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Abstract. We address the task of selecting the fastest algorithm, in terms of run-
time, for determining skeptical acceptance under preferred semantics in abstract ar-
gumentation frameworks out of a set of multiple algorithms by means of machine
learning. To be precise, we examine four “classical” machine learning techniques,
as well as three graph neural networks, and compare all of these approaches with
regard to both prediction accuracy and the total amount of time the selected algo-
rithms require to solve a given test set in an experimental analysis. Our set of algo-
rithms includes three solvers from the International Competition on Computational
Models of Argumentation. Our results demonstrate that graph neural networks are
a promising method for algorithm selection in abstract argumentation, as two out
of three neural network models outperform all four classical machine learning ap-
proaches.
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1. Introduction

Approaches to formal argumentation [3] include non-monotonic reasoning techniques
that focus on the interaction between arguments and counterarguments. One of the most
influential theories in this area is the pioneering work on abstract argumentation by Dung
[17], which introduced abstract argumentation frameworks to model the interplay be-
tween arguments, and various semantics to decide the acceptability of these arguments.
Argumentation scenarios are represented as directed graphs where vertices represent ar-
guments, and “attacks” between arguments are modeled as directed edges. In order to
reason with these graphs, one is usually interested in identifying sets of arguments (ex-
tensions) that are mutually acceptable, given a specific semantics. Typical problems in
abstract argumentation include deciding whether an argument is included in one (or all)
extensions under a given semantics, and enumerating one (or all) extensions under a
given semantics. Several of these reasoning problems are NP-hard [12].

In recent years, there has been an increased effort to develop algorithms and sys-
tems to solve these high-complexity problems [40,21]. Various works have shown that
combining different algorithms, e.g., in portfolios, can be beneficial [11,42]. Vallati et
al. [43] investigate predictive models using well-known machine learning approaches
to perform algorithm selection. More precisely, they evaluate numerous sets of (mostly
graph-based) features in terms of their expressiveness for this classification problem.
Given the increasing research interest in deep learning approaches in abstract argumen-



tation [32,13,33,14], the question arises as to how these methods can be utilized for algo-
rithm selection. In this work, we investigate the applicability of Graph Neural Networks
(GNNs) to perform instance-based algorithm selection. To be precise, we follow up on
the work by Vallati et al. by examining four “classical” machine learning techniques (k-
nearest neighbors, naive Bayes, random forest, and support vector machine), as well as
three GNN approaches (Graph Convolutional Network [31], Graph Isomorphism Net-
work [45], and GraphSage [25]) for the task of predicting the fastest among a selection
of three sound and complete solvers (ArgSemSAT [10], Fudge [39], and µ-toksia [34]).
In this work we focus on the selection of classifiers, while Vallati et al. focus on the
selection of features to use with such classifiers.

The remainder of this paper is structured as follows. In Section 2, we discuss the
relevant preliminaries with regard to abstract argumentation, as well as both classical
machine learning and graph neural network techniques. Section 3 comprises an overview
of our approach and methodology. In Section 4, we present an experimental analysis, and
we conclude in Section 5.

2. Preliminaries

In the following, we provide an overview of the fundamentals of abstract argumentation
on the one hand, and of classical machine learning as well as graph neural network
methods on the other hand.

2.1. Abstract Argumentation

An abstract argumentation framework is a tuple AF = (A,R) where A is a set of argu-
ments and R is a relation R⊆ A×A. For two arguments a,b ∈ A the relation aRb means
that argument a attacks argument b. For a∈A define a− = {b | bRa} and a+ = {b | aRb}.
We say that a set S ⊆ A defends an argument b ∈ A if for all a with aRb then there is
c ∈ S with cRa.

Semantics are given to abstract argumentation frameworks by means of extensions
[17]. An extension E is a set of arguments E ⊆ A that is intended to represent a coherent
point of view on the argumentation modelled by AF. Arguably, the most important prop-
erty of a semantics is its admissibility. An extension E is called admissible if and only
if

1. E is conflict-free, i. e., there are no arguments a,b ∈ E with aRb and
2. E defends every a ∈ E,

and it is called complete (CO) if, additionally, it satisfies

3. if E defends a then a ∈ E.

Different types of classical semantics can be phrased by imposing further constraints. In
particular, a complete extension E

• is grounded (GR) if and only if E is minimal,
• is preferred (PR) if and only if E is maximal, and
• is stable (ST) if and only if A= E ∪{b | ∃a ∈ E : aRb}.



a1 a2 a3 a4

Figure 1. Abstract argumentation framework AF1 from Example 1.

All statements on minimality/maximality are meant to be with respect to set inclusion.
Note that the grounded extension is uniquely determined and that stable extensions may
not exist [17].

Example 1. Consider the abstract argumentation framework AF1 depicted as a directed
graph in Figure 1. In AF1 there are three complete extensions E1,E2,E3 defined via

E1 = {a1}

E2 = {a1,a3}

E3 = {a1,a4}

E1 is also grounded and E2 and E3 are both stable and preferred.

In this work we only consider the task of skeptical acceptance under preferred se-
mantics, which we denote as DSPR.

2.2. Classical Machine Learning Methods

The task considered in this paper is the selection of the fastest solver for a given problem
instance. Thus, we are dealing with a classification problem: our goal is to classify which
one of the algorithms at hand is most suitable to solve DSPR wrt. a given AF and a
corresponding query argument a ∈ AF.

There exists a plethora of machine learning (ML) approaches which solve different
types of classification problems. The overall goal of an ML method is to “learn” from
given data (training data) in order to apply this “knowledge” on unknown data (test
data). For this work, we selected a total of four supervised machine learning techniques,
namely k-nearest neighbor, naive Bayes, random forest, and support vector machine,
which will be explained in more detail in the following. The term supervised refers to
the fact that all labels of the training data are known at all times during training, meaning
that in our application scenario, for each instance in the training dataset (i.e., for each AF
and corresponding query argument), the fastest solver is known.

k-Nearest Neighbor The k-Nearest Neighbor (KNN) approach [20,15] is based on the
idea of classifying a datapoint according to its nearest k neighbors. More specifically,
given a datapoint Y we aim to classify, we calculate the distance of all datapoints in the
training data to Y . Then we select the k datapoints with the shortest distance to Y (i.e.,
the k nearest neighbors). Finally, we assign Y the class which is most frequently found
among the nearest neighbors, using a voting rule.



Naive Bayes According to Bayes’s well-known Theorem (based on [5]), the probability
of a datapoint Y = (y1, . . . ,yn) belonging to class cd ∈ {c1, . . . ,cm} is

p(cd | Y ) =
p(Y | cd)p(cd)

p(Y )
,

where p is a probability function. The naive Bayes (NB) classifier is built on the “naive”
assumption that the value of a certain feature is independent of any other feature (i.e.,
given cd , y1 is independent of y2, and so forth), given the value of the class variable.
Because of this independence assumption, we can use p(Y | cd) = p(y1 | cd) · . . . · p(yn |
cd), and get

p(cd | Y ) =
p(y1 | cd) · . . . · p(yn | cd) · p(cd)

p(y1) · . . . · p(yn)
.

Since the denominator is constant (it is the same for each class) we can ignore it. Finally,
we can classify Y by determining the class with the highest probability (cmax):

cmax = argmax
j∈{1,...,m}

p(c j)
n

∏
i=1

p(yi | c j)

Random Forest A Random Forest (RF) is an ensemble of decision trees which vote for
the most popular class [7]. A decision tree is, as the name suggests, a tree structure in
which the inner nodes are essentially test nodes, and the leaf nodes correspond to class
labels. A test node checks certain feature values of a given sample and computes some
outcome which is associated with one of the node’s subtrees. To classify a datapoint, we
start at the root of the decision tree and propagate from test node to test node, until we
reach a leaf node—which contains a class label, i.e., the classification result [36]. To con-
struct an RF, for each individual decision tree, we randomly select a number of samples
from the training set, and we randomly select a number of features to be considered [7].

Support Vector Machine The underlying principle of a Support Vector Machine (SVM)
is that we view training samples as vectors in a vector space, which can be separated
by hyperplanes, according to their class assignment. If the classes of the data at hand
are not linearly separable (which is usually the case), we can apply a kernel function,
which essentially transfers the training data to a higher dimension. If the dimension is
high enough, the data become linearly separable [8].

2.3. Graph Neural Networks

We select a total of three different Graph Neural Network (GNN) architectures, namely
Graph Isomorphism Network, Graph Convolutional Network, and GraphSage, which
will be explained in more detail in the following. The core idea of message passing GNNs
is to learn node or graph representations by iteratively aggregating local neighborhood
information of a node (messages or embeddings) using non-linear transformations. Vary-
ing definitions of how the embeddings of the neighborhood nodes are aggregated (ag-
gregate function) and how they are combined with the node embeddings from previous
iterations (combine function) lead to different GNN architectures. After the final itera-



tion, the embeddings encapsulate structural information of a node, respectively graph.
These generated embeddings can then be used for downstream prediction tasks. For node
classification tasks, the embedding of the final iteration is used for prediction. For graph
classification tasks, a so-called readout function is used to aggregate node embeddings
to obtain a representation of the entire graph.

Graph Isomorphism Network The Graph Isomorphism Network (GIN) [45] models the
Weisfeiler-Lehman graph isomorphism test [37] in a neural network. It implements the
aggregate and combine functions as the sum of the node embeddings and a multi-layer
perceptron (MLP) [27] with non-linearity. For graph-level readout, the node embeddings
of every layer are summed up and concatenated to get the final graph representation.

Graph Convolutional Network Graph Convolutional Networks (GCNs) [31], are ini-
tially motivated by sprectral graph convolutions [26,16]. Following the definition in [45],
they integrate the aggregation and combine step as an element-wise mean pooling, fol-
lowed by a ReLU [1] non-linearity.

GraphSage The GraphSage [25] model was proposed with three different aggregation
functions: (1) a mean aggregator, (2) a Long Short-Term Memory (LSTM) [28] aggre-
gator and (3) a max-pooling aggregator. In this work, we consider the mean aggregator
variant of GraphSage. The combination function is a concatenation followed by a linear
mapping.

3. Machine Learning-based Approaches for Algorithm Selection

Various works in automated reasoning have investigated the concept of generating mod-
els that allow for identifying the most appropriate—or best—algorithm for an instance
of a particular (computationally complex) problem. Empirical predictive models (EPMs)
have been employed in many areas of Artificial Intelligence, such as the Satisfiability
Problem (SAT) or Answer Set Programming (ASP), with great success [46,23]. A basic
distinction is made between two approaches: classification approaches and regression
approaches. Classification approaches assign any given instance a single category corre-
sponding to the algorithm, which is predicted to be the fastest. Regression approaches,
on the other hand, try to predict the actual runtime of each algorithm under consideration.
The algorithm with the lowest predicted runtime is then selected.

In this work, we consider algorithm selection for the skeptical acceptance wrt. pre-
ferred semantics as a classification problem. Let S = {s1, ...,sn} be a set of solvers and
let A be the set of all argumentation frameworks. Conceptually, a classifier C is a map-
ping C : A → S, where any AF ∈ A is assigned a solver s ∈ S that solves this instance
the fastest. These mappings can be learned using ML methods. In order to do so, clas-
sical supervised ML approaches need some numerical representation of the instance in
question, mainly referred to as features. In [43], Vallati et al. showed that classical ML
methods can be exploited for algorithm selection in the context of abstract argumentation
and identified informative features for classifying instances. However, only little work
as been done in the area of computational models of argumentation for investigating the
exploitability of modern deep learning techniques for algorithm selection. In this paper,
we focus on GNNs, because, on the one hand, they have already been used successfully
in argumentation [13,33], and on the other hand, no pre-calculation of features—which



is often time-consuming—is necessary for classification. These properties make GNNs
a promising approach in the given context.

4. Experimental Analysis

In this section, we present the results of an experimental analysis, in which we (1) in-
vestigate the applicability of different GNN architectures to select the most appropriate
solver given an AF and (2) compare them to “classical” machine learning approaches.
The analysis aims to give an overview of whether and to what extent GNNs are suit-
able for algorithm selection in abstract argumentation, and how they differ from clas-
sical methods in terms of performance. Below, we describe the experimental setup and
subsequently discuss our findings.

4.1. Experimental Setup

In this work, we consider three SAT-based approaches for solving the problem of skepti-
cal acceptance under preferred semantics: ArgSemSAT , Fudge, and µ-toksia.

ArgSemSAT The ArgSemSAT solver [10] is the winner of the preferred semantics track
at the 2017 International Competition on Computational Models of Argumentation (IC-
CMA’17). It iteratively calls a SAT solver to compute complete labelings and encoding
constraints to drive the search towards the solution of decision and enumeration prob-
lems. It is written in C++ and can be used with the Minisat [18] or the Glucose [4] SAT
solver. For our experiments we use ArgSemSAT with Glucose.

Fudge The Fudge solver [39] tightly integrates satisfiability solving technology to
solve a series of abstract argumentation problems. While most of the encodings used
by Fudge derive from standard translation approaches, Fudge makes use of completely
novel encodings to solve the skeptical reasoning problem wrt. preferred semantics. It is
written in C++ and uses the satisfiability solver CaDiCaL 1.3.131.

µ-toksia The µ-toksia solver [34] ranked first in all reasoning tasks of the ICCMA’19.
It is a “purely” SAT-based system that is heavily based on the incremental use of SAT
solving. This means, for iterative calls, the state of the SAT solver is maintained. By that,
only a single SAT solver is instantiated during a single program run. It is implemented
in C++ and includes interfaces to the Glucose [4] and CryptoMiniSAT [38] SAT solvers.
We used µ-toksia with CryptoMiniSAT as an underlying SAT solver for our experiments.

It should be noted that we considered various other solvers such as Pyglaf [2], Heureka
[24], or ConArg2 [6] in our initial experiments. However, finding a fruitful mix of solvers
to select from is a challenge in itself. We analyzed different combinations of solvers with
regard to two criteria: (1) the number of instances for which each solver achieved the
best performance and (2) the differences in runtimes (compared to the other solvers) wrt.
the best-solved instances of each solver. The second criterion, in particular, is essential,
since significant differences in the runtimes of solvers are fundamental in order for a
given instance to benefit from the selection of a certain solver. This is also reflected in

1http://fmv.jku.at/cadical/

http://fmv.jku.at/cadical/


Table 1. Characteristics overview of considered argumentation frameworks.

# Arguments # Attacks Density Degree

Mean 409.95 14,441.19 0.088 70.45
Minimum 100.00 224.00 0.003 0.00
Maximum 1,499.00 204,110.00 0.702 726.00

the fact that all machine learning-based approaches for algorithm selection introduce
some overhead, for example, for calculating instance features. If there is no significant
difference in execution times, the potential time savings of selecting the fastest solver
get nullified due to the mentioned overhead. Our analysis showed that the combination
of the selected solvers yielded the best-balanced ratio of the best-solved instances per
solver and exhibited significant differences in their runtimes. It should also be noted that
the goal of the evaluation is to compare the machine learning algorithms for algorithm
selection, and not the selected algorithms themselves.

To collect sufficient training and test data, we randomly generated a total of 6200
argumentation frameworks using three different generators of the ICCMA’17: AFBench-
Gen2, SccGenerator, and StableGenerator.

The AFBenchGen2 [9] generator was used to create instances of (1) Erdös-Renyi
[19] and (2) Watts-Strogatz [44] graphs. The SccGenerator aims to generate AFs with
many strongly connected components, whereas the StableGenerator aims to generate
AFs with many stable extensions (and therefore many preferred extensions). A detailed
description of these generators can be found in [41]. All generators have been parame-
terized as described in [22]. We randomly selected a query argument for the DSPR task
for each generated instance. A cutoff value of 600 seconds (10 minutes) per instance was
imposed. For each solver, we recorded: (1) the number of solved instances, (2) the num-
ber of timed-out instances, (3) the number of crashed instances, and (4) the execution
time per instance. The runtime of unsolved instances—timed-out or crashed—was set
equal to the cutoff. A total of 785 instances were excluded because all solvers failed to
solve them within the given time frame. Due to memory limitations of the experimen-
tal environment, another 230 (very large) instances had to be excluded, as they could
not be processed. No further systematic exclusions were made. We randomly divided
the remaining 5185 instances into separate training and test data following an 80%/20%
train/test split2. Table 1 shows the characteristics of the considered AFs.

For each instance, the fastest solver determined its ground-truth label. We ran the
experiments on a virtual machine running Ubuntu 20.04 with a 2.5 GHz Intel(R) Xeon(R)
E5-2680 CPU and 60 GB of RAM.

We trained and evaluated four different supervised machine learning techniques: k-
Nearest Neighbor (KNN), Naive Bayes (NB), Random Forest (RF), and Support Vector
Machine (SVM) (see Section 2.2), using scikit-learn3 [35], a machine learning frame-
work for Python4. As input for the classifiers, we use the three best features that Vallati et
al. [43] identified for the classification task. Namely, these are (1) the number of vertices,

2Download: https://fernuni-hagen.sciebo.de/s/UkL9WRjegFlGyhk
3https://scikit-learn.org/stable/index.htm
4The KNN classifier was parameterized with n_neighbors = 17 and the RF classifier with

random_state = 11, min_samples_split = 30, and min_samples_leaf = 10. The remaining classifiers
(NB and SVM) were used with their default configurations.

https://fernuni-hagen.sciebo.de/s/UkL9WRjegFlGyhk
https://scikit-learn.org/stable/index.htm


(2) the density of the directed graph and (3) the minimum degree value of the directed
graph. We also included the in- and out-degree of the query argument with regard to the
corresponding argumentation framework as additional features.

Further, we trained and evaluated three widely adopted GNN models: Graph Isomor-
phism Networks (GIN) [45], Graph Convolutional Networks (GCN) [31], and Graph-
Sage [25] (see Section 2.3). Each model features one pre-message passing layer (256-
dim MLP), three message passing layers (determined by the respective GNN model)
and two post-message passing layers (256-dim MLP). Each model is trained for 1000
epochs using the Adam [30] optimizer with a learning rate of 0.01 and batch normal-
ization [29]. Results are reported for the final epoch. All models were trained without
additional pre-calculated node, graph, or edge features. For the training and evaluation
we use GraphGym [47], a platform for designing and evaluating GNNs.

To compare the performance of the approaches—both GNNs and classical ML
methods—we use accuracy, precision, and recall to measure how accurate the predic-
tions are. For all approaches the precision and recall are reported for each individual
solver, following the definitions

Precisions =
T Ps

T Ps +FPs

Recalls =
T Ps

T Ps +FNs
,

where s denotes the class of the corresponding solver. True Positive (T P) are the elements
that have been labeled as positive by the model and are actually positive, while False
Positive (FP) are the elements labeled as positive, but they are actually negative. False
Negative (FN) elements have been labeled as negative but are actually positive. The
accuracy is defined as follows:

Accuracy =
T P+T N

T P+T N +FP+FN

where T N denotes the True Negative elements, i.e., the elements that the model correctly
labeled as negative5. In addition, we measure the overhead (CPU-time) of calculating
the features (which is only necessary for the classical ML approaches), and the actual
classification time. For the GNN models, we also measure the prediction times when
utilizing a GPU instead of a CPU.
All models were trained and evaluated on a virtual machine running Ubuntu 20.04 with
a 3.7 GHz AMD Ryzen 5 5600X 6-Core Processor, 32 GB of RAM and a NVIDIA
GeForce RTX 3070 GPU with 8 GB of RAM. In order to accelerate the training process
of the GNNs, training was carried out on the GPU.

4.2. Results

To begin with, we examine how accurate the predictions of both the classical ML meth-
ods and the GNN approaches are. For this purpose, we first draw a comparison to the
work by Vallati et al. [43]. The authors report a precision of 0.68 wrt. ArgSemSAT (which

5Note that, unlike precision and recall, the accuracy is not calculated by class but across all classes.



Table 2. Overview of precision, recall, and accuracy wrt. the predictions made by the different ML and GNN
techniques. Note that we abbreviated ArgSemSAT by “ArgSS”.

Precision Recall
Accuracy

ArgSS Fudge µ-toksia ArgSS Fudge µ-toksia

KNN 0.79 0.63 0.46 0.59 0.88 0.17 0.64
NB 0.77 0.59 0.38 0.46 0.89 0.18 0.60
RF 0.84 0.63 0.49 0.61 0.90 0.15 0.65
SVM 0.86 0.60 0.46 0.47 0.91 0.12 0.62

GCN 0.82 0.61 0.58 0.55 0.92 0.13 0.64
GIN 0.93 0.60 0.50 0.45 0.96 0.08 0.63
GraphSage 0.95 0.66 0.90 0.46 0.99 0.33 0.71

is the only solver considered in both their work and ours) when using an RF classifier
with the three features that were determined to be the most expressive (see Section 3 for
more details). Our experiments resulted in a precision of 0.83 when training an RF with
the same three features, and a precision of 0.84 when using the in- and out-degree of
the query nodes as additional features (see Table 2). Although the precision value wrt.
ArgSemSAT is significantly higher in our experiments, we also observe a lower value wrt.
the overall accuracy: Vallati et al. report an accuracy of 0.70 when using the three most
expressive features, while our experiments only yield an accuracy of 0.64 (or 0.65 when
additionally using in- and out-degree as features). This is due to the fact that the other
two solvers we used in our experiments are predicted less precisely. As the upper part
of Table 2, which includes the results regarding the classical ML methods, indicates, the
precision values wrt. both Fudge and µ-toksia are lower than those wrt. ArgSemSAT , re-
gardless of the selected ML method. Nevertheless, the precision values regarding Fudge
are still higher than those regarding µ-toksia in all cases. Moreover, we can observe very
low recall values wrt. µ-toksia (between 0.12 and 0.18), but rather high recall values wrt.
Fudge (between 0.88 and 0.91). The reason for this is that a large number of µ-toksia
instances are classified as Fudge instances—e.g., our RF classifier predicts 215 out of
260 µ-toksia instances to be Fudge instances. Further, the results show that the overall
accuracy of the classical ML methods lies between 0.60 (NB) and 0.65 (RF).

With regard to the GNN methods, our experiments reveal similar results: again,
ArgSemSAT tends to have the hightest precision, µ-toksia has rather low and Fudge a
rather high recall, and a large number of µ-toksia instances are classified as Fudge (see
the lower part of Table 2). However, GraphSage exhibits a slightly different behavior:
here, the precision is higher wrt. µ-toksia (0.90) than wrt. Fudge (0.66). The overall ac-
curacy values of the GNN approaches lie between 0.63 (GIN) and 0.71 (GraphSage),
and are consequently a bit higher on average than those of the classical ML approaches.

The second aspect we aim to examine, besides classification accuracy, is the overall
solving time. For each approach, we sum up the solving time of each individual test in-
stance with regard to the respective predicted solver, to calculate the total solving time.
For comparison we consider the time required by each solver when solving all test in-
stances (see Table 3). Note that Fudge is clearly overall the fastest solver with 24,248
seconds, compared to 45,248 seconds (ArgSemSAT) and 77,734 seconds (µ-toksia). The
results concerning the classical ML techniques are presented in the upper part of Table 4.
We see that the overall solving time is quite similar with regard to KNN, RF, and SVM



Table 3. Overview of the total amount of time required to solve the entire test set wrt. each of the three solvers,
as well as the number of times each solver was the fastest, and the number of times each solver produced a
timeout. Note that each timeout added 600 seconds to the total solving time.

Total solving time (s) Fastest Timeouts

ArgSemSAT 45,248.24 224/1037 52/1037
Fudge 24,720.96 553/1037 20/1037
µ-toksia 77,733.74 260/1037 80/1037

Table 4. Overview of the total amount of time required to solve the entire test set if the solvers predicted by
each ML/GNN method were used, respectively. We additionally provide the number of times the fastest solver
was predicted (which corresponds to the respective accuracy value), and the number of timeouts that still occur.

Total solving time (s) Predicted fastest Timeouts

KNN 24,531.20 662/1037 20/1037
NB 27,794.33 624/1037 22/1037
RF 24,538.38 675/1037 20/1037
SVM 24,506.66 643/1037 20/1037

GCN 24,507.27 666/1037 20/1037
GIN 24,410.00 654/1037 20/1037
GraphSage 24,414.01 739/1037 20/1037

(between 24,507 and 24,538 seconds), only NB is considerably slower (27,794 seconds).
The former three classifiers also perform an algorithm selection which results in a total
solving time that is shorter than that of using Fudge (i.e., the fastest individual solver)
for all instances. Only the NB classifier yields an algorithm selection which results is a
longer solving time. However, NB also exhibited the lowest accuracy (0.60), which could
explain this outcome. On the other hand, we notice that the SVM classifier produces the
shortest total solving time, even though it did not feature the highest accuracy. Likewise,
this effect can be observed wrt. the GNN methods. The lower part of Table 4 shows
that GIN, which has the lowest accuracy of all GNN methods (0.63), produces a slightly
lower total solving time than GraphSage, which has a significantly higher accuracy of
0.71. Overall, the GNN methods perform superior to the classical ML methods. Only
the “fastest” classical ML method (SVM) accomplishes a slightly superior algorithm
selection than the “slowest” GNN method (GCN).

As of yet, we only considered the solving time required by the selected algorithms.
However, we additionally need to consider the time required for each prediction, and in
the classical ML case also the time required to compute the features of each test instance.
The latter amounts to an average of 0.0077 seconds per instance (i.e., 8.02 seconds for
the entire test set). The time needed to predict all test instances is < 0.5 seconds for KNN,
NB, and SVM, only the RF takes longer (5.2 seconds in total). The GNN approaches
require significantly more time for the prediction process—they take between 58.4 sec-
onds (GIN) and 68.2 seconds (GCN). However, these values were measured when the
predictions we conducted on the CPU. When using the GPU, we can drastically reduce
the prediction time to values between 0.9 seconds (GIN) and 1.3 seconds (GCN). More-
over, even if there was no GPU available, both GIN and GraphSage would still outper-
form all classical ML models. For instance, wrt. GIN, we have 24,410.0 seconds of to-



tal solving time plus 58.4 seconds of prediction time, i.e., a total of 24,468.4 seconds,
which is already less than the shortest total solving time wrt. the classical ML methods
(24,506.7 seconds), regardless of the additional time required for prediction and feature
generation.

5. Conclusion

In the scope of this work, we examined different ML approaches for the task of algorithm
selection in the field of abstract argumentation. We followed up on a study by Vallati et
al. [43], who investigated the use of different sets of features to be used in ML methods
for algorithm selection. Our work, on the other hand, does not focus on the selection
of features, but on the selection of the classifier. Moreover, in addition to a number of
“classical” ML methods (namely KNN, NB, RF, and SVM), we also considered three
different graph neural networks (namely GCN, GIN, and GraphSage). For the classical
ML methods, we used those three features which Vallati et al. determined to be the most
expressive. To be precise, these are the number of vertices, the density of the directed
graph, and the minimum degree value of the directed graph. In addition to these graph-
based features, we used the in-degree and out-degree of the query nodes.

One noteworthy result of our experiments is that µ-toksia instances were often clas-
sified as Fudge instances, and that this effect did not only occur with the classical ML
methods, which are feature-based, but also with the GNN methods, which are not given
any pre-calculated features explicitly6. Nevertheless, our results demonstrated that neu-
ral networks are generally a useful approach for the task of algorithm selection. In par-
ticular, GIN and GraphSage performed superior to all classical ML approaches in terms
of the total solving time of the predicted algorithms, even including a rather lengthy pre-
diction time when no GPU is available. However, there is still room for improvement—if
we always used the fastest solver, the total solving time would be 14,430 seconds, which
is 40.9% less than our best result (see Table 4).

Furthermore, we examined the prediction accuracy of the different approaches and
discovered that a higher accuracy does not automatically lead to a shorter overall solving
time. This suggests that in some cases the classifier did not only fail to predict the fastest
solver, but also failed to predict the second fastest (i.e., it predicted the slowest one).
Hence, one idea to consider in future work is to introduce some sort of weighting which
penalizes the prediction of a slower solver more than the prediction of a faster one during
training. Regarding the classical ML methods, one could use a different set of features
which is more suitable for the newly considered solvers (Fudge and µ-toksia). However,
this might lead to an increase in feature generation time which must always be weighed
against the potential reduction in solving time. Further issues which could be addressed
in future work are the consideration of other argumentation semantics and tasks, as well
as other GNN architectures.

6We also conducted an experiment in which we additionally fed the neural networks the same features that
were used with the other ML methods. However, this did not improve our results.
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