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Abstract. We investigate the computational problem of determining the set of ac-
ceptable arguments in abstract argumentation wrt. credulous and skeptical reason-
ing under grounded, complete, stable, and preferred semantics. In particular, we
investigate the computational complexity of that problem and its verification vari-
ant, and develop four SAT-based algorithms for the case of credulous reasoning
under complete semantics, two baseline approaches based on iterative acceptability
queries and extension enumeration and two optimised algorithms.
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1. Introduction

In abstract argumentation [5], an argument a is skeptically (credulously) accepted wrt.
some semantics σ , if it belongs to all (at least one) σ -extensions, respectively. Work on
algorithms for solving reasoning problems in abstract argumentation—see e. g. the sur-
vey [2]—so far focused on deciding acceptability for a single query argument, or de-
termining a single or all σ -extensions. However, the computational problem of directly
computing the set of all acceptable arguments (wrt. either credulous or skeptical reason-
ing) has not been considered yet explicitly in the literature. Of course, this problem can
be solved by reducing it to the aforementioned problems. For example, one can deter-
mine the set of all credulously accepted arguments by first computing all σ -extensions
and then taking their union. In this paper, we ask the question whether this obvious ap-
proach is appropriate for the problem and whether other approaches provide superior
performance.

Having efficient algorithms for computing the set of credulously or skeptically ac-
cepted arguments is of practical importance. Knowing whether specific arguments are
not in any possible extensions—the dual problem of credulous acceptance—or knowing
whether arguments are skeptically justified is of great service as also discussed in [11]. It
allows human analysts to reduce their cognitive burden by consciously deciding whether
or not to look more into a specific argument they made in their sense-making process.

1Corresponding Author: Matthias Thimm, University of Koblenz-Landau, Germany; E-mail: thimm@uni-
koblenz.de.



In this paper, we first have a look at the theoretical complexity of the problem of
verifying whether a given set of arguments is exactly the set of acceptable arguments wrt.
both credulous and skeptical reasoning and the grounded, complete, stable, and preferred
semantics. Our results mirror similar previous results [6] in that, for example, the veri-
fication problem for grounded semantics under both credulous and skeptical reasoning
is in P, while the verification problem for skeptical reasoning for preferred semantics is
DP2-complete (see Section 3 for definitions of the complexity classes). While the proofs
of membership follow easily from existing results [6], the hardness proofs require some
novel reduction techniques and insights. In addition to this theoretical analysis, we also
present four SAT-based algorithms for addressing the question of determining the set of
acceptable arguments wrt. credulous reasoning under complete semantics: two baseline
approaches based on iterative acceptability queries and extension enumeration and two
optimised algorithms. We provide an extensive experimental evaluation of the introduced
algorithms considering all benchmarks from the past ICCMA competitions.

2. Preliminaries

An abstract argumentation framework AF is a tuple AF = (A,R) where A is a set of
arguments and R is a relation R ⊆ A×A. For two arguments a,b ∈ A the relation aRb
means that argument a attacks argument b. For a ∈ A define a− = {b | bRa} and a+ =
{b | aRb}. We say that a set S ⊆ A defends an argument b ∈ A if for all a with aRb then
there is c ∈ S with cRa.

Semantics are given to abstract argumentation frameworks by means of extensions
[5]. An extension E is a set of arguments E ⊆ A that is intended to represent a coherent
point of view on the argumentation modelled by AF. Arguably, the most important prop-
erty of a semantics is its admissibility. An extension E is called admissible if and only
if (1) E is conflict-free, i. e., there are no arguments a,b ∈ E with aRb and (2) E defends
every a ∈ E, and it is called complete (CO) if, additionally, it satisfies (3) if E defends a
then a ∈ E.

Different types of classical semantics can be phrased by imposing further con-
straints. In particular, a complete extension E: is grounded (GR) if and only if E is min-
imal; is preferred (PR) if and only if E is maximal; and is stable (ST) if and only if
A= E ∪{b | ∃a ∈ E : aRb}.

All statements on minimality/maximality are meant to be with respect to set inclu-
sion. Note that the grounded extension is uniquely determined and that stable extensions
may not exist [5].

Let σ ∈ {CO,GR,ST,PR} be some semantics and AF = (A,R) and abstract ar-
gumentation framework. Then, an argument a ∈ A is skeptically accepted in AF, de-
noted by AF |=s

σ a, if a is contained in every σ -extension. An argument a ∈ A is cred-
ulously accepted in AF, denoted by AF |=c

σ a, if a is contained in some σ -extension.
Define Accs

σ (AF) = {a ∈ A | AF |=s
σ a} and Accc

σ (AF) = {a ∈ A | AF |=c
σ a} to be the

sets of skeptically and credulously accepted arguments in AF, respectively. Observe that
Accs

σ (AF)⊆Accc
σ (AF) for all semantics and abstract argumentation frameworks, except

for σ = ST and an argumentation framework AF′ that possesses no stable extension. In
the latter case Accs

σ (AF
′) = A and Accc

σ (AF
′) = /0 by definition.

In the remainder of the paper, we consider the computational problem of determin-
ing the sets Accs

σ (AF) and Accc
σ (AF), respectively. Note that, these exact problems have



not been investigated before, to the best of our knowledge, in terms of computational
complexity and algorithms. Previous studies and algorithms either focus on a single ac-
ceptability problem, such as deciding whether AF |=x

σ a is true for x ∈ {s,c} and some
argument a ∈ A, or computing one or all extensions (as done in the ICCMA series of
argumentation competitions2).

3. Complexity of Computing the Set of Acceptable Arguments

We assume familiarity with basic concepts of computational complexity and basic com-
plexity classes such as P, NP and coNP, see [9] for an introduction. Recall that every de-
cision problem can be represented as a language L that contains exactly those instances
to the problem with answer “yes.” A complexity class can then be represented by the
languages of those problems it contains. We will make use of the complexity class DP,
which is defined as DP = {L1 ∩L2 | L1 ∈ NP,L2 ∈ coNP}. So DP contains those lan-
guages that are intersections of a language in NP and a language in coNP. We also need
the following class DP2= {L1∩L2 | L1 ∈NPNP,L2 ∈ coNPNP} where NPNP is the class
of problems that can be solved by a non-deterministic Turing machine in polynomial
time that has access to an NP oracle and coNPNP is the class of problems where the
complement can be solved by a non-deterministic Turing machine in polynomial time
that has access to an NP oracle. NPNP is also written as ΣP

2 and coNPNP as ΠP
2 . So DP2

contains those languages that are intersections of a language in ΣP
2 and a language in ΠP

2 .
In this section we are interested in the computational complexity of the following

decision problem:

ACCx
σ Input: AF= (A,R) and E ⊆ A

Output: TRUE iff E = Accx
σ (AF).

for a semantics σ and x ∈ {s,c}.
The proofs of the following results are omitted due to space restrictions but can be

found in an online appendix3. We start with the tractable problems.

Proposition 1. ACCs
GR, ACCc

GR, and ACCs
CO are in P.

Many other problems are DP-complete.

Proposition 2. ACCc
CO, ACCc

PR, and ACCc
ST are DP-complete.

Proposition 3. ACCs
ST is DP-complete.

Skeptical inference with preferred semantics is (unsurprisingly) on the second level
of the polynomial hierarchy.

Proposition 4. ACCs
PR is DP2-complete.

2http://argumentationcompetition.org
3http://mthimm.de/misc/mtfcmv_accAF_proofs.pdf



The results from above also allow us to easily provide an upper bound for the com-
putational complexity of the functional problem of determining the set of acceptable ar-
guments. For the following result, recall that FNPDP[1] is the complexity class of func-
tional problems that can be solved by a non-deterministic Turing machine running in
polynomial time that can call a DP-oracle for a constant number of times. The class
FNPDP2[1] is defined analogously.

Corollary 5. Let AF be an abstract argumentation framework.

1. The problems of computing ACCs
GR, ACCc

GR, ACCs
CO are in FP, respectively.

2. The problems of computing ACCc
CO, ACCc

PR, ACCc
ST, ACCs

ST are in FNPDP[1],
respectively.

3. The problem of computing ACCs
PR is in FNPDP2[1].

4. SAT-based Algorithms for Credulous Reasoning

We will now investigate some algorithms that compute the set ACCx
σ . Here, we will focus

on the case of credulous reasoning under complete semantics (which is equivalent to
credulous reasoning under preferred semantics).

We will develop reduction-based algorithms [4,2] and leverage SAT-solving tech-
nologies. Our encodings of acceptability problems into SAT are based on the encod-
ings proposed initially in [1] and used in modern SAT-based argumentation solvers,
see e. g. [4,3]. Let AF = (A,R) be and abstract argumentation framework. For each
argument a ∈ A we introduce three propositional variables ina,outa,undeca which
model the cases that a is in the extension, a is attacked by the extension, a is not in
the extension nor attacked by it, respectively. Then define Φa = (outa⇔

∨
b∈a− inb)∧

(ina⇔
∧

b∈a− outb) ∧ (ina∨outa∨undeca) and ΨAF =
∧

a∈A Φa. For any proposi-
tional formula Φ, let Mod(Φ) denote its set of models. For any model ω let E(ω) = {a |
ω(ina) = TRUE}. Variants of the following observations have been proven in e. g. [1],
so we state it without proof.

Proposition 6. Let AF= (A,R) be an abstract argumentation framework.

1. If ω ∈Mod(ΨAF) then E(ω) is a complete extension of AF.
2. If E is a complete extension of AF then there is ω ∈Mod(ΨAF) with E(ω) = E.
3. a ∈ Accc

CO(AF) if and only if ΨAF∧ina is satisfiable.

The above observations enable us to use SAT solving technology by encoding ab-
stract argumentation problems into one or a series of SAT problems.4

4.1. Iterative Acceptability Queries via SAT

A straightforward algorithm for determining Accc
CO(AF) is to exploit observation 3.) of

Proposition 6 and check for each a ∈ A whether ΨAF∧ina is satisfiable using some SAT
solver. We denote this algorithm IAQ, it is depicted as Algorithm 1. We write SAT(φ) for
a call to an external SAT solver that evaluates to TRUE if φ is satisfiable.

4Note that formulas such as ΨAF can be easily turned in conjunctive normal form, the standard input format
for SAT solvers, with only polynomial overhead, so we do not explicitly discuss matters related to this aspect
in the following.



Algorithm 1 Algorithm IAQ

Input: AF= (A,R)
Output: Accc

CO(AF)
1: S = /0
2: for a ∈ A do
3: if SAT(ΨAF∧ina) then
4: S← S∪{a}
5: return S

4.2. Exhaustive extension enumeration via SAT

Another straightforward approach is to leverage the fact that SAT solvers usually do not
only report on the satisfiability of a given formula but also provide a model as witness.
For a model ω let C(ω) =

∨
ω(α)=TRUE¬α ∨

∨
ω(α)=FALSE α . One can then enumerate all

models of formula φ by first retrieving any one model ω , then retrieving a model ω ′ of
φ ∧C(ω), then a model ω ′′ if φ ∧C(ω)∧C(ω ′) and so on. It is clear that all models
retrieved this way are models of φ and that by adding C(ω) we avoid retrieving the same
model on future calls again. At some point, the formula becomes unsatisfiable and we
retrieved all models. We can use this strategy to enumerate all complete extensions of an
input abstract argumentation framework (using observations 2 and 3 of Proposition 6).
The union of these is then the set Accc

CO(AF). We denote this algorithm EEE, it is de-
picted as Algorithm 2. We write WITNESS(φ) for a call to an external SAT solver that
evaluates to a model ω of φ if φ is satisfiable, or FALSE otherwise.

Algorithm 2 Algorithm EEE

Input: AF= (A,R)
Output: Accc

CO(AF)
1: S = /0
2: Ψ←ΨAF

3: while FALSE 6= ω = WITNESS(Ψ) do
4: S← S∪E(ω)
5: Ψ←Ψ∧C(ω)

6: return S

4.3. Selective extension enumeration via SAT

We now turn to our proposal of the first non-trivial algorithm for computing Accc
CO(AF).

A major drawback of the algorithm EEE is that an abstract argumentation framework
may feature an exponential number of complete extensions and many may overlap to a
large degree. It may therefore be the case that in many iterations of the main loop in line
3 of Algorithm 2 no new arguments are added to S. In order to address this issue we
propose a more selective extension enumeration SEE, implemented in Algorithm 3.

Differently from Algorithm 2, the algorithm SEE constrains the search for further
models (line 3) by requiring that at least one argument that has not already been classified
as accepted, needs to be included. Indeed, at the first iteration (line 3) the SAT solver will



Algorithm 3 Algorithm SEE

Input: AF= (A,R)
Output: Accc

CO(AF)
1: S = /0
2: D← A
3: while FALSE 6= ω = WITNESS(ΨAF∧

∨
a∈D ina) do

4: S← S∪E(ω)
5: D← D\E(ω)

6: return S

identify a complete extension with at least one in argument. The set of in arguments
in the found extension will then be removed from the set D of unvisited arguments (line
5). From the second iteration, the SAT solver will then be forced to identify complete
extensions that intersect with the unvisited arguments. It is straightforward to see that
this algorithm is sound and complete.

4.4. Selective extension enumeration via MAXSAT

In (unweighted) MAXSAT [8] formulas can be either hard or soft. The solutions of a
MAXSAT problem are determined among all assignments that satisfy all the hard for-
mulas and are those that maximize the number of satisfied soft formulas. We write
MAXSAT(S,H) (with a set of formulas S and a formula H) for a call to an external
MAXSAT solver that evaluates to a model ω that satisfies H and a maximal number of
formulas in S. If H is not satisfiable, MAXSAT(S,H) evaluates to FALSE. Algorithm 4
shows our final algorithm SEEM.

Algorithm 4 Algorithm SEEM

Input: AF= (A,R)
Output: Accc

CO(AF)
1: S = /0
2: D← A
3: while FALSE 6= ω = MAXSAT({ina | a ∈ D},ΨAF) do
4: S← S∪E(ω)
5: D← D\E(ω)

6: return S

The algorithm SEEM forces the MAXSAT solver to maximise the set of unvisited
arguments at each iteration. Once again, it is straightforward to see how this algorithm is
sound and complete.

5. Experimental Evaluation

We implemented the presented algorithms in the TWEETYPROJECT5 and used the Open-
WBO MAXSAT solver6 for all calls of the form SAT(·), WITNESS(·), and MAXSAT(·, ·).

5http://tweetyproject.org/r/?r=acc_reasoner
6http://sat.inesc-id.pt/open-wbo/



ICCMA’15
No. Algorithm N #TO RT PAR10

1 SEE 192 58 19947.35 3728.89
2 EEE 192 72 27061.65 4640.95
3 SEEM 192 79 21247.51 5048.16
4 IAQ 192 149 20285.96 9418.16

ICCMA’17
No. Algorithm N #TO RT PAR10

1 SEE 1050 558 60866.95 6435.11
2 SEEM 1050 579 55810.53 6670.29
3 IAQ 1050 742 54504.04 8531.91
4 EEE 1050 791 50607.98 9088.2

ICCMA’19
No. Algorithm N #TO RT PAR10

1 SEE 326 81 9775.1 3011.58
2 SEEM 326 82 14574.94 3063.11
3 EEE 326 109 11717.29 4048.21
4 IAQ 326 130 20257.52 4847.42

Table 1. Results of the ICCMA’15, ICCMA’17, and ICCMA’19 benchmark set; N is the total number of
instances of the benchmark set; #TO gives the number of time-outs/errors of each solver on this benchmark set;
RT gives the runtime in seconds on all correctly solved benchmarks; PAR10 gives the average runtime where
time-outs count ten times the cutoff-time, i. e., 12,000 seconds.

We ran the experiments on a virtual machine running Ubuntu 18.04 with a 2.9 GHz
CPU core and 8GB of RAM. We considered the following sets of benchmarks: IC-
CMA’15 consisting of 192 abstract argumentation frameworks [10]; ICCMA’17 consist-
ing of 1050 abstract argumentation frameworks [7]; ICCMA’19 consisting of 326 ab-
stract argumentation frameworks.7

Each algorithm was given 20 minutes to compute the set of acceptable arguments
wrt. credulous reasoning with complete semantics. Algorithms are ranked by the number
of unsolved instances (in increasing order). In case of ties, solvers are then ranked by
runtime (in increasing order). We also considered the PAR10 (Penalised Average Run-
time) score for comparing the performance of algorithms. PAR10 is a metric usually ex-
ploited in algorithm configuration techniques, where average runtime is calculated by
considering runs that did not solve the problem as ten times the cutoff time. Intuitively,

Table 1 shows the performance of the considered algorithms on benchmarks from
ICCMA’15, ICCMA’17, and ICCMA’19. The SEE algorithm is consistently delivering
the best performance. Notably, on benchmarks from ICCMA’15 and ICCMA’19, the
cumulative runtime of SEE is much lower than those of the other algorithms, despite the
largest number of problems solved: SEE solved a larger number of problems in a much
shorter amount of CPU-time. On the other end of the spectrum, the IAQ algorithm is
generally delivering the worst performance. This comes as no surprise, considering that
the IAQ algorithm is the less optimized among the implemented approaches.

The performance of EEE and SEEM algorithms, instead, are more remarkable. On
the ICCMA’15 benchmarks the EEE algorithm is outperforming SEEM while on the IC-
CMA’17 benchmarks it is delivering the worst performance among the considered ap-

7The interested reader is referred to https://www.iccma2019.dmi.unipg.it for details.



proaches. In particular, the EEE algorithm shows a very limited coverage on instances
generated on the basis of the Barabási–Albert model. Since frameworks derived accord-
ing to the Barabási–Albert model usually have an extremely large number of complete
extensions, the number of SAT calls made by the EEE algorithm is even larger than those
made by the IAQ where one call per argument is made.

Finally, we observe that the selective extension enumeration implemented by the
SEEM does not improve performance; instead it has a detrimental impact on perfor-
mance, particularly when compared with the SEE approach. This may be due to the fact
that the use of MAXSAT results in a more complex problem to be solved.

6. Summary and Conclusion

In this paper, we considered the computational task of computing the set of accept-
able arguments in abstract argumentation wrt. credulous and skeptical reasoning and
grounded, complete, stable, and preferred semantics. Our study on computational com-
plexity showed that the corresponding decision variants are complete for the DP family
of complexity classes, mirroring results for classical problems. We presented four dif-
ferent SAT-based algorithms for computing the set of credulously accepted arguments
wrt. complete semantics and our evaluation showed that the two optimised algorithms
significantly outperform the baseline algorithms. Future work will focus on extending
the experimental evaluation to credulous reasoning with the other investigated semantics,
and then investigating the case of skeptical reasoning.
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