, like µ-toksia (Niskanen and Järvisalo
2020), which employ parallelisation on the level of the SAT
solver. In (Cerutti et al. 2015), an algorithm for enumerat-
ing extensions based on the decomposition of an AF into its
strongly connected components (SCCs) has been proposed.
On the other hand, (Doutre, Lafages, and Lagasquie-Schiex
2019) presents a clustering-based algorithm for enumerating
complete, preferred or stable extensions. The algorithm first
divides the AF into clusters via a spectral clustering method

and computes the extensions of each cluster in parallel and
finally assembles the extensions of the whole AF.

In this work, we consider the concept of serialisabil-
ity, a non-deterministic construction scheme for admissible-
based semantics (Thimm 2022; Bengel and Thimm 2022;
Blümel and Thimm 2022). In this construction scheme, an
extension is represented by a serialisation sequence consist-
ing of initial sets, i. e., minimal non-empty admissible sets,
of the respective reducts of the AF. This concept also enables
the definition of novel semantics, such as the recently intro-
duced unchallenged semantics (Thimm 2022). Constructing
unchallenged extensions has been shown to be more com-
putationally complex than many other admissible-based se-
mantics (Bengel and Thimm 2022).

The contributions of this work are as follows. In Sec-
tion 2 we introduce the theoretical background on AFs and
serialisability. We provide SAT-encodings for determining
initial sets in Section 3 and analyse the distribution of ini-
tial sets in the ICCMA’19 dataset (Section 4). Our results
show that there are generally very few initial sets in these
AFs, which means that exploiting the structure of serialisa-
tion sequences may be computationally beneficially for con-
structing extensions, in particular due to a small and struc-
tured search space. Subsequently, we propose an algorithm
for enumerating unchallenged extensions in Section 5. Our
algorithm first computes the initial sets of an AF and then,
in parallel, recursively continues the search by the induced
reducts. If no initial sets exist for a reduct, the serialisation
sequence is complete and represents an extension. In con-
trast to previous approaches our algorithm does not require
dividing the AF into clusters or SCCs or assembling the ex-
tensions in the end. Instead, the parallelisation follows di-
rectly from the nature of the non-deterministic construction
scheme of serialisability. In Section 6 we present first results
of an experimental evaluation of our algorithm. These re-
sults show that parallelisation does indeed provide a signif-
icant improvement in running time compared to sequential
approaches for enumerating unchallenged extensions. We
conclude and highlight potential future work in Section 7.

2 Preliminaries
Let A denote a universal set of arguments. An abstract ar-
gumentation framework (AF) is a tuple F = (A,R) where
A ⊆ A is a finite set of arguments and R is a relation R ⊆



A×A (Dung 1995). Let AF denote the set of all abstract
argumentation frameworks. For two arguments a,b ∈ A, the
relation aRb means that argument a attacks argument b. For
a set X ⊆ A, we denote by F|X = (X ,R∩ (X ×X)) the pro-
jection of F on X . For a set S⊆ A we define

S+F = {a ∈ A | ∃b ∈ S : bRa} S−F = {a ∈ A | ∃b ∈ S : aRb}

If S is a singleton set, we omit brackets for readability, i. e.,
we write a−F (a+F ) instead of {a}−F ({a}+F ). For two sets S and
S′ we write SRS′ iff S′∩S+F ̸= /0.

For F = (A,R) and S ⊆ A, the S-reduct FS is defined via
FS = F|A\(S∪S+) (Baumann, Brewka, and Ulbricht 2020).

We say that a set S⊆ A is conflict-free if for all a,b ∈ S it
is not the case that aRb. A set S defends an argument b ∈ A
if for all a with aRb there is c ∈ S with cRa. A conflict-free
set S is called admissible if S defends all a ∈ S. Let adm(F)
denote the set of admissible sets of F.

Non-empty minimal admissible sets have been coined ini-
tial sets by Xu and Cayrol (2016).

Definition 1. For F= (A,R), a set S⊆A with S ̸= /0 is called
an initial set if S is admissible and there is no admissible
S′ ⊊ S with S′ ̸= /0. IS(F) denotes the set of initial sets of F.

We can also differentiate between three types of initial
sets (Thimm 2022).

Definition 2. For F= (A,R) and S ∈ IS(F), we say that

1. S is unattacked iff S− = /0,
2. S is unchallenged iff S− ̸= /0 and there is no S′ ∈ IS(F)

with S′RS,
3. S is challenged iff there is S′ ∈ IS(F) with S′RS.

In the following, we will denote with IS ̸←(F), IS ̸↔(F),
and IS↔(F) the set of unattacked, unchallenged, and chal-
lenged initial sets, respectively. Based on the notions of ini-
tial sets and the reduct, we can now introduce the concept of
serialisability (Thimm 2022; Blümel and Thimm 2022).

Definition 3. A serialisation sequence for F = (A,R) is a
sequence S = (S1, . . . ,Sn) with S1 ∈ IS(F) and for each 2≤
i≤ n we have that Si ∈ IS(FS1∪···∪Si−1).

As shown in (Blümel and Thimm 2022), a serialisa-
tion sequence (S1, . . . ,Sn) induces an admissible set E =
S1 ∪ ·· · ∪ Sn and for every admissible set there is at least
one such sequence. Recalling the distinction between initial
sets from Definition 2, we can further restrict the serialisa-
tion sequences to characterise existing admissibility-based
semantics as well as define entirely new semantics. One
such semantics is the unchallenged semantics introduced in
(Thimm 2022).

Definition 4. Let F= (A,R) be an AF and E ⊆ A. We have
that E ∈ uc(F) if and only if there is a serialisation sequence
(S1, . . . ,Sn) with E = S1∪·· ·∪Sn and for all Si it holds that
Si ∈ IS ̸←(FS1∪···∪Si−1)∪ IS ̸↔(FS1∪···∪Si−1) and it holds that
IS ̸←(FS1∪···∪Sn)∪ IS̸↔(FS1∪···∪Sn) = /0.

In other words, the unchallenged semantics essentially
amounts to exhaustively adding unattacked and unchal-
lenged initial sets of the F and its respective reducts. In

(Bengel and Thimm 2022) it has been shown that reasoning
tasks related to the unchallenged semantics—i. e., deciding
whether a given argument is contained in one or all unchal-
lenged extensions—are on the second level of the polyno-
mial hierarchy, thus unchallenged extensions cannot be de-
termined by a simple SAT encoding.

Example 1. Consider the AF F1 in Figure 1. The graph
on the right shows all serialisation sequences for F1. A se-
quence is a path that starts at the the node /0 and ends at one
of the nodes highlighted in bold, i. e., the two unchallenged
extensions: {a,b} and {a,b,e}. The corresponding seriali-
sation sequence is then the edge labels, e.g., (a,b) and (b,a)
which both lead to the same unchallenged extension {a,b}.
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Figure 1: The AF F1 (left) and a graph representing all serialisation
sequences for the unchallenged extensions of F1 (right).

3 SAT-Encoding for Initial Sets
In the following, we will introduce SAT-encodings for de-
termining initial sets in AFs. The developed encodings
are based on standard SAT-encodings for AFs by (Besnard,
Doutre, and Herzig 2014) and adapted from the encodings
developed by (Niskanen and Järvisalo 2020). First, we in-
troduce some notation. Acceptance and rejection of an ar-
gument a are represented by the variables Ia and Oa. For
any model, we say that if Ia is true, then the argument a is
accepted in the corresponding extension, and if Ia is false, a
cannot be accepted. Similarly, if Oa is true the argument a
is rejected by the extension, otherwise it is not. Note, that
while only one of Ia and Oa can be true, both can be set to
false, meaning the argument is neither accepted nor rejected
directly by the respective extension.

The encoding for initial sets consists of four sub-
problems. The first encoding in Equation 1 models the basic
acceptance and rejection of arguments through the attacks
in the AF and consists of three parts. The first part models
that an argument cannot be accepted and rejected at the same
time. Furthermore, the second part ensures that if an attacker
b of an argument a is accepted, then a must be rejected. The
third part constitutes that if an argument a is rejected, one of
its attackers must be accepted.

Ψre j =
∧
a∈A

(¬Oa∨¬Ia)∧
∧
a∈A

∧
b∈a−

(Oa∨¬Ib)

∧
∧
a∈A

(¬Oa∨
∨

c∈a−
Ic) (1)



Ψc f =
∧
a∈A

∧
b∈a−
¬Ia∨¬Ib (2)

Ψadm = Ψre j ∧Ψc f ∧
∧
a∈A

∧
b∈a−
¬Ia∨Ob (3)

Ψnon−empty,adm = Ψadm∧
∨
a∈A

Ia (4)

The conflict-freeness property of initial sets is modelled
by Equation 2, i. e., for every pair of arguments, if there is
an attack between them, then one of these arguments has to
be not accepted. Combining these encodings together with
the notion of defense, we obtain Equation 3 to encode ad-
missible sets of an AF. Finally, the nonemptiness of initial
sets is modelled in the second part of Equation 4.

The models of the encoding in Equation 4 will then rep-
resent non-empty admissible sets. In order to obtain initial
sets, we also need to ensure the minimality. In the sense that,
if we find a model S of the encoding, we ensure there is no
model S′ with |{a ∈ A|S′(Ia)}|< |{a ∈ A|S(Ia)}|, i. e., there
exists no model for the encoding where only a subset of the
arguments is accepted. If we find a model S, represented
by the extension E, we add assumptions ¬Ia for each argu-
ment a ∈ A \E and an assumption

∨
a∈E ¬Ia. This blocks

the solver from accepting any argument not accepted by E
and also enforces that at least one accepted argument of E is
rejected. If there exists model E ′ for this modified encoding,
then E is not minimal and we continue searching with E ′. If
there is no model, E is minimal and an initial set of the AF.

4 Initial Sets in the ICCMA’19 Dataset
To gain an understanding of how initial sets appear in typi-
cal AFs, we consider the ICCMA’19 dataset (Bistarelli et al.
2020). We presume that a smaller number of initial sets in
an AF is advantageous for an algorithm that relies on them.
The reason is that a smaller number of initial sets essentially
equated to fewer possibilities for the serialisation sequences
and thus less paths for the algorithm to traverse.

The ICCMA’19 dataset consists of 326 AFs ranging from
4 to 10,000 arguments. For those AFs, we are interested in
the number of initial sets and how the three different types
of initial sets are distributed.

Figure 2 shows the frequency distribution and a boxplot
for the number of initial sets. For readability, three outliers
with 552, 680 and 1972 initial sets are excluded from the
figure. For the whole dataset, there is an average number of
33.6 initial sets per AF and a median of 14 initial sets. There
are 2 AFs with no initial sets, i. e., they consist only of argu-
ments in odd cycles and contain no non-empty extension for
all admissible-based semantics. We observe that 90% of the
AFs have less than 64 initial sets and 95% of them have 95 or
less initial sets. Overall 66.6% of initial sets are challenged,
26.1% are unattacked and only 7.3% are unchallenged.

The results show that most AFs have only few initial sets,
which makes a serialisability-based approach for computing
extensions seem interesting, especially for difficult cases,
such as the unchallenged semantics. This also allows us to
naturally utilise parallel computing to speed up the enumer-
ation of extensions.
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Figure 2: Frequency distribution and boxplot for the number of
initial sets for the AFs in the ICCMA’19 dataset.

5 A Serialisability-based Approach to
Reasoning with Unchallenged Semantics

We now propose an algorithm for enumerating unchallenged
extensions based on the previously described SAT encodings
and the serialisable construction scheme. In particular, we
introduce a recursive algorithm that constructs all serialisa-
tion sequences for an AF while computing the initial sets at
each step via the SAT encodings. Essentially, this amounts
to traversing all paths in a graph, like the one depicted in
Figure 1, starting from the empty set and ending in some
leaf node which represent the unchallenged extensions.

Algorithm 1 The function ee unchallenged() that
starts the recursive enumeration of unchallenged extensions.

1: input argumentation framework F= (A,R)
2: ee unchallenged(F, /0)

Algorithm 2 The function ee unchallenged() for re-
cursively enumerating the unchallenged extensions in AFs.

1: input argumentation framework F= (A,R), set of argu-
ments ext

2: solver = initial encoding(F)
3: initialSets = solver.getModels()
4: if existOnlyChallengedInitialSets() then
5: show ext
6: return
7: end if
8: for S ∈ initialSets do
9: if S ∈ IS↔(F) then

10: continue
11: end if
12: ee unchallenged(FS,ext ∪S)
13: end for

Given an AF F, we initialise the search procedure by
calling the function ee unchallenged(F) from Algo-
rithm 1 which starts the recursion of Algorithm 2 with F and



the empty set. The recursive procedure of Algorithm 2 then
works as follows:

1. We start with creating the SAT-encodings for initial sets
introduced in Section 3.

2. Afterwards, we compute all initial sets of F. We compute
all initial sets first, so that we can then decide for each
initial set if it is challenged or not.

3. If all initial sets of the current AF are challenged, the se-
rialisation sequence is valid and finished and the current
state ext is an unchallenged extension of the original F.

4. We then iterate over all initial and ignore challenged ini-
tial sets. For each unattacked or unchallenged initial sets S
we recursively continue with the S-reduct of F and ext∪S
as the new current status of the extension construction.

Once the recursion is finished, we will have all unchal-
lenged extensions of F. The following statement follows di-
rectly from the definition of Algorithm 1.

Theorem 1. Algorithm 1 is sound and complete for the task
of enumerating all unchallenged extensions.

It should be noted, that since the same unchallenged ex-
tension can be constructed by taking the initial sets in a dif-
ferent order (see Figure 1), the above algorithm might pro-
duce the same extension multiple times. We prevent this
problem by simply checking (in line 12 of Algorithm 2) if
the current state of the extension ext ∪ S has already been
checked before and in that case we skip the recursive call.
That ensures every extension is only computed once.

An important aspect of Algorithm 1 is that we can paral-
lelise the recursive calls ee unchallenged(FS,ext ∪ S),
which allows us to traverse multiple serialisation sequences
in parallel only limited by the number of CPU cores.

In general, this procedure can be used for any serialis-
able semantics. For other semantics, it may also be simpli-
fied, e. g., we do not need to differentiate between different
types of initial sets when considering other extensions such
as those for admissible or preferred semantics.

6 Experiments
To investigate the feasibility of the parallel approach to
enumerating extensions, we compare two approaches: (1)
serial-naive a naive serialisability-based approach and
(2) serial-para an implementation of Algorithm 2,
where all recursive calls are done in parallel. Both imple-
mentations1 are done in C++ and serial-para relies
on the CryptoMiniSatSolver (Soos, Nohl, and Castelluccia
2009). The experiments where run via the probo2 bench-
mark tool2, with a timeout of 10 minutes, on a machine with
2x 3.4 GHz Intel Xeon E5-2643v3 CPU with a total of 12
cores and 24 threads as well as 192 GB memory.

The first results of the evaluation on the ICCMA’19
dataset are shown in Figure 3. Note the logarithmic scale
of the y-axis. The figure shows a cactus plot comparing
the runtimes of both versions. While serial-naive was

1https://github.com/aig-hagen/serialisability-solver
2https://github.com/aig-hagen/probo2
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Figure 3: Cactus plot with the results of the experiment for enu-
merating unchallenged extensions for the ICCMA’19 dataset.

only able to solve 69 of the 326 instances, serial-para
was able to solve 219 instances in total. On average, the par-
allel approach improves total runtime by 53,7% compared
to the naive approach. In general, we can observe that the
serial-para approach was faster on almost all instances
of the ICCMA’19 dataset. Only for some of the easier in-
stances, we can see cases where serial-naive is faster,
most likely due to the computational overhead of paralleli-
sation. However, on the larger and more difficult instances
serial-para consistently and significantly outperforms
the naive approach.

Overall, the first results show that parallelisation does in-
deed improve the runtime compared to the naive approach
and it seems especially interesting to further explore the par-
allel approach for larger and more difficult instances.

7 Discussion and Future Work

We considered the notion of serialisability and proposed an
algorithm for enumerating unchallenged extensions based
on this construction scheme. The algorithm can be paral-
lelised naturally without requiring any additional computa-
tions on the AF. Our first experimental results show a signif-
icant improvement in runtime, especially for the more diffi-
cult instances of the ICCMA’19 dataset.

For future work, we plan to further refine the serialisable
extension construction. That includes algorithmic optimisa-
tions, but also adapting the approach to other admissible-
based semantics. An interesting application are also the
more difficult reasoning problems, like skeptical preferred
reasoning. Here, we could use the serialisable construc-
tion scheme in combination with some heuristics to guide
the search for a counterexample to disprove skeptical ac-
ceptance of an argument. We also intent to provide a more
thorough evaluation of our approach, including a compar-
ison to other existing approaches (Doutre, Lafages, and
Lagasquie-Schiex 2019; Bistarelli et al. 2020) for tasks re-
lated to admissible-based semantics.

https://github.com/aig-hagen/serialisability-solver
https://github.com/aig-hagen/probo2
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