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Abstract. We examine the impact of both training and test data selection in ma-
chine learning applications for abstract argumentation, in terms of prediction ac-
curacy and generalizability. For that, we first review previous studies from a data-
centric perspective and conduct some experiments to back up our analysis. We fur-
ther present a novel algorithm to generate particularly challenging argumentation
frameworks wrt. the task of deciding skeptical acceptability under preferred se-
mantics. Moreover, we investigate graph-theoretical aspects of the existing datasets
and perform some experiments which show that some simple properties (such as
in-degree and out-degree of an argument) are already quite strong indicators of
whether or not an argument is skeptically accepted under preferred semantics.
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1. Introduction

Formal argumentation is a modern approach for non-monotonic reasoning within the
general area of Artificial Intelligence. In particular, an (abstract) argumentation frame-
work [1] consists of a set of arguments and a relation describing attacks between such
arguments. Semantics are expressed in form of extensions, i.e., sets of arguments that
meet certain prerequisites and are thus considered mutually acceptable. Typical computa-
tional problems in abstract argumentation are deciding whether an argument is included
in some extension of a given semantics (or in all such extensions), or enumerating one
(or all) extensions of a given semantics [2,3,4]. Most algorithmic approaches for solving
such problems are sound and complete methods; see [4] for a recent overview. However,
the high complexity of these problems—for instance, the problem of deciding whether
an argument is included in all preferred extensions is ΠP

2 -complete [2]—prohibits a scal-
able behavior of such approaches in the worst case. Thus, with the rise of Deep Learning
approaches for numerous fields of application in recent years, a few authors suggested to
use artificial neural networks for this task [5,6,7]. The advantage of a neural network is
that, once it is trained properly, it can solve problems in time linear to the input. Never-
theless, this comes at the cost of exactness: the result is not guaranteed to be correct.

In this work, we review the existing literature on the topic of deep learning ap-
proaches for abstract argumentation with emphasis on the data used in the individual
works. Although there is some overlap, none of the works use the same dataset, neither



for training nor for testing purposes. This is (at least partly) due to the reason that for
abstract argumentation, there exists no dedicated “standard” data set suitable for Ma-
chine Learning (ML) purposes, as opposed to, e.g., image processing, where datasets
such as MNIST1 or CIFAR2 are well-known and publicly available. This paper takes a
data-centric perspective and examines which properties a dataset in our field should pos-
sess. We perform an experimental analysis in which we explore the impact of different
training and test sets on two different neural network architectures known from the liter-
ature. We also propose an algorithm to generate particularly challenging argumentation
frameworks for the task of deciding skeptical acceptability under preferred semantics.

Furthermore, we investigate graph-theoretical properties of the datasets at hand. We
show that some simple properties can be quite strong indicators of an argument’s ac-
ceptability status. To illustrate this, we conduct some experiments in which we use a se-
lection of “classical” ML methods which are only given the arguments’ in-degrees and
out-degrees as features. While the accuracy of these approaches is still lower than the
accuracy of the deep learning methods, it is surprisingly high and raises doubt about the
requirement to use complex deep learning methods for this purpose.

The remainder of this paper is structured as follows. We begin by giving an overview
on abstract argumentation as well as related neural network techniques in Section 2. In
Section 3, we take a closer look at the data used in the context of existing deep learning
solutions for abstract argumentation and propose a new dataset which is particularly
challenging for the task of deciding skeptical acceptability under preferred semantics.
We conduct some experimental analysis on this new dataset as well as existing ones in
Section 4. Section 5 provides a discussion and deeper analysis, in particular regarding
graph-theoretical properties, and Section 6 concludes this work.

2. Preliminaries

We provide the basics of abstract argumentation in Section 2.1 and give an overview on
existing works using artificial neural networks for abstract argumentation in Section 2.2.

2.1. Abstract Argumentation

An abstract argumentation framework (AF) [1] is a tuple F = (Args,R), where Args is
the set of arguments and R ⊆ Args×Args is the attack relation. An argument a ∈ Args is
said to attack another argument b ∈ Args if (a,b) ∈ R. We abbreviate

a−F = {b ∈ Args | (b,a) ∈ R} a+F = {b ∈ Args | (a,b) ∈ R}

and analogously E−
F and E+

F for a set E ⊆ Args. An argument a ∈ Args is defended by
a set of arguments E ⊆ Args if a−F ⊆ E+. A set E ⊆ Args is conflict-free if E ∩E+ = /0.
A set E ⊆ Args is called admissible (we also say E ∈ ad(F)) if E is conflict-free and
each a ∈ E is defended by E within a given AF F . E is a preferred extension (i.e.,
E ∈ pr(F)) if E ∈ ad(F) and for every E ′ ∈ ad(F), E ̸⊂ E ′. An argument a ∈ Args
is skeptically accepted wrt. preferred semantics (abbreviated pa) iff a is contained in

1http://yann.lecun.com/exdb/mnist/
2https://www.cs.toronto.edu/∼kriz/cifar.html
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every preferred extension. Let pa(F) denote the set of all pa arguments in F and define
pna(F) = Args \ pa(F). We denote the computational problem of deciding whether an
argument is skeptically accepted wrt. preferred semantics as DSpr. An argument a∈Args
is credulously accepted wrt. preferred semantics iff a is contained in some preferred
extension.

We say that E ∈ co(F) (E is complete) if E ∈ ad(F) and for each a ∈ Args defended
by E in F , it holds that a ∈ E. We define that E is a grounded extension if E ∈ co(F) and
for every E ′ ∈ co(F), E ′ ̸⊂ E. Moreover, E is an ideal extension if E ∈ ad(F), for every
E ′ ∈ pr(F), E ⊆ E ′, and E is maximal (wrt. set inclusion) with these two properties. Note
that every AF F has a uniquely defined grounded extension Egr [1] and a uniquely defined
ideal extension Eid [8] and that Egr ⊆ Eid ⊆ pa(F). An argument a ∈ Args is accepted
wrt. grounded semantics (abbreviated ga), if a is contained in the grounded extension
Egr. Let ga(F) denote the set of all ga arguments and let ia(F) be the corresponding
notion for ideal semantics.

2.2. Artificial Neural Networks for Abstract Argumentation

The purpose of an ML approach, such as an artificial neural network, is to “learn” from
given data (i.e., the training set), in order to subsequently apply the acquired “knowl-
edge” to previously unknown data (e.g., the test set during evaluation). The term valida-
tion set refers to a dataset that is essentially used as a trial test set. It is used during the
training process of a neural network to check how well it would perform on unknown
data at certain training stages. A typical problem for the application of ML is that of
classification. In abstract argumentation, our objective is to decide whether an argument
is acceptable or not under a given semantics and wrt. a given reasoning mode (credulous
or skeptical). Therefore, we aim to classify an argument as acceptable or not accept-
able. More precisely, we can train, e.g., a neural network using a set of AFs with labels
(accepted/not accepted) for each argument.

There are a few works about the application of neural networks to decide the ac-
ceptability status of arguments [5,6,7]. A first work [5] makes use of so-called Graph
Convolutional Networks (GCNs) as proposed by Kipf and Welling [9]. The authors con-
sider the problem of credulous acceptance under preferred semantics. Malmqvist et al.
[7] improve the GCN approach used by [5] by proposing a randomized training regime as
well as a scheme to dynamically balance the training data. They consider both credulous
and skeptical acceptance under preferred semantics. Craandijk and Bex [6] introduce an
Argumentation Graph Neural Network (AGNN) which learns a message-passing algo-
rithm. The authors apply their approach on the tasks of deciding credulous and skeptical
acceptance under all four classical semantics (i.e., complete, grounded, preferred, and
stable semantics). The latter work is the most promising one so far—the authors report
almost perfect predictions in their evaluation.

3. Selection of Data for Abstract Argumentation

As this paper takes a data-centric perspective, we now investigate how the problem of
data selection was approached in the previously mentioned works (Section 2.2) and we
discuss these design choices. In this paper we consider only the problem DSpr, but note
that some of the works mentioned above also consider other problems.



Kuhlmann and Thimm [5] generate training sets of different sizes using the probo
Benchmark Suite3 [10] as well as AFBenchGen4 [11], which include a total of six dif-
ferent graph generators. The authors create datasets of different sizes which contain be-
tween 30 and 600 AFs, each consisting of 100–400 arguments. A test set of 120 AFs is
generated in the same manner. In addition, they use some benchmark data from the Inter-
national Competition on Computational Models of Argumentation5 (ICCMA) 2017 for
testing purposes. During training, a fraction of the training set is used as a validation set.
Malmqvist et al. [7] used a dataset of 900 AFs from ICCMA 2017, divided into training
set (90%) and test set (10%). Again, part of the training data is used as a validation set.
Craandijk and Bex [6] use the same generators as [5], i.e., those included in the Probo
Benchmark Suite and AFBenchGen, and generate a test set consisting of 1000 AFs with
exactly 25 arguments each. A fixed validation set is generated analogously. As a training
set they create a total of one million AFs with 5 ≤ |Args| ≤ 25.

All works above use different datasets, which makes their results difficult to com-
pare. Further, none of the papers poses the question what a suitable dataset should look
like. To begin with, a test set should contain instances with various properties (different
sizes, complexity, etc.), and at least some of them should be considered “challenging”—
after all, the purpose of using a deep learning approach for abstract argumentation is to
solve problems faster than with an exact approach. While at least some instances of the
ICCMA dataset can be considered “challenging” (as they are competition benchmarks),
the data generated by the Probo Benchmark Suite and AFBenchGen is a different matter.
Craandijk and Bex [6] use a test set consisting of AFs that are made up of 25 elements
each by using the aforementioned generators. Deciding whether an argument in such an
AF is pa merely takes 0.0013 s on average using, e.g., the µ-toksia solver6 [12]. In com-
parison, an AGNN takes 0.00003 s on average7 for the same task8. Consequently, there
is a reduction in computation time when using the neural network approach, neverthe-
less this advantage must be weighed against the disadvantage that exactness can never be
guaranteed with a deep learning method. In the case of such small AFs, it might be more
practical to use an exact approach, since the absolute difference in runtimes (0,00127 s
on average absolute difference between the correct system µ-toksia and the approximate
system AGNN) is very likely to be negligible for real-world applications. However, in
the case of more complex AFs, the fast solving time of a neural network may be the more
suitable solution in practice. This highlights that researchers should select their (test)
data in a way that it represents those cases, in which a deep learning approach would
grant an actual advantage in practical applications.

Furthermore, the ICCMA instances exhibit a property that makes them somewhat
less “challenging” as well, as most arguments that are pa are also ga (see the |ga| and
|pa| values of iccma-test in Table 1). Recall that the computational complexity of decid-
ing DSpr is Π2

P-complete [13] in general. However, there are certain easy cases where
DSpr can be decided with much less effort. For example, arguments in the grounded ex-

3https://sourceforge.net/projects/probo/
4https://sourceforge.net/projects/afbenchgen/
5http://argumentationcompetition.org/
6System properties: 32 GB RAM, AMD® Ryzen 7 pro 5850u
7Note that we measured the time the model took to process the entire test set and afterwards divided it by

the number of arguments in the test set (i.e., 25,000).
8System and training setup as described in Section 4.1

https://sourceforge.net/projects/probo/
https://sourceforge.net/projects/afbenchgen/
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Table 1. Overview of all datasets used in the experiments. Let F be an arbirtrary AF. All columns including
mean values additionally include the standard deviation.

Dataset # AFs # argu-
ments
(= n)

Mean # arguments
per AF

Mean # attacks per AF Mean |pa(F)| Mean |ia(F)| Mean |ga(F)|

pbbg-train 100000 1898327 18.98 ±6.07 55.34 ±48.62 5.96 ±4.50 5.94 ±4.51 5.33 ±4.84
pbbg-test 1000 25000 25.00 ±0.0 84.97 ±60.96 7.07 ±5.70 7.02 ±5.74 6.14 ±6.15
kwt-train 1000 151000 151.00 ±0.0 6523.54 ±1728.29 69.44 ±23.47 69.32 ±23.82 16.31 ±34.45
kwt-test 1000 151000 151.00 ±0.0 6567.07 ±1734.52 69.12 ±23.63 68.99 ±23.99 15.90 ±34.16
iccma-test 450 292221 649.38 ±1398.99 52734.64 ±175454.90 70.23 ±333.51 64.233 ±324.47 59.08 ±313.15

tension are always pa (and the grounded extension can be computed in polynomial time)
as well as arguments in the ideal extension [14] (where related problems are “only” ΘP

2 -
complete), and arguments attacked by some admissible set are never pa (and deciding
this is a problem in NP). We developed a graph generator (to which we refer by KWT
in the following) that is tailored towards generating abstract argumentation frameworks
that are particularly hard for tasks related to DSpr by avoiding (as much as possible)
these easy cases. The graph generator KWT takes as parameters (among others) the total
number of arguments, the number of arguments to be pa, the number of arguments to
be contained in at least one preferred extension, and the number of preferred extensions.
Arguments are associated to the different preferred extensions (at random, using some
further parameters for randomisation) and each argument of each extension is attacked
by at least one other argument (so we will have a small grounded extension in most
cases). We performed some simple experiments to verify that these graphs are indeed
relatively hard for problems related to DSpr, but a careful analysis of this is part of on-
going work (and also not relevant for the work reported here, due to our results below).
In our experiments we generated argumentation frameworks with 151 arguments, 60–90
pa arguments, 15–60 further arguments that are in at least one extension, and 100–200
preferred extensions. The graph generator9 and the script10 we used can be found online.

4. Experimental Analysis

We conduct two experiments. First we examine different test sets for the same trained
model (an AGNN as presented by Craandijk and Bex [6]), and, as follow-up work, we
use an alternative training set in order to achieve more accurate results for one of the
more challenging test sets. We repeat these experiments with a different neural network
model which was proposed in [5].

4.1. Experimental Setup

We generate AFs as in [6]. We create a test set and a validation set containing 1000 AFs
each, with each AF consisting of exactly 25 arguments (i.e., |Args| = 25), as well as
a training set consisting of AFs with 5 ≤ |Args| ≤ 25. We denote these sets pbbg-test,
pbbg-val, and pbbg-train, respectively. However, we only create 100,000 AFs for the
training set, as opposed to Craandijk and Bex, who used 1 million AFs, as the results
of a training with 100,000 AFs are expressive enough (see Section 4.2). See Table 1 for

9http://tweetyproject.org/r/?r=kwt gen
10http://tweetyproject.org/r/?r=kwt gen ex
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a statistical overview of the training and test set we generated. To actually generate the
AFs and corresponding solutions, we use the AGNN framework11, which also offers the
option to train and evaluate other neural network models.

As a second dataset, we generate a total of 2200 KWT instances12 as described in
Section 3. We split this data into a training set (kwt-train) consisting of 1000 AFs, a
test set (kwt-test), also consisting of 1000 instances, and a validation set (kwt-val) of
200 instances. Moreover, we use part of the ICCMA 2017 data as an additional test
set13 (iccma-test14). In total, we use 450 AFs15 from groups A, B, and C, spanning all
difficulty levels. Details on all these sets are displayed in Table 1 The corresponding
solutions were generated using the solvers Pyglaf [15] and µ-toksia [12].

In our first experiment, we train16 an AGNN as in [6] (the only difference being
the smaller training set). Hence, for training we use pbbg-train, for validation pbbg-
val, and for testing pbbg-test. We then test the trained model on the other two test sets
(kwt-test and iccma-test) to examine whether it performs similarly well. As a follow-up
experiment, we train an AGNN on kwt-train, in order to inspect if it is able to perform
better on kwt-test. Again, we use all three test sets. Afterwards, we conduct the same
two experiments on an implementation of the FM2 model [5] which is also included in
the AGNN framework. In each experiment, the network is trained for 300 epochs, i.e.,
the training set is passed through the model 300 times.

In order to quantify our results, we use the Matthews Correlation Coefficient
(MCC), as well as accuracy, True Positive Rate (TPR) and True Negative Rate
(TNR). Let TP/FP and TN/FN denote true/false positives and true/false negatives,
respectively, where the positive class are the pa arguments. Then we can define
MCC = TP·TN−FP·FN√

(TP+FP)·(TP+FN)·(TN+FP)·(TN+FN)
. Moreover, TPR = TP/(TP + FN), and

TNR = TN/(TN + FP). Accuracy is defined as TP+TN
TP+TN+FP+FN , and precision as

TP/TP+FP.

4.2. Results

Reproducing the training procedure described by Craandijk and Bex [6] yields an MCC
of 0.962. Although this value is slightly lower than the one provided in the original paper
(0.997), it is still quite high. Besides, the small discrepancy can be explained by the fact
that we used a smaller training set, and could be compensated by the use of more message
passing steps during the testing phase. However, the MCC values regarding kwt-test and
iccma-test are significantly lower (0.631 and 0.507, respectively). As Table 2 reveals,
this is mostly due to a low TPR, meaning that arguments that are pa are not recognized
as such in many cases. Training an AGNN with kwt-train results in an increased MCC
for kwt-test (0.927). This shows that AGNNs are actually able to learn KWT data quite
well if they are exposed to such data during training. The MCCs regarding the other two

11https://github.com/DennisCraandijk/DL-abstract-argumentation
12https://fernuni-hagen.sciebo.de/s/ZEmipULEN05FxxC
13Due to hardware limitations (in particular concerning the GPU memory), we could not use the ICCMA

data for training.
14https://fernuni-hagen.sciebo.de/s/qjbSqMETOjb2JSY
15https://fernuni-hagen.sciebo.de/s/ZvNyWJ4af4ehEaB
16All computations were conducted on a computer equipped with an NVIDIA GeForce GTX 980 Ti GPU

(6144 MB internal memory), an AMD® Ryzen 5 2600 processor, and 16 GB RAM.
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https://fernuni-hagen.sciebo.de/s/ZEmipULEN05FxxC
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https://fernuni-hagen.sciebo.de/s/ZvNyWJ4af4ehEaB


Table 2. Overview of the experimental results.

Training Set Test set MCC Accuracy TPR TNR Precision

Model: AGNN

pbbg-train
pbbg-test 0.962 0.985 0.964 0.993 0.981
kwt-test 0.631 0.801 0.588 0.980 0.962
iccma-test 0.507 0.847 0.446 0.974 0.845

kwt-train
pbbg-test 0.693 0.880 0.666 0.965 0.882
kwt-test 0.927 0.962 1.000 0.930 0.924
iccma-test 0.250 0.780 0.312 0.928 0.577

Model: FM2

pbbg-train
pbbg-test 0.558 0.822 0.670 0.882 0.692
kwt-test 0.359 0.642 0.220 0.998 0.989
iccma-test 0.211 0.763 0.315 0.905 0.512

kwt-train
pbbg-test 0.078 0.719 0.030 0.991 0.568
kwt-test 0.364 0.643 0.220 1.000 1.000
iccma-test 0.055 0.761 0.016 0.996 0.583

test sets are lower than in the previous experiment (see Table 2). Thus, a training on
KWT data alone is not practical either, and a future standard training set should probably
contain instances of both KWT data and other datasets, such as pbbg-train. But these
results suggest that the AGNN does no actually learn the concept (or an approximate
concept) of skeptical acceptance wrt. preferred semantics, but rather particular properties
of the benchmarks that correlate with it.

The results of our experiments with the FM2 network point in the same direction as
the previously described ones. Training the network with pbbg-train results in a lower
MCC wrt. kwt-test and iccma-test than wrt. pbbg-test (see the bottom half of Table 2).
However, the FM2 model is clearly less accurate (in particular wrt. accepted arguments)
and does not generalize very well. This problem becomes even more apparent when the
network is trained with kwt-train. The resulting model does not significantly recognize
accepted arguments from pbbg-test or iccma-test. Nevertheless, one should note that the
problem of FM2 with imbalanced data has been recognized in the literature [5,7] and
that other parameters could potentially improve the model’s accuracy. Also, the fact that
FM2 does not learn KWT data very well supports the hypothesis that the KWT instances
are rather challenging—which was our goal when we developed the generator.

5. Discussion and Further Analysis

In the following, we look a little bit deeper into the actual approach that ML methods
take to solve DSpr, and how the data may bias learning. In particular, we have a look
at the different graph types and how the accuracy of the existing approaches varies over
these. Furthermore, we show that classical ML approaches perform already quite well
when just considering very simple graph-theoretic features, suggesting that the complex
deep learning approaches tend to simply learn these features as well.



Table 3. AGNN results on different subsets of iccma-test. Rows containing sets of AFs generated using
methods which are not included in the generation process of pbbg-train and pbbg-test are marked in gray.

Training Set
pbbg-train kwt-train

Test Set MCC Accuracy TPR TNR Precision MCC Accuracy TPR TNR Precision
ABA2AF 0.804 0.989 0.692 0.999 0.947 0.680 0.978 0.764 0.985 0.626
admbuster −0.110 0.486 0.003 0.968 0.086 −0.454 0.329 0.000 0.657 0.000
BA 0.946 0.973 0.977 0.970 0.963 0.645 0.812 0.917 0.729 0.725
ER −0.001 0.999 0.000 0.999 0.000 0.009 0.998 0.012 0.999 0.028
grd 0.690 0.970 0.600 0.992 0.827 0.265 0.935 0.226 0.979 0.391
Planning2AF 0.660 0.914 0.759 0.938 0.655 0.227 0.693 0.552 0.715 0.231
scc 0.135 0.998 0.127 0.999 0.151 0.016 0.989 0.049 0.990 0.008
sembuster − 0.687 − 0.687 − − 0.804 − 0.804 −
stb 0.463 0.926 0.329 0.988 0.742 0.172 0.904 0.097 0.987 0.438
traffic 0.789 0.931 0.723 0.989 0.947 0.541 0.858 0.499 0.958 0.768
WS 0.262 0.992 0.233 0.997 0.302 0.067 0.986 0.091 0.991 0.062

5.1. Analysis of Graph Types

As iccma-test overall seems to be hard to predict, we divide the dataset into multiple
subsets. Each subset contains data from one distinct generator or source17. The sets grd,
scc, and stb contain those instances produced by the generators of the Probo Benchmark
Suite, i.e., the GroundedGenerator, SccGenerator, and StableGenerator, respectively.
The sets BA, ER, and WS contain the instances generated using AFBenchGen2, i.e., they
correspond to the Barabasi-Albert, Erdős-Rényi, and Watts-Strogatz approach, respec-
tively. Consequently, these six graph “types” are also included in pbbg-train (and pbbg-
test)18. The other five subsets, namely ABA2AF, admbuster, Planning2AF, sembuster,
and traffic, conform to the remaining five generators (for a detailed explanation, see the
official competition benchmark report [16]).

We considered the AGNN models trained on pbbg-train and kwt-train which we
described in Section 4.2 and tested them on all individual subsets of iccma-test. Table 3
shows that the results vary widely. For instance wrt. pbbg-train, the BA instances are
predicted quite accurately, with an MCC of 0.946. On the other hand, wrt. the ER subset,
the model essentially just learned to classify all arguments as pna, which results in a
TNR of 0.999, but a TPR of 0.000 (and an MCC of −0.001). Further, we can observe that
both models tend to perform similarly. Although the model trained on pbbg-train overall
performs superior to the one trained on kwt-train, they both perform best (wrt. MCC) on
ABA2AF and BA, and worst on admbuster and ER. Moreover, it should be highlighted
once again that the model trained on pbbg-train performs very poorly on ER—although
the training set itself contained AFs generated using the Erdős-Rényi algorithm. Another
interesting observation is that the AGNN performs very poorly on the admbuster set [17].
This is surprising because the admbuster graphs are acyclic and pa(F) coincides with the
grounded extension in all its instances F . So, although “being in the grounded extension”
is a sufficient condition for pa and easy to compute for classical algorithms, it is not
learned by the deep learning approach.

5.2. Impact of In-degree and Out-degree

An advantage of deep learning approaches to ML is that the tedious task of feature en-
gineering is taken over by the learning approach. The approaches [5,6,7] all learn the

17Overview of the AFs belonging to each subset: https://fernuni-hagen.sciebo.de/s/pySMMAfE7zEzn6i
18Note, however, that different parameters were used.
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features used for classification implicitly when presented with the raw input data. While
this is beneficial from the point of view of the engineer, it also makes the model hard to
explain as it is not clear, how exactly recommendations are drawn from the input. This
can also lead to models that make predictions on correlations rather than on causal rela-
tionships. A famous example of such a misbehavior comes from image recognition [18].
There, an ML approach was given a set of images classified either as wolf or dog (husky)
and a classifier was trained to predict these two classes. But rather than identifying some
intrinsic feature to distinguish wolves from dogs, the ML approach learned the feature
of “snow in the background”. In both the training and test set, most images of wolves
had snow in the background, and this feature actually could be used very well for distin-
guishing wolves from dogs. However, it is clear that “snow in the background” is not a
good feature to describe what makes a wolf a wolf.

While the above example is an extreme case of an ML approach focussing on cor-
relation, we would like to analyse whether something similar happens in the case of pre-
dicting DSpr in abstract argumentation frameworks. For that we analysed the distribu-
tions of several graph-theoretic features, such as degrees, diameter, clustering coefficient,
etc., of the graphs in our datasets, with respect to the differences between pa and pna
arguments. We found out that the two features of in- and out-degree (i.e., the number
of incoming and outgoing attacks per argument) already distinguish these two classes
very well. Table 4, which comprises the mean degrees of pas and pnas wrt. all datasets
used in this work, shows that both mean in-degree and mean out-degree are in all cases
lower wrt. pa compared to pna. Regarding the out-degree, this is only a tendency, and
there exist exceptions—for instance, we examined a dataset consisting of 1000 AFs (25
arguments each) generated by Probo’s GroundedGenerator, where the mean out-degree
per pa (14.83) was higher than the mean out-degree per pna (10.75). Regarding the in-
degree, it is also possible to construct cases where the mean pa in-degree is higher than
the mean pna in-degree. However, the clear tendency of lower in-degrees of pa is clearly
visible. This is no coincidence in the data, but an intrinsic property of DSpr: the number
of the incident attacks in pna(F) is necessarily at least as large as the number of incident
attacks in pa(F) (this is actually true for all conflict-free semantics).

Proposition 1. For any AF F, |pa(F)+F |+ |pa(F)−F | ≤ |pna(F)+F |+ |pna(F)−F |.

Proof. Let (a,b) ∈ R. Since pa(F) is conflict-free, it follows that either

1. a ∈ pa(F), b ∈ pna(F),
2. a ∈ pna(F), b ∈ pa(F), or
3. a ∈ pna(F), b ∈ pna(F).

In the first two cases, both sets pa(F) and pna(F) are incident to the attack (a,b), while
in case three, only pna(F) is incident to the attack (with both end points). Summing over
all attacks, the claim follows.

The above observation becomes important, when we recall what “exact” problem the
classifiers are learned upon. The actual problem is that, given an argumentation frame-
work, predict pa/pna simultaneously for all arguments of the framework. As already
discussed in Section 3, for many arguments the problem of deciding whether they are
pa/pna is actually quite easy. With the additional information that low in-degrees are a



Table 4. Comparison of the mean number (and standard deviation) of outgoing and incoming attacks (i.e.,
in-degree and out-degree) wrt. the set of skeptically accepted arguments and the set of unaccepted arguments
under preferred semantics.

Dataset Mean out-degree
per pa

Mean out-degree
per pna

Mean in-degree
per pa

Mean in-degree
per pna

pbbg-train 2.15 ±2.02 2.71 ±1.93 0.82 ±0.98 3.29 ±1.86
pbbg-test 2.06 ±2.09 3.41 ±2.38 0.84 ±1.04 3.90 ±2.25
kwt-train 15.92 ±12.83 66.45 ±12.40 13.64 ±10.77 69.17 ±12.01
kwt-test 15.97 ±12.78 66.62 ±12.33 13.88 ±10.75 69.27 ±11.92
iccma-test 20.69 ±69.57 56.71 ±133.83 12.11 ±48.15 57.07 ±134.16

Table 5. Results of a naive classifier which uses the constraint “ain <meanpain ∨aout <meanpaout?” to classify
arguments as pa or pna.

Training Set Test Set MCC Accuracy TPR TNR Precision

pbbg-train pbbg-test 0.396 0.674 0.825 0.615 0.458
pbbg-train iccma-test 0.364 0.737 0.827 0.726 0.268
kwt-train kwt-test 0.739 0.868 0.768 0.951 0.930

very good indicator for having a pa argument, we can already classify many arguments
correctly.

In the following, we will describe the results of some additional experiments to ex-
plore the impact of in-degree and out-degree in classification tasks. For that, we simpli-
fied the instances of our datasets to a tabular format, in which each row only contains an
argument ID, the argument’s in-degree, out-degree, and label (pa or pna). So, the actual
argumentation frameworks are not given to the learning algorithm as input! We then train
several ML algorithms on this data and measure the resulting MCC, accuracy, TPR and
TNR. To begin with, we define a naive classifier whose “training” consists of calculating
the mean pa in-degree (meanpain ) and out-degree (meanpaout) of the training set. The classi-
fication process then simply consists of checking whether the in-degree or the out-degree
of a given argument a (ain and aout) is smaller than meanpain or meanpaout, respectively: if
one of them is indeed smaller, the argument is classified as pa, if this is not the case, it is
classified as pna. Although the results are, as one would expect, far from perfect, Table
5 shows that in-degree and out-degree alone are quite good indicators of the acceptabil-
ity status of an argument. In particular, accepted arguments are predicted surprisingly
accurately, with a TPR between 0.768 and 0.825.

Furthermore, we train a number of “classical” ML models. Again, we use the for-
matted datasets which only contain the in-degree and out-degree of each node, but no
further information about the graph structure. To be precise, we consider the following
methods [19]: k-Nearest Neighbors (KNN) (with k = 5), Naive Bayes (NB), Decision
Tree (DT), and Random Forest (RF)19. The results, displayed in Table 6, show that the
previously described results yielded by the naive classifier can generally be improved
by using a more sophisticated approach. In particular, the results on kwt-test are quite
accurate, with an MCC of 0.924 when using an RF. While DT and RF exhibit the best
performance wrt. MCC, one should notice that NB offers the most “balanced” results
wrt. TPR and TNR, in particular regarding pbbg-train. Besides, it is noticeable that DT
and RF feature very similar, or even identical results in all cases. This is most likely due

19We used the implementations and default parameters provided by https://scikit-learn.org/stable/.

https://scikit-learn.org/stable/


Table 6. Overview of test results wrt. multiple training and test sets as well as four different ML methods.

Training Set Test Set Approach MCC Accuracy TPR TNR Precision

pbbg-train pbbg-test

KNN 0.567 0.834 0.576 0.936 0.779
NB 0.514 0.761 0.831 0.733 0.551
DT 0.630 0.857 0.615 0.952 0.836
RF 0.630 0.857 0.615 0.952 0.836

pbbg-train iccma-test

KNN 0.191 0.832 0.309 0.895 0.264
NB 0.389 0.775 0.793 0.773 0.298
DT 0.399 0.911 0.200 0.997 0.895
RF 0.399 0.911 0.200 0.997 0.895

kwt-train kwt-test

KNN 0.884 0.942 0.952 0.934 0.924
NB 0.868 0.934 0.935 0.934 0.923
DT 0.923 0.960 0.998 0.929 0.922
RF 0.924 0.961 0.998 0.929 0.922

to the fact that the datasets only possess two features, which might lead to the decision
trees in the random forest to be similar (or identical) to a single decision tree.

Overall, our results suggest that classical ML techniques trained only on the features
in-degree and out-degree might not be accurate enough for practical applications, yet
they also show that these two simple features are still very strong indicators for the
acceptance status of an argument. Therefore, the question arises whether (and if so, in
which manner) such a dominant feature influences a neural network’s training process.

6. Conclusion

The objective of this work was to shed some light on the importance of data selection—
a common problem in ML research, but less common in knowledge representation and
reasoning. To successfully bridge the gap between both fields, we need to take different
perspectives. Our experiments showed that a training set consisting of only rather small
AFs (5–25 arguments) offers little room for variability. Thus, a neural network cannot
solve more complex cases as accurately. However, we also saw that a neural network (in
particular the AGNN architecture [6]) is in fact able to learn more complex features if
it is exposed to them during training. We also discussed the question whether the appli-
cation of ML techniques is even useful for small and simple AFs. Such cases could be
solved by an exact approach in a reasonable amount of time without any losses in terms
of accuracy. Further, there are other “simple” cases which should be taken into consider-
ation. For example, when regarding DSpr, a dataset should contain a significant number
of arguments that are pa but not ga, since the grounded extension can be computed in
polynomial time.

Furthermore, as a subject of future work, we need to take a closer look at graph-
theoretical aspects. For instance, a dataset could benefit from AFs which include accepted
arguments that have similar properties (such as in-/out-degree) as arguments that are not
accepted. Therefore, a neural network would need to learn less superficial features to
learn the acceptability status of arguments. Another topic of future work is to examine
other semantics and tasks more closely, as we only focused on DSpr. Yet another aspect
that could be explored is to use ML techniques to guide sound and complete solvers, in



order to accelerate their execution times. Moreover, the compilation of a standard dataset
that includes all of the above perspectives and aspects could facilitate future research in
this area.
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