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Abstract

We investigate the notion of independence in abstract argu-
mentation, i. e., the question of whether the evaluation of one
set of arguments is independent of the evaluation of another
set of arguments, given that we already know the status of
a third set of arguments. We provide a semantic definition
of this notion and develop a method to discover independen-
cies based on transforming an argumentation framework into
a DAG on which we then apply the well-known d-separation
criterion. We also introduce the SCC Markov property for ar-
gumentation semantics, which generalises the Markov prop-
erty from the classical acyclic case and guarantees the sound-
ness of our approach.

1 Introduction
Efficient reasoning requires the ability to distinguish parts of
a database that are relevant and irrelevant to a given query.
Indeed, notions of (ir)relevance in various settings have
been extensively studied in artificial intelligence (Koller and
Halpern 1996; Kourousias and Makinson 2007; Borg and
Straßer 2018). In probabilistic reasoning, for example, ir-
relevance is formalised as conditional independence. This
is a fundamental notion in Bayesian networks, where condi-
tional independencies are represented using DAGs (directed
acyclic graphs) that encode (causal) relationships between
variables. This idea is not limited to probabilistic reason-
ing, however. Darwiche (1997) showed that propositional
knowledge can similarly be structured with DAGs, and that
problems such as entailment, abduction, and diagnosis can
benefit computationally from using such a representation.

In this paper, we study conditional independence in ab-
stract argumentation. Our goal is to be able to answer the
question: when are two sets of arguments A and B inde-
pendent given a third set C? This notion of independence
is defined relative to a given argumentation framework F
and semantics σ, and is concerned with the status of the ar-
guments involved. That is, A and B are independent given
C if, once we know the status of the arguments in C, then
knowing the status of the arguments in A does not tell us
anything about the status of the arguments in B and vice
versa. Our goal is to be able to answer questions about inde-
pendence by examining the structure of the argumentation
framework. This means that we can answer such questions

without having to compute the labelings of the argumenta-
tion framework, which is often intractable.

While we study independence in abstract argumentation
from a purely theoretical perspective, there are a number
of practical applications. Generally speaking, knowledge
about independence can be used to decompose queries into
smaller sub-queries which may be executed separately. For
example, if A and B are independent given C then, once
the status of the elements of C is fixed, the status of the el-
ements of A and of B have no bearing on each other and
may therefore be computed separately. Our notion of inde-
pendence is also useful in structured argumentation, where a
claim is identified with the set of arguments whose conclu-
sion equals the claim. Because we consider independence
between sets of arguments, we can also reason about in-
dependence of between claims. Consider, for example, a
disjunctive query φ∨ ψ, which cannot in general be decom-
posed into a query for φ and for ψ, because it is possible that
φ∨ψ is skeptically accepted while neither φ nor ψ is skepti-
cally accepted. However, if the sets of arguments with claim
φ and ψ are independent, then decomposition is possible,
because independence implies that φ ∨ ψ is skeptically ac-
cepted if and only if either φ or ψ is skeptically accepted.
Other argumentation-based applications where knowledge
about independence may prove useful are persuasion, ne-
gotiation, decision making and explanation.

The method that we develop in this paper is based on
the d-separation criterion. This is a well-known graph-
theoretical criterion used to answer questions about indepen-
dence on the basis of a causal graph or Bayesian network.
Like the edges of a causal graph, attacks in an argumenta-
tion framework can be interpreted as a relationship of direct
causal influence. An important difference, however, is that
argumentation frameworks may contain cycles, while causal
graphs are DAGs (acyclic). Because d-separation works
only in combination with DAGs, we cannot apply it to an
argumentation framework in a direct manner. Our solution
is to first transform the argumentation framework to a DAG,
called a d-graph, which captures the same independence in-
formation as the argumentation framework, but without us-
ing cycles. We can thus use d-separation in the d-graph of
an argumentation framework to derive independence state-
ments about its labelings, which requires only polynomial
time. We prove that the independence statements derived



like this are true for any semantics that is SCC Markovian, a
new property we introduce for this very purpose. We show
how this property is related to other known properties of se-
mantics, and prove that it is satisfied by (among others) the
complete and preferred semantics but not by the stable and
semi-stable semantics.

In summary, the contributions of this paper are as follows:
1. We introduce a semantical definition of (conditional) in-

dependence for abstract argumentation (Section 4).
2. We introduce the property SCC Markovian for abstract

argumentation semantics and show that it is a sufficient
condition for deriving independencies (Section 5).

3. We provide a syntactic criterion for deriving independen-
cies using a transformation to an acyclic representation of
the dependencies in an abstract argumentation framework
and show its soundness (Section 6).

We provide necessary preliminaries about graphs and ab-
stract argumentation in Section 2, present the necessary
background on the concept of d-separation in Section 3, dis-
cuss related work an open issues in Section 7, and conclude
in Section 8.

2 Preliminaries
A directed graph is a pair G = (X,→) where X is the set
of vertices and→⊆ X ×X the set of edges. We say that G
is a DAG if G contains no directed cycles. In this paper we
use directed graphs to represent sets of variables and rela-
tionships between variables. A variable is an object with an
associated nonempty and finite set of possible values, called
its domain. We denote variables using boldface letters (x, y,
. . . ) and use Dom(x) to denote the domain of x. We use X
to denote sets of variables.

A valuation of a set X of variables is a function V that
maps every variable x ∈ X to a value V (x) ∈ Dom(x). We
denote by V(X) the set of all valuations of X. A belief state
over X is a subset of V(X) (we can think of a belief state
as a proposition). Given a directed graph G = (X,→), a
valuation of (resp. belief state over) G is simply a valuation
of (resp. belief state over) X. Given a set B ⊆ X and a
valuation V ∈ V(X) we denote by V ↓B the restriction of V
to B. Given a belief state T ⊆ V(X) we denote by T↓B the
set {V ↓B | V ∈ T}. Given a directed graph G = (X,→)
we denote by G↓B the graph (B,→ ∩B ×B).

An argumentation framework (abbreviated as AF in this
paper) is usually defined as a directed graph whose vertices
and edges represent arguments and attacks between argu-
ments (Dung 1995). The three-valued labelling-based se-
mantics for argumentation frameworks is based on labelling
functions that map every argument to one of three labels:
I for in (or accepted), O for out (or rejected) and U for
undecided (Caminada and Gabbay 2009). We formalise
this as follows. An argument is a variable x with a fixed
three-valued domain Dom(x) = {I, O, U}. An AF is then
simply a directed graph over a set of arguments, and a la-
belling of an AF is a valuation of the AF. To distinguish AFs
from arbitrary directed graphs over variables we denote an
AF as F = (A,⇒). To distinguish labelings from arbi-
trary valuations we use L to denote labelings. Given an AF

F = (A,⇒) and arguments x,y ∈ A we say that x attacks
y whenever x⇒ y.

A complete labelling of an AF represents a position on
argument acceptance where an argument is accepted when-
ever its attackers are rejected, and rejected whenever an at-
tacker is accepted. More precisely, a labelling L of an AF
F = (A,⇒) is complete if and only if for all x ∈ A, we
have (1) L(x) = I if and only if for all y ∈ A such that
y ⇒ x we have L(y) = O; and (2) L(x) = O if and only if
there is a y ∈ A such that y ⇒ x and L(y) = I. Various
additional criteria may be considered for a labelling to repre-
sent a reasonable position. A semantics σ maps every AF F
to a set of labellings of F (i.e., a belief state over F ) denoted
Lσ(F ), which consists of labellings that satisfy some set of
criteria. The c (complete), p (preferred), g (grounded), ss
(semi-stable) and st (stable) semantics are defined by

Definition 1.

Lc(F ) = {L ∈ V(F ) | L is a complete labelling of F}
Lp(F ) = {L ∈ Lc(F ) | @L′ ∈ Lc(F ), L−1(I) ⊂ L′−1(I)}
Lg(F ) = {L ∈ Lc(F ) | @L′ ∈ Lc(F ), L−1(I) ⊃ L′−1(I)}
Lss(F ) = {L ∈ Lc(F ) | @L′ ∈ Lc(F ), L−1(U) ⊃ L′−1(U)}
Lst(F ) = {L ∈ Lc(F ) | L−1(U) = ∅}

3 D-separation
A causal graph is a DAG G = (X,→) with a specific inter-
pretation: an edge from a variable x to a variable y means
that x is a direct cause of y. D-separation is a criterion used
to identify conditional independencies implied by a causal
graph. It allows us to determine whether two sets A, B of
variables are independent given a third observed set C, by
examining the structure of the causal graph (Pearl 2000).

Definition 2. Let G = (X,→) be a DAG. A trail in G is a
loop-free, undirected (i.e., edge directions are ignored) path
between two variables. If A,B,C are three disjoint sets of
variables inG thenA andB are said to be d-separated byC
if every trail between every variable inA and inB is blocked
by C. A trail is blocked by C if either:

• It contains a triple x → z → y or x ← z → y such that
z ∈ C.

• It contains a triple x → z ← y and neither z nor a
descendant of z is in C (a descendant of z is any variable
z′ such that a directed path from z to z′ exists in G).

If A and B are d-separated by C we also write DG(A,B |
C), and if not we write ¬DG(A,B | C). If we speak of d-
separation of individual variables we mean d-separation of
the singleton sets containing these variables.

Example 1. Consider the causal graph shown in figure 1.
The “chain” structure a → c → d indicates that a is indi-
rectly a cause of d. While a and d are not d-separated by the
empty set, they are d-separated by c.

The “fork” structure c ← b → e indicates that b is a
common cause of c and e. Here, c and e are not d-separated
by the empty set, but they are d-separated by b. Intuitively,
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Figure 1: A Causal Graph

a dependency between c and e may arise due to the common
cause b, but observing b renders c and e independent.

The “collider” structure a → c ← b indicates that c is
a common effect of a and b. Here, a and b are d-separated
by the empty set but not by c. Intuitively, while a and b
are independent, observing c may make them dependent, as
refuting one cause may make the other cause more probable.
Since d is also a common effect of a and b, it similarly holds
that a and b are not d-separated by d.

Now consider a and e. They are d-separated by the empty
set, as the trail between a and e contains the triple a →
c ← b and neither c nor a descendant of c is in ∅. They are
not d-separated by c however. They are d-separated again
given {c, b}, as the trail between a and e contains the triple
c← b→ e and b is in {c, b}.

Bayesian networks are causal graphs used as compact rep-
resentations of probability distributions. Given a Bayesian
networkG = (X,→), a probability distribution P over X is
said to satisfy the local Markov condition with respect to G
if, according to P , each variable in G is probabilistically in-
dependent of its nondescendants given its parents (see Def-
inition 3 below). For Bayesian networks, d-separation is
sound in the sense that, if P satisfies the local Markov condi-
tion with respect to G, then then if A and B are d-separated
by C in G, then A and B are probabilistically independent
given C in P (Pearl 2000). More generally, d-separation is
sound with respect to any dependency model satisfying cer-
tain properties. A dependency model over a set X of vari-
ables is a three-place relation I over disjoint subsets of X.
The elements of I are understood as statements about condi-
tional independence. That is, (A,B,C) ∈ I holds when A
and B are independent given C. For convenience we write
I(A,B | C) instead of (A,B,C) ∈ I and ¬I(A,B | C) in-
stead of (A,B,C) 6∈ I . A dependency model I over X that
satisfies the following set of axioms (for all disjoint subsets
A,B,C,D of X) is called a semi-graphoid:
• Symmetry: If I(A,B | C) then I(B,A | C).
• Decomposition: If I(A,B ∪D | C) then I(A,B | C).
• Weak Union: If I(A,B ∪D | C) then I(A,D | C ∪B).
• Contraction: If I(A,D | C ∪ B) and I(A,B | C) then
I(A,B ∪D | C).
These axioms represent properties that any dependency

model can reasonably be expected to satisfy (see, e.g., (Pearl
1989) for a justification). Indeed, dependency models de-
fined by probabilistic independence relationships are semi-
graphoids, but various other types of independence that have
been considered are also semi-graphoids. The local Markov
condition for dependency models is defined as follows.

Definition 3. Given a DAG G = (X,→) and two variables
x,y ∈ X we say that x is a parent of y if x → y; that
x is a descendant of y if x = y or a directed path from
y to x exists; and that x is a nondescendant of y if x is
not a descendant or parent of y. We denote the parents,
descendants and nondescendants of x by PaG(x), DscG(x)
and NDG(x), respectively.

Definition 4. A dependency model I over X satisfies the
local Markov condition with respect to a DAG G = (X,→)
if and only if

∀x ∈ X : I({x},NDG({x}) | PaG({x})). (1)

The d-separation criterion is sound with respect to any
DAG G and semi-graphoid I over the variables of G, pro-
vided that I satisfies the local Markov condition with respect
to G. We make use of this fact, which was proven in (Verma
and Pearl 1990, Theorem 19), later on in this paper.

Theorem 1. Let G = (X,→) be a DAG. If I is a semi-
graphoid over X that satisfies the local Markov condition
with respect to G then for every disjoint sets A,B,C ⊆ X
we have that DG(A,B | C) implies I(A,B | C).

4 Conditional Independence in Abstract
Argumentation

We now define a notion of conditional independence for use
in abstract argumentation. The definition we use is based on
the definition of conditional independence in propositional
logic due to (Darwiche and Pearl 1994; Darwiche 1997). In-
tuitively, given a belief state T over a set X of variables,
and disjoint subsets A,B,C of X, A and B are independent
given C if, once we know the values of C then knowing the
values ofA provides no information aboutB and vice versa.

First some auxiliary definitions. Let X be a set of vari-
ables. We say that a valuation VA of some subset A of X is
consistent with a belief state T over X if for some V ∈ T
we have V ↓A = VA. Given two valuations VA and VB of
disjoint subsets A and B of X we denote by VA ∪ VB the
union of the two valuations. Conditional independence with
respect to a belief state is defined as follows.

Definition 5. Let T be a belief state over X. Given disjoint
subsets A,B,C of X, we say that A and B are independent
given C in T if, for all VA ∈ V(A), VB ∈ V(B), VC ∈
V(C), consistency of VC ∪ VA and VC ∪ VB in T implies
consistency of VC ∪ VA ∪ VB in T . We denote by IT the
dependency model over X defined by

IT (A,B | C)↔ A and B are independent given C in T.

We first note that a dependency model defined by a belief
state is a semi-graphoid.

Proposition 1. Let X be a set of variables. For every belief
state T over X it holds that IT is a semi-graphoid.

Given an AF F and semantics σ, we will abbreviate the
dependency model ILσ(F ) as IσF . This dependency model
captures the independencies that hold in the evaluation of
F under the σ semantics. As can be seen by inspecting
Definition 5, if the number of σ labellings of F is zero or
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Figure 2: An AF and its preferred and stable labellings

one, then every independence statement holds trivially in
IσF . Thus, a dependency model IσF is informative only if F
possesses more than one σ labelling, and these are the situa-
tions we focus on in our examples (e.g., we do not consider
the grounded semantics).

Our goal is to define a method to infer, given an AF F and
semantics σ, the independencies that hold in IσF . We want
to infer these independencies without having to compute the
σ labellings of F , which is intractable under all semantics
considered in this paper (Kröll, Pichler, and Woltran 2017).
First we look at an example where we determine indepen-
dencies in a direct manner, by examining the labellings of an
AF and checking which independence statements are true.
Example 2. Consider the AF F and the set Lpr(F ) of pre-
ferred labellings shown in Figure 2. We have that:

1. a and e are not independent, since (a : O) and (e : U) are
consistent but (a : O, e : U) is not. They do become inde-
pendent after observing b. Thus, we have:

¬IprF (a, e | ∅) IprF (a, e | b)

2. e and h are not independent. They do become indepen-
dent after observing d:

¬IprF (e,h | ∅) IprF (e,h | d)

3. the sets {a,b} and {c,d} are independent, but
they are not independent if we observe e, since
(e : O,a : I,b : O) and (e : O, c : I,d : O) are consistent
but (e : O,a : I,b : O, c : I,d : O) is not. They are sim-
ilarly not independent if we observe f or g. Thus, we
have:
IprF ({a,b}, {c,d} | ∅)
¬IprF ({a,b}, {c,d} | e)

¬IprF ({a,b}, {c,d} | f)
¬IprF ({a,b}, {c,d} | g)

4. a and h are independent, but they are not indepen-
dent if we observe e. This is because (e : O,a : I) and
(e : O,h : I) are consistent but (e : O,a : I,h : I) is not.
If we additionally observe d then they are independent
again:

IprF (a,h | ∅) ¬IprF (a,h | e) IprF (a,h | {d, e})

We can already see that the independencies in this ex-
ample can be inferred from the structure of the AF simi-
larly to how we inferred independencies using d-separation

in Example 1. We have, for instance, a chain structure
a → b → e, where a and e become independent after
observing b. There is also a fork structure e ← d → h,
where e and h become independent after observing d (a
common cause of e and h). We also have a collider structure
b→ e← d, where {a,b} and {c,b} are unconditionally in-
dependent but not independent after observing e (a common
effect of b and d). Unfortunately, however, we cannot apply
d-separation to the structure of an AF directly. The reason
is that the soundness of d-separation as stated by Theorem 1
holds only DAGs, and AFs are not in general DAGs. Our
approach will therefore be as follows. Given an AF F and
semantics σ, we first transform F into a DAG which we call
the d-graph of F . We then apply d-separation to the d-graph
of F to infer independencies that hold in IσF . Before pre-
senting this transformation we consider a property that a se-
mantics must satisfy in order for this approach to be sound.

5 The SCC Markov Principle
The independencies that hold in the evaluation of an AF
depend on the semantics that we use. While Example 2 is
based on the preferred semantics, it can be checked that the
same independencies hold under the complete semantics.
Under the stable semantics things are different, however.
Consider again the AF F shown in Figure 2 and consider
the set Lst(F ) of stable labellings. While the sets {a,b} and
{c,d} are unconditionally independent under the preferred
semantics, they are not unconditionally independent under
the stable semantics, nor under the semi-stable semantics,
which coincides with the stable semantics in this case.

This behaviour is due to the resistance of these seman-
tics to have arguments undecided. Because of this, either b
or d must be accepted, and this leads to a dependency be-
tween the two sets, as observing that b is rejected implies
that d is accepted and vice versa. If we interpret attacks, like
edges in a causal graph, as a relationship of direct causal
influence, then this behaviour is strange. Under this inter-
pretation, {a,b} and {c,d} should indeed be uncondition-
ally independent, as the two sets have no common cause and
none of the common effects e, f or g are observed.

We now formally characterise the class of semantics that
are consistent with the interpretation of attacks as a relation-
ship of direct causal influence. We then show that the pre-
ferred and complete semantics belong to this class, but the
stable and semi-stable semantics do not. First we consider
a generalisation of the local Markov condition that is well-
defined for graphs with cycles. The idea is based on the
observation that every graph with cycles possess an acyclic
structure, which is formed by the graph’s strongly connected
components (SCCs) and their interactions.

Definition 6. The set of SCCs (strongly connected compo-
nents) of a graph G = (X,→), denoted S(G), contains the
equivalence classes induced by the path equivalence rela-
tion ∼G over X defined by x ∼G y iff x = y or there is a
directed path from x to y and y to x.

Like parents and nondescendants of individual variables
we also define parents and nondescendants of SCCs. Note
that we define a parent of an SCC S to be a parent of an
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Figure 3: An AF with SCCs highlighted

element of S that is itself not a member of S. This is also
sometimes referred to as an outparent.

Definition 7. Let G be a graph and let S be an SCC of G.
A parent of S is a parent of an element of S that is itself
not a member of S. A descendant of S is an element of S
or a variable x such that directed path from an element of
S to x exists. A nondescendant of S is any variable that is
not a descendant or parent of S. We denote the parents and
nondescendants of S by PaG(S) and NDG(S), respectively.

Example 3. Let F be the AF shown in Figure 3, which is the
same AF as shown in Figure 2 with SCCs enclosed in dotted
rectangles. We have:

PaF (S1) = ∅
PaF (S2) = ∅
PaF (S3) = {b, d}
PaF (S4) = {d}

NDF (S1) = {c, d,h}
NDF (S2) = {a, b}
NDF (S3) = {a, c,h}
NDF (S4) = {a, b, c, e, f, g}

The SCC Markov condition states that every SCC is inde-
pendent of its nondescendants given its outparents.

Definition 8. A dependency model I over X satisfies the
SCC-Markov condition with respect to a (possibly cyclic)
graph G = (X,→) if and only if

∀S ∈ S(G) : I(S,NDG(S) | PaG(S)). (2)

Note that the SCC-Markov condition implies nothing
about independencies among elements of the same SCC.
Hence, nothing is implied about independencies among the
elements of a cycle, as such elements belong to the same
SCC. Furthermore, if G is a DAG then every SCC of G is
singleton set {x} whose parents coincide with the parents of
x. This implies:

Proposition 2. If G is a DAG then a dependency model I
over G satisfies the local Markov condition with respect to
G if and only if it satisfies the SCC Markov condition with
respect to G.

We define an SCC Markovian semantics as follows.

Definition 9. A semantics σ is SCC Markovian if for every
AF F , IσF satisfies the SCC Markov condition with respect
to F .

Which semantics are SCC Markovian? We first observe
that the stable and semi-stable semantics are not.

Example 4. Figure 3 depicts the same AF as Figure 2 but
with SCCs enclosed in dotted rectangles. The set Lst(F ) of
stable labellings of F are shown on the right in Figure 2.
For the stable semantics to be SCC Markovian, IFst must
satisfy the SCC Markov condition with respect to F . For
example, the SCC {c,d} must be independent of its non-
descendants given its parents, i.e., IFst({c,d}, {a,b} | ∅).
However, {c : I,d : O} and {a : I,b : O} are consistent in
Lst(F ) but {c : I,d : O,a : I,b : O} is not. We thus have
¬IFst({c,d}, {a,b} | ∅) Therefore, the stable semantics is
not SCC Markovian. Because the stable and semi-stable la-
bellings of F coincide, this example also demonstrates that
the semi-stable semantics is not SCC Markovian.

The complete and preferred semantics, however, are SCC
Markovian. To prove this we consider two general seman-
tic principles and show that their combination is a sufficient
condition for SCC Markovianness. These are SCC decom-
posability and Universality. It is known that these principles
are satisfied by the complete and preferred semantics as well
as a number of other semantics.

SCC decomposability was introduced by (Baroni et al.
2014), where it was called full decomposability with respect
to SCC partitioning. To define it we need to define the no-
tion of AF with input, which is an AF F together with a set
of input arguments which may attack F via a provided input
attack relation, as well as a labelling of the input arguments.
Definition 10. An AF with input is a tuple
(F,Bin, Lin,⇒in) where F = (A,⇒) is an AF, Bin
a set of input arguments such that A ∩ Bin = ∅,
Lin ∈ L(Bin) an input labelling, and ⇒in⊆ Bin × A an
input attack relation.

A local function assigns to each AF with input a set of
labellings of the AF.
Definition 11. A local function Z assigns to every AF
with input (F,Bin, Lin,⇒in) a set Z(F,Bin, Lin,⇒in) ⊆
L(F ).

A semantics σ is SCC decomposable if it is represented
by some local function. A local function Z represents a se-
mantics σ if, for every AF F , the global computation of the
σ labellings of F coincides with the per-SCC local compu-
tation according to Z.
Definition 12. A semantics σ is represented by a local
function Z if and only if for every AF F = (A,⇒) we have
that L ∈ Lσ(F ) if and only if ∀S ∈ S(F ),

L↓S ∈ Z(F↓S,PaF (S), L↓PaF (S),⇒ ∩PaF (S)× S).

We say that σ is SCC decomposable if and only if σ is
represented by some local function.

Universality simply states that every AF has at least one
labelling.
Definition 13. A semantics σ is universal if and only if for
each AF F , Lσ(F ) 6= ∅.

Any semantics that is both SCC decomposable and Uni-
versal is SCC Markovian.
Theorem 2. If σ is SCC decomposable and Universal then
σ is SCC Markovian.



SCC Universal SCC
Decomposable Markovian

Complete Yes Yes Yes
Preferred Yes Yes Yes
Stable Yes No No
Semi-stable No Yes No

Table 1: Principles under different semantics

Proof. Follows from lemma 1 and 2 below.

Note that the other direction of this implication does not
hold. To see why, consider the semantics that evaluates
single-SCC AFs using preferred semantics and all other AFs
using complete semantics. This semantics is SCC Marko-
vian and universal but not SCC decomposable. An example
of a semantics that is SCC Markovian and SCC decompos-
able but not universal is the semantics that maps every AF
to the empty set of labellings.

The complete and preferred semantics are both universal
and SCC decomposable (Baroni et al. 2014) and hence SCC
Markovian. We already saw that the stable and semi-stable
are not SCC Markovian, which means that they must violate
either universality or SCC decomposability. Indeed, the sta-
ble semantics is not universal, while the semi-stable seman-
tics is not SCC decomposable (Baroni et al. 2014). Table 1
provides an overview of which of the semantics considered
in this paper satisfy the principles discussed here.

In the remainder of this section, which may be skipped
upon first reading, we present the two lemmas referred to in
the proof of Theorem 2. In these lemmas we make use of
what we call a causal theory, which is a graph G together
with an influence function for each SCC of G. An influence
function for an SCC S assigns to every valuation of the par-
ents of S a non-empty set of valuations of S. The belief
state represented by a causal theory is the belief state that is
consistent with these assignments.1

Definition 14. A causal theory is a pair (G,Φ) where G is
a graph with SCCs {S1, . . . , Sn} and Φ = {Φ1, . . . ,Φn}
is a set of influence functions where, for every i ∈ 1 . . . n,
Φi : V(PaG(Si)) → (2V(Si) \ ∅). A causal theory (G,Φ)
represents the belief state T defined by

V ∈ T ↔ for i = 1 . . . n, V ↓Si ∈ Φi(V ↓PaG(Si)). (3)

The non-emptiness condition for influence functions pre-
vents the ability to express dependencies among parents of
an SCC. To see why, note that Φi(V ) = ∅ would imply in-
consistency of V , which may result in dependencies among
the parents of Si even if there are no edges between these
parents.2 The first lemma provides a link between causal
theories and the SCC Markov condition.

1In the acyclic case, causal theories are similar to symbolic
causal networks due to (Darwiche and Pearl 1994). Symbolic
causal networks use sets of formulas, called micro theories, instead
of influence functions. They furthermore support exogenous vari-
ables, which we do not need and thus omit.

2A condition similar to non-emptiness applies to the micro the-
ories of a symbolic causal network (Darwiche and Pearl 1994).

Lemma 1. For every belief state T we have that IT satisfies
the SCC Markov condition with respect to G if and only if
some causal theory (G,Φ) represents T .

Proof. (If) Suppose (G,Φ) represents T . Let S ∈ S(G),
ND = NDG(S), Pa = PaG(S). We need to prove that we
have IT (S,ND | Pa). Let VND ∈ V(ND), VPa ∈ V(Pa), and
VS ∈ V(S). Suppose VPa∪VS and VPa∪VND are consistent in
T . Then there are valuations V 1, V 2 ∈ T such that V 1↓Pa∪
S = VPa ∪ VS and V 2↓Pa ∪ ND = VPa ∪ VND. Since (G,Φ)
represents T we also have, for all S′ ∈ S(G), V 1↓S′ ∈
ΦS′(V

1↓PaG(S′)) and V 2↓S′ ∈ ΦS′(V
2↓PaG(S′)). Now

define V 3 by V 3↓S ∪ DscG(S) = V 1↓S ∪ DscG(S) and
V 3↓NDG(S) ∪ PaG(S) = V 2↓NDG(S) ∪ PaG(S). Then
for all S ∈ S(G) we have V 3↓S ∈ ΦS(V 3↓PaG(S)). Be-
cause (G,Φ) represents T it now follows that V 3 ∈ Lσ(F )
and hence that VPa ∪ VS ∪ VND is consistent. We thus have
IT (S,ND | Pa).

(Only If) Let T be a belief state such that IT satis-
fies the SCC Markov condition with respect to G. Let
{S1, . . . , Sn} = S(G) and define ΦSi by

ΦSi(VPa) = {V ↓Si | V ∈ T, V ↓PaG(Si) = VPa}, (4)

if VPa is consistent in T , and ΦSi(VPa) = L(Si), other-
wise. We now prove that (3) holds. The → direction is
easy. For the ← direction, let V be a valuation s.t., for
i = 1 . . . n, V ↓Si ∈ ΦSi(V ↓PaG(Si)). Assume w.l.o.g.
that {S1, . . . , Sn} is ordered such that if i < j then Si ⊆
NDG(Sj) ∪ PaG(Sj). We prove by induction on i that
V ↓S1 ∪ . . . ∪ Si is consistent in T for all i ≤ n. For the
base case we have V ↓S1 ∈ ΦS1

(∅). Using (4) it then fol-
lows that V ↓S1 is consistent in T . For the inductive case,
assume that V ↓{S1, . . . , Si−1} is consistent in T . Since
S1 ∪ . . . ∪ Si−1 ⊆ NDG(Si) ∪ PaG(Si), the fact that IT
satisfies the SCC Markov condition with respect to G im-
plies that Si is independent of S1 ∪ . . . ∪ Si−1 \ PaG(Si)
given PaG(Si). This implies that V ↓{S1, . . . , Si} is consis-
tent in T . By induction it follows that V ↓{S1, . . . , Sn} is
consistent in T and hence that V ∈ T . Hence condition (3)
is satisfied which means that (G,Φ) represents T .

The second lemma states that, if σ is an SCC decompos-
able and universal semantics, then for every AF F we can
construct a causal theory (F,Φ) that represents Lσ(F ).
Lemma 2. Let σ be an SCC decomposable and universal
semantics. Let Zσ be the local function that represents σ.
Let F = (A,⇒) be an AF with SCCs {S1, . . . , Sn}. Let
(F, {Φ1, . . . ,Φn}) be the causal theory where

Φi(L) = Zσ(F↓Si,PaF (Si), L,⇒ ∩PaF (Si)× Si).
Then (F,Φ) represents Lσ(F ).

Proof. Follows directly from Definitions 12 and 14.

6 The D-graph Approach
We now show how to derive independencies from the struc-
ture of an AF by transforming the AF into what we call a
d-graph. After presenting the transformation itself we dis-
cuss the soundness, completeness and complexity of the ap-
proach. Intuitively, the d-graph transformation is based on



the principle of replacing cyclical dependencies with depen-
dencies represented using extra latent common cause vari-
ables. If a graph contains, for example, a cycle a↔ b, then
the resulting d-graph contains a fork structure a ← s → b,
where s is an extra variable representing a common cause for
a and b. This common cause s is hypothetical, used purely
to account for the dependency between a and b, and there-
fore treated as unobservable. As long as s is not observed,
the two structures (cycle and fork) represent the same in-
dependence information, because the fork structure ensures
that a and b are d-separated only if s is observed.

The transformation of a graph G to the d-graph G∗ con-
sists of three steps, applied separately to each SCC Si:

1. Remove all edges between elements of Si.
2. Add an extra latent common cause variable si and an edge

from si to every element of Si.
3. For every parent x of Si, replace the edge from x to Si

with an edge from x to si.
The result is a DAG since step 1 removes all cycles and steps
2 and 3 do not introduce new cycles. The following defini-
tion describes the d-graph transformation more consisely.
Definition 15. Let G = (X,→) be a graph with SCCs
S(G) = {S1, . . . , Sn}. The d-graph of G is a DAG
G∗ = (X ∪ {s1, . . . , sn},→′) where x →′ y iff for some
i ∈ 1, . . . , n either:
• x ∈ PaG(Si) and y = si, or
• x = si and y ∈ Si.

Let us look at an example. Let F be the AF shown in
Figure 3. The d-graph F ∗ is shown in Figure 4. In this
figure we have highlighted the original SCCs with dotted
rectangles. Note that, while the edges in F represent at-
tacks, the edges in F ∗ represent arbitrary relations of direct
influence. Consider the cycle in F contained in the SCC
S1 = {a,b}. As edges between elements of S1 are removed
in F ∗, this cycle is not present in F ∗. The dependency be-
tween a and b is now accounted for by the variable s1, which
acts as a common cause for a and b. Now consider the SCC
S3 = {e, f ,g}, which is transformed similarly, but in addi-
tion, the attack of the parents b and d of S3 on e is replaced
with edges from b and d to s3. This is done so that the de-
pendence of all elements of S3 on b and d—not just e but
also f and g—is still accounted for. Note that the addition
of the variable s4 for the singleton SCC S4 is not actually
needed, but treating all SCCs the same simplifies the defini-
tion of d-graph.

6.1 Soundness of the D-graph Approach
Given a graph G, the d-graph G∗ is a DAG that contains all
variables present in G. Thus, we can use d-separation in G∗
to derive independence statements about a belief state over
G. If the dependency model of this belief state satisfies the
SCC Markov condition with respect to G, then these state-
ments are true.
Theorem 3. Let T be a belief state over G = (X,→). If IT
satisfies the SCC-Markov condition with respect to G then
for all disjoint sets A,B,C ⊆ X we have that DG∗(A,B |
C) implies IT (A,B | C).

e
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s4
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Figure 4: The d-graph for the AF from Figure 2

Proof. Let T be a belief state over the graph G =
({x1, . . . ,xn},→) with SCCs {S1, . . . , Sm}. Suppose IT
satisfies the SCC Markov condition with respect to G. Then
let (G, {ΦS1

, . . . ,ΦSm}) be the causal theory that repre-
sents T , the existence of which follows from Lemma 1. Let
G∗ = ({x1, . . . ,xn, s1, . . . , sm},→′) be the d-graph of G
where the domain of si is defined by Dom(si) = V(Si)
(i.e., the values of si are the valuations of Si). Now define
the causal theory (G∗, {Φx1 , . . . ,Φxn ,Φs1 , . . . ,Φsm}) by
∀V ∈ V({si}), V ∈ Φsi(V

′) iff V (si) ∈ ΦSi(V
′),

Φxi(V ) = V (sj)(xi),where j is s.t. xi ∈ Sj ,
and let T ∗ be the theory it represents. Then:

1. This definition implies that T ∗↓{x1, . . . ,xn} = T .
Hence for all disjoint sets A,B,C ⊆ {x1, . . . ,xn} we
have IT∗(A,B | C) if and only if IT (A,B | C).

2. Lemma 1 implies that IT∗ satisfies the SCC Markov con-
dition with respect to G∗. Since G∗ is acyclic, this im-
plies, using Proposition 2, that IT∗ satisfies the local
Markov condition with respect to G∗.

These two facts imply, using Theorem 1, that for all disjoint
sets A,B,C ⊆ {x1, . . . ,xn} we have that DG∗(A,B | C)
implies IT (A,B | C).

A corollary of this theorem is:
Corollary 1. Let σ be an SCC-Markovian semantics and let
F = (A,⇒) be an AF. Then for all disjoint sets A,B,C ⊆
A we have that DF∗(A,B | C) implies IσF (A,B | C).

In the following example we show that the independen-
cies that were shown to hold in Example 2 can all be derived
using the d-graph approach.
Example 5. Let F be the AF shown earlier in Figure 2. The
d-graph F ∗ of F is shown in Figure 4. In Example 2 we
listed a number of (non-)independencies that hold in IprF .
In this example we show that all these independencies are
derivable using d-separation in F ∗, while none of the non-
independencies are derivable.

In the d-graph F ∗ we have that:
1. a and e are not d-separated by the empty set because the

empty set does not block the trail a ← s1 → b → s3 →
e. This trail is blocked by b, however, which is due to the
chain s1 → b → s3. Therefore a and e are d-separated
by b. Thus, we have:

¬DF∗(a, e | ∅) DF∗(a, e | b)
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Figure 5: Independence of b and d derivable after pruning

2. e and h are not d-separated by the empty set because the
empty set does not block the trail e ← s3 ← d → s4 →
h. This trail is blocked by d, however, due to the fork
s3 ← d → s4. Therefore e and h are d-separated by d.
Thus, we have:

¬DF∗(e,h | ∅) DF∗(e,h | d)

3. The sets {a,b} and {c,d} are d-separated by the empty
set. This is because the empty set blocks all trails between
the two sets. However, they are not d-separated by e, be-
cause of the trail b → s3 ← d and the fact that e is a
descendant of s3. They are similarly not d-separated by f
or g, which are also descendants of s3. Thus, we have:

DF∗({a,b}, {c,d} | ∅)
¬DF∗({a,b}, {c,d} | e)

¬DF∗({a,b}, {c,d} | f)
¬DF∗({a,b}, {c,d} | g)

4. a and h are d-separated by the empty set. This is because
the empty set blocks the trail a← s1 → b→ s3 ← d→
s4 → h due to the collider b → s3 ← d. This trail is no
longer blocked if we observe e, which is a descendant of
s3. If we additionally observe d then the trail is blocked
again due to the fork s3 ← d→ s4. Thus, we have:

DF∗(a,h | ∅) ¬DF∗(a,h | e) DF∗(a,h | {d, e})

6.2 (In)completeness of the D-graph Approach
In the previous section we proved the soundness of the d-
graph approach: if σ is SCC Markovian then DF∗(A,B |
C) implies IσF (A,B | C). Example 5 also shows that the
approach is fairly complete; in all cases considered there,
we have that IσF (A,B | C) implies DF∗(A,B | C). The
approach is not fully complete, however. A number of cases
can be identified where independencies that hold under an
SCC Markovian semantics such as the complete or preferred
semantics cannot be derived using the d-graph approach.

One case concerns independencies that hold because an
effect gets cancelled out due to mediating arguments being
rejected. This is demonstrated by the AF F and d-graph
F ∗ shown in Figure 5. Here e is always accepted and at-
tacks c. The indirect effect of b on d, which is mediated by

cba d

e f

Figure 6: Independence of b and d not derivable

c, is therefore cancelled out, making b and d independent.
We cannot, however, derive independence of b and d using
d-separation in the d-graph F ∗, which still contains a path
from b to d. Fortunately, this case is easily dealt with by
pruning the AF before transforming it into a d-graph. In this
pruning step, we remove attacks originating from arguments
that are attacked by unattacked arguments, repeating this op-
eration until no more attacks are removed. The AF F ′ shown
in Figure 5 shows the result of applying this pruning step to
F . As b and d are no longer connected in the resulting d-
graph F ′∗, their independence can now be derived. This so-
lution applies to any semantics under which the pruning step
described here does not change the set of labellings, such as
the complete and preferred semantics. Note that the attacks
removed in the pruning step are exactly the attacks coming
from arguments that are labelled O in the grounded labelling
of the AF. This pruning step therefore requires polynomial
time.

We cannot always easily detect effects that are cancelled
out due to mediating arguments being rejected. Consider, for
example, the AF F shown in Figure 6. Under the preferred
semantics, c is always rejected as it is attacked by e and f ,
of which one is always accepted. Thus, like the example
above, the effect of b on d is cancelled out, but we cannot
derive independence of b and d using d-separation in F ∗.
Unfortunately, a single syntactic pruning criterion to solve
all instances exhibiting this problem does not seem to exist.

A final case of incompleteness concerns observations of
arguments that only attack arguments within the same SCC.
This is demonstrated by the AF shown in Figure 7. Here, the
arguments c and d belong to the same SCC and c attacks
only d. This results in a d-graph in which c has just one par-
ent and no children, which means that c cannot block any
trail. As a consequence, the independence of b and e given
c, which holds under all of the common semantics, cannot be
derived. The root of the problem here is that independence
of b and e given c is not in fact implied by SCC Markovian-
ness. Indeed, it is possible to define a semantics that is SCC
Markovian under which b and e are not independent given c
(e.g., evaluate {a,b} according to the preferred semantics,
let c always be rejected and assign to d the same label as
b). To uncover these independencies we therefore need to
go beyond the SCC Markov condition and consider stronger
decomposability principles that account for independencies
on a more fine-grained level. We plan to investigate this in
future work.

Let us point out, however, that if independence informa-
tion is used for the purpose of speeding up inference then
some degree of incompleteness is not critical. Incomplete-
ness just means that we sometimes need to fall back on a
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Figure 7: Independence of b and e given c not derivable

(typically more expensive) procedure that does not rely on
independence, even though a (typically cheaper) procedure
that does rely on independence would also have worked.
However, any procedure that does not rely on independence
should also produce correct results when independence does
hold. Soundness, on the other hand, is critical, because
assuming independence when independence does not hold
may lead to incorrect results.

6.3 Complexity of the D-Graph Approach
Determining independence using the d-graph approach is
computationally cheap. The first step, which is the d-
graph transformation, amounts to identifying the SCCs of
the graph, which is known to take linear time in the num-
ber of nodes and edges (e.g., using Kosaraju’s algorithm).
The extra pruning step described in Section 6.2 adds poly-
nomial time. However, this needs to be done only once,
because a d-graph can be reused for multiple d-separation
tests. A d-separation test itself is also known to take lin-
ear time (Darwiche 2009). Taking everything into account,
determining independence is therefore tractable. By con-
trast, many inference problems in abstract argumentation
are intractable (Kröll, Pichler, and Woltran 2017; Dvořák
and Dunne 2018). Many problems whose runtime can be
reduced by using independence information may therefore
benefit from our approach.

7 Discussion
A notion of relevance in abstract argumentation was stud-
ied by (Liao and Huang 2013). The definition is simple:
an argument x is relevant to an argument y if and only if
a directed path from x to y exists. This notion of rele-
vance applies to semantics that satisfy the Directionality cri-
terion (Baroni, Giacomin, and Guida 2005):

Definition 16. A semantics σ satisfies Directionality if and
only if, for every AF F = (A,⇒), and every unattacked set
U of F , we have that Lσ(F↓U) = Lσ(F )↓U, where a set
U ⊆ A is an unattacked set of F if and only if no x ∈ A\U
attacks any y ∈ U .

They show that, under any directional semantics, one may
remove arguments not relevant to a set B if one is interested
in computing only the status of B, which can significantly
reduce runtime. The same principle is used in (Liao, Jin, and
Koons 2011) to reduce runtime of recomputing the exten-
sions of an AF when the AF is changed. We can define irrel-
evance as the complement of relevance. Irrelevance of this
kind does not imply independence, however, since absence
of a directed path from x to y does not imply independence
of x and y (see, e. g., the arguments e and h in Example 5).

On the other hand, unconditional d-separation of x and y
implies absence of a directed path—in either direction—
between x and y and thus implies irrelevance in both direc-
tions. This notion of irrelevance is, however, unconditional,
so it cannot be compared to independence in the conditional
case. Furthermore, Directionality neither implies nor is im-
plied by SCC Markovianness. Irrelevance and independence
are therefore based on different underlying principles. An
example of a directional but non-SCC-Markovian semantics
is the semantics that labels arguments either all I or all O, ex-
cept for self-attacking arguments, which are labelled O. An
example of an SCC Markovian but non-directional seman-
tics is the semantics under which, for any single-argument
AF ({x},⇒), x is labelled O, while every other AF admits
every possible labelling. Nevertheless, among the semantics
considered in the literature, those that satisfy SCC Marko-
vianness appear to be precisely those that satisfy Direction-
ality. In future work we plan to investigate the relationship
between SCC Markovianness and Directionality, as well as
the relationship between independence and irrelevance, in
more detail.

SCC decomposability is related to the SCC recursiveness
principle (Baroni, Giacomin, and Guida 2005). SCC recur-
siveness, in short, means that the semantics is definable in
terms of a base function that operates—like the local func-
tion in Definition 11—on each SCC separately, but also re-
cursively on smaller SCCs that form after removing argu-
ments that are defeated. It is not hard to prove that SCC
recursiveness implies SCC decomposability. Any semantics
that is universal and SCC recursive is therefore SCC Marko-
vian. Examples are the CF2 (Baroni, Giacomin, and Guida
2005) and Stage2 semantics (Dvorák and Gaggl 2016). A
number of semantics exist which are not SCC decompos-
able, such as the stable and semi-stable semantics. In future
work we plan to address the question of whether and how
independencies can be detected under these semantics.

The probabilistic analogue of the SCC decomposability
principle for probabilistic abstract argumentation was con-
sidered in (Rienstra et al. 2018). A similar ranking-based
analogue was also investigated in (Rienstra and Thimm
2018). Use of d-separation to determine probabilistic or
ranking-based conditional independence was not considered
in these papers, although the d-graph method used in this
paper can be applied in these settings too.

8 Summary and Conclusion
In this paper we defined a notion of conditional indepen-
dence in abstract argumentation. We showed that the d-
separation criterion can be used to derive independencies
from the structure of what we call the d-graph of an AF,
and that these independencies hold under any semantics that
is SCC Markovian.

While many inference tasks in abstract argumentation are
intractable, testing for independence using our approach is
tractable. Thus, many inference tasks can potentially benefit
from using independence information. In the introduction
we already discussed some examples. In future work we
plan to study the practical use of independence in argumen-
tation in more detail.
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