
Using Graph Convolutional Networks for
Approximate Reasoning with Abstract

Argumentation Frameworks: A Feasibility Study

Isabelle Kuhlmann and Matthias Thimm

University of Koblenz-Landau

Abstract. We employ graph convolutional networks for the purpose
of determining the set of acceptable arguments under preferred seman-
tics in abstract argumentation problems. While the latter problem is
complexity-wise one of the hardest problems in reasoning with abstract
argumentation problems, approximate methods are needed here in order
to obtain a practically relevant runtime performance. This first study
shows that deep neural network models such as graph convolutional net-
works significantly improve the runtime while keeping the accuracy of
reasoning at about 80% or even more.

Keywords: neural network · reasoning · abstract argumentation.

1 Introduction

Computational models of argumentation [3] are approaches for non-monotonic
reasoning that focus on the interplay between arguments and counterarguments
in order to reach conclusions. These approaches can be divided into either ab-
stract or structured approaches. The former encompass the classical abstract
argumentation frameworks following Dung [9] that model argumentation sce-
narios by directed graphs, where vertices represent arguments and directed links
represent attacks between arguments. In these graphs one is usually interested
in identifying extensions, i. e., sets of arguments that are mutually acceptable
and thus provide a coherent perspective on an outcome of the argumentation.
On the other hand, structured argumentation approaches consider arguments
to be collections of formulas and/or rules which entail some conclusion. The
most prominent structured approaches are ASPIC+ [21], ABA [26], DeLP [13],
and deductive argumentation [4]. These approaches consider a knowledge base
of formulas and/or rules as a starting point.

In this paper, we are interested in approximate methods to reasoning with
abstract argumentation approaches. Previous works on reasoning with abstract
argumentation focus mostly on sound and complete methods, see e. g. [5] for
a recent survey and the International Competition on Computational Models
of Argumentation1 (ICCMA) [25,12] for actual implementations. To the best

1 http://argumentationcompetition.org

2 I. Kuhlmann, M. Thimm

of our knowledge, the only incomplete algorithms for abstract argumentation
are [24,22] that use stochastic local search. Here, we use deep neural networks
to model the problem of deciding (credulous) acceptability of arguments wrt.
preferred semantics as a classification problem. We train a graph convolutional
neural network [17]—a special form of a convolutional neural network that is
tailored towards processing of graphs—with data obtained by random generation
of abstract argumentation frameworks and annotated by a sound and complete
solver (in our case CoQuiAAS [19]). After training, the obtained classifier can be
used to solve the acceptability problem in constant time. However, the obtained
classifier provides only an approximation to the actual answer. Our experiments
showed that approximation quality is about 80 % in general, while it can be up
to 99 % in certain cases.

The remainder of this paper is structured as follows. In Section 2, the basic
concepts of abstract argumentation and artificial neural networks are recalled.
Section 3 explains the approach of representation the acceptability problems as
a classification problem. Section 4 describes our experimental evaluation and
discusses its results. We conclude in Section 5 with a discussion and summary.

2 Preliminaries

In the following, we recall basic definitions of abstract argumentation and arti-
ficial neural networks.

2.1 Abstract Argumentation

An abstract argumentation framework [9] AF is a tuple AF = (Arg, →) where
Arg is a set of arguments and → ⊆ Arg × Arg is the attack relation.

Semantics are given to abstract argumentation frameworks by means of ex-
tensions. A set of arguments E ⊆ Arg is called an extension if it fulfils certain
conditions. There are various types of extensions, however this paper will be
focused on the four classical types proposed by Dung [9]. Namely, these are
complete, grounded, preferred, and stable semantics. All of these types of exten-
sions must be conflict-free. A set of arguments E ⊆ Arg in an argumentation
framework AF = (Arg, →) is conflict-free, iff there are no arguments A,B ∈ E
with A → B.

Moreover, an argument A is called acceptable with respect to a set of argu-
ments E ⊆ Arg iff for every B ∈ Arg with B → A there is an argument A′ ∈ E
with A′ → B. Based on these definitions, the four different types of extensions
are defined for an argumentation framework AF = (Arg,→) as follows:

1. Complete extension: A set of arguments E ⊆ Arg is called a complete
extension iff it is conflict-free, all arguments A ∈ E are acceptable with
respect to E and there is no argument B ∈ Arg \ E that is acceptable with
respect to E.

2. Grounded extension: A set of arguments E ⊆ Arg is called a grounded
extension iff it is complete and E is minimal with respect to set inclusion.

Using Graph Convolutional Networks for Abstract Argumentation 3

n∑
i=1

f

...

b

x1

x2

xn

f

(
b +

n∑
i=1

(wi · xi)

)1

w1

w2

wn

Fig. 1. Artificial neuron, adapted from https://inspirehep.net/record/1300728/

plots

3. Preferred extension: A set of arguments E ⊆ Arg is called a preferred
extension iff it is complete and E is maximal with respect to set inclusion.

4. Stable extension: A set of arguments E ⊆ Arg is called a stable extension
iff it is complete and ∀A ∈ Arg\E : ∃B ∈ E with B → A.

2.2 Artificial Neural Networks and Graph Convolutional Networks

An artificial neural network (henceforth also referred to as neural network or sim-
ply network) generally consists of multiple artificial neurons that are connected
with each other. In biology, a neuron is a nerve cell that occurs, for example,
in the brain or in the spinal cord. Neurons are specialised on conducting and
transferring stimuli [23]. In computer science, (artificial) neurons denote a data
structure that was developed to work similarly to their biological example. It
is to be noted that there exist different models of artificial neurons and neural
networks. Due to its contextual relevance in this paper, solely the structure and
functionality of the multilayer perceptron model [14] will be described.

An artificial neuron can have multiple inputs xi ∈ R with i ∈ {1, . . . ,n} that
form the input vector x = (x1, . . . ,xn)>. Each of the n inputs is multiplied by
a weight wi. In addition to the regular inputs, there are so-called bias inputs b.
They serve the purpose of stabilising the computation. As visualised in Figure 1,
an activation function f(·) is applied to the sum of all weighted inputs. The result
of the function is the neuron’s output [8,16].

Analogously to the biological prototype, artificial neurons are connected to
networks. Such networks are usually arranged in layers that consist of at least
one neuron. There is one input layer, one or more so-called hidden layers, and
one output layer. It is to be noted that the input layer is considered a layer only
for convenience, because it only passes the input values to the next layer without
further processing [20,16]. Neural networks can be understood as graphs, with
neurons as nodes and their connections as edges. For training neural networks,
the back-propagation algorithm is used in most cases. Back-propagation is a su-
pervised learning method, meaning that at all times during training, the output

4 I. Kuhlmann, M. Thimm

corresponding to the current input must be known. The goal is to find the most
exact mapping of the input vectors to their output vectors. This is realised by
adjusting the weights on the edges of the graph, see [16] for details.

In the context of graph theory, Kipf et al. [17] introduce graph convolutional
networks that are able to directly use graphs as input instead of a vector of reals.
More precisely, they introduce a layer-wise propagation rule for neural networks
that operates directly on graphs. It is formulated as follows:

H(l+1) = σ
(
D̃−

1
2 ÃD̃−

1
2H(l)W (l)

)
(1)

H(l) ∈ RN×D denotes the matrix of activations in the lth layer. σ(·) is an ac-
tivation function, such as ReLU (Rectified Linear Units) [18]. Moreover, Dii =∑
j Ãij and Ã = A+ IN , where A is the adjacency matrix of the graph and IN

is the identity matrix. W (l) denotes a layer-specific trainable weight matrix.
Spectral convolutions on graphs are defined as

gθ ∗ x = UgθU
>x. (2)

A signal x ∈ RN (a scalar for every node) is multiplied by a filter gθ = diag(θ),
which is parameterised by θ in the Fourier domain. U is the matrix of Eigenvec-
tors of the normalised graph Laplacian L = IN −D−

1
2AD−

1
2 = UΛU>, where

Λ is a diagonal matrix of the Laplacian’s Eigenvalues. U>x is the graph Fourier
transform of x [17].

For a number of reasons, evaluating equation (2) is computationally expen-
sive. For example, computing the Eigendecomposition of L might become rather
expensive for large graphs. Hammond et al. [15] suggest that gθ(Λ) can be ap-
proximated by a truncated expansion in terms of Chebyshev polynomials in
order to avoid this problem:

gθ′(Λ) ≈
K∑
k=0

θ′kTk(Λ̃) (3)

Tk(x) denotes the Chebyshev polynomials up to Kth order. The matrix Λ is
rescaled to Λ̃ = 2

λmax
Λ − IN , where λmax describes the largest Eigenvalue of

L. Besides, θ′ ∈ RK is now a vector of Chebyshev coefficients. Integrating this
approximation into the definition of a convolution of a signal x with a filter gθ′

yields

gθ′ ∗ x ≈
K∑
k=0

θ′kTk(L̃)x, (4)

with L̃ = 2
λmax

L − IN [17]. Because this convolution is a Kth-order polynomial
in the Laplacian, it is K-localized. This means, it depends only on a certain
neighbourhood—more specifically: it only depends on nodes which are at maxi-
mum K steps away from the central node.

Stacking multiple convolutional layers in the form of equation (4) (each layer
followed by a point-wise non-linearity) leads to a neural network model that can
directly process graphs.

Using Graph Convolutional Networks for Abstract Argumentation 5

3 Casting the Acceptability Problem as a Classification
Problem

In abstract argumentation there are several interesting decision problems with
varying complexity [10]. For example, the problem Credσ with σ being either
complete, grounded, preferred, or stable semantics, asks for a given AF = (Arg,→)
and an argument A ∈ Arg, whether A is contained in at least one σ-extension
of AF. For preferred semantics this is an NP-complete problem [10]. For our first
feasibility study here, we will focus on this problem, i. e., CredPR.

In order to represent CredPR as a classification problem, we assume that for
any given input argumentation framework AF = (Arg,→) we have an arbitrary
but fixed order of the arguments, i. e., Arg = {A1, . . . ,An}. Moreover, let A
denote the set of all abstract argumentation frameworks and V the set of all
vectors with values in [0,1] of arbitrary dimension. Conceptually, our classifier C
then will be a function of the type C : A→ V with |C(Arg,→)| = |Arg|, i. e., on
an input argumentation framework with n arguments we get an n-dimensional
real vector as the result.2 The interpretation of this output then is that the i-th
entry of C(Arg, →) denotes the likelihood of argument Ai being credulously
accepted wrt. preferred semantics. Of course, a sound and complete classifier C
should output 1 whenever this is true and 0 otherwise. However, as we will only
approximate the true solution, all values in the interval [0,1] are possible.

The function C, in our case represented by a graph convolutional network,
will be trained on benchmark graphs where the gold standard, i. e. the true
solutions, is available, e. g., by means of asking a complete oracle solver. Given
enough and diverse benchmark graphs for training, our main hypothesis is that
C approximates the intended behaviour.

4 Experimental Evaluation

The framework for graph convolutional networks (GCNs) offered by Kipf et al.
[17], which is realised with the aid of Google’s TensorFlow [1], is designed to
find labels for certain nodes of a given graph and is thus a reasonable starting
point for examining if it is possible to decide whether an argument is credulously
accepted wrt. preferred semantics by the use of neural networks.

4.1 Datasets

An essential part of any machine learning task is collecting sufficient training
and test data. The probo3 [7] benchmark suite can be used to generate graphs
with different properties. A solver such as CoQuiAAS [19] can then be used
to compute the corresponding extensions. The suite offers three different graph

2 Note that implementation-wise this is not completely true as the size of the output
vector has to be fixed.

3 https://sourceforge.net/projects/probo/

6 I. Kuhlmann, M. Thimm

generators that each yield graphs with different properties. The first one, the
GroundedGenerator, produces graphs that have a large grounded extension. The
SccGenerator produces graphs that are likely to have many strongly connected
components. Lastly, the StableGenerator generates graphs that are likely to have
many stable, preferred, and complete extensions. To provide even more diversity
in the data, we use AFBenchGen4 [6] as a second graph generator. It generates
random scale-free graphs by using the Barabási-Albert model [2], as well as graphs
using the Watts-Strogatz model [27], and the Erdős-Rényi model [11].

In order to examine the impact of the training set size on the classification
results, a number of different-sized datasets is generated. It is to be noted that
each dataset contains the next smaller dataset in addition to some new data. This
strategy is supposed to keep changes in the character of the dataset minimal.
The test set is, of course, an exception from this rule. Moreover, each dataset
(including the test set) is composed of equal shares of all six previously described
types of graphs, and all graphs have between 100 and 400 nodes. Table 1 gives
an overview.

In addition to the specifically generated test set, a fraction of the bench-
mark dataset used in the International Competition on Computational Models
of Argumentation (ICCMA) 2017 [12] is used in order to examine how a trained
model performs on external data. Said fraction consists of 45 graphs of group B
(the only one designated for solvers of CredPR) that were chosen from all five
difficulty categories.

ID Number of graphs Total number of
nodes

5-of-each 30 5,461
10-of-each 60 12,056
25-of-each 150 32,026
50-of-each 300 73,717
75-of-each 450 108,050
100-of-each 600 149,130

test 120 30,603

Table 1. Dataset overview.

4.2 Experimental Setup

The GCN framework [17] was designed to perform node-wise classification on
a single large graph in a semi-supervised fashion. In order to use the GCN
framework in its intended way, three different matrices need to be provided: an
N × N adjacency matrix (N : number of nodes), an N ×D feature matrix (D:

4 https://sourceforge.net/p/afbenchgen/wiki/Home/

Using Graph Convolutional Networks for Abstract Argumentation 7

number of features per node), and an N ×F binary label matrix (F : number of
classes).

For this work, the training process should be supervised rather than semi-
supervised. However, the set of unlabeled nodes can be left empty. Because all
nodes consequently have a known label, the training process becomes supervised
instead of semi-supervised. Besides, instead of one single graph with some nodes
to be classified, entire sets of graphs are supposed to provide the training and
test sets. To realise this, the graphs in both training and test set are considered
one big graph. This yields an adjacency matrix that essentially contains the
adjacency matrices of all graphs. The graphs belonging to the test set make up
the set of nodes that are to be classified.

The feature matrix can be used to provide additional information on the con-
tent of the nodes that could be used to improve classification. However, defining
an appropriate feature matrix is a rather difficult matter in our application sce-
nario, because the nodes do not contain any information, in contrast to, for
example, social networks or citation networks. In Section 4.3, two different solu-
tions are explored. The first one is a simple N ×1 matrix that contains the same
constant for every node (which means that no additional features are provided
for the nodes). For the second option, the number of incoming and outgoing
attacks per argument are used as features, resulting in an N × 2 matrix (one
column for each incoming and outgoing attacks).

4.3 Results

When dealing with artifcial neural networks, quite a few parameters can influence
the outcome of the training process. The following section describes various
experimental results in which the impact of different factors on the quality of
the classification process is examined. Those factors include, for instance, the
size and nature of the training set, the learning rate, and the number of epochs
being used to train the neural network model. Finally, we report on some runtime
comparison with a sound and complete solver.

Feature Matrix As explained in Section 4.2, there are two different types of
feature matrix that may be used in the training process. While training with
the feature matrix that does not contain any features (henceforth referred to as
fm1) always results in an accuracy of 77.0%, training with the matrix that en-
codes incoming and outgoing attacks as features (henceforth referred to as fm2)
offers slightly better results (up to 80.3%). Accuracy is measured by dividing the
number of correct predictions by the total number of predictions. The accuracy
value for class Yes can also be viewed as the recall value, which is calculated by
dividing the number of true positives by the sum of true positives and false neg-
atives. Moreover, by calculating the precision (true positives divided by the sum
of true positives and false positives), the F1 score can be obtained as follows:

F1 = 2 · Precision · Recall

Precision + Recall
(5)

8 I. Kuhlmann, M. Thimm

fm1 fm2

Accuracy Yes Accuracy No Accuracy Yes Accuracy No

0.0000 1.0000 0.1499 0.9846
0.0000 1.0000 0.2025 0.9810
0.0000 1.0000 0.2083 0.9803

Table 2. Accuracy per class for both feature matrix types.

Barabási-
Albert

Erdős-
Rényi

Grounded Scc Stable Watts-
Strogatz

Accuracy Yes 1.0000 0.0000 0.0771 0.0000 0.0000 0.0000
Accuracy No 0.0000 1.0000 0.9950 1.0000 1.0000 1.0000
Accuracy total 0.8421 0.8152 0.7109 0.9886 0.8421 0.9988
F1 Score 0.0000 0.0000 0.1417 0.0000 0.0000 0.0000

Table 3. Training results for individual graph types and parameter settings for train-
ing. Additional parameters were set as follows: Number of epochs: 500, learning rate:
0.001, dropout: 0.05.

Moreover, because it seems unusual that multiple different training setups
all return the same value, it is important to also look into the class-specific
accuracies. Table 2 reveals that the network only learned to classify all nodes
as No when trained with fm1. Incorporating fm2 into the training process
leads to an accuracy of class Yes of up to 20.8%. Wheras this result still needs
optimisation, it shows that using fm2 is the more promising approach. In all
following experiments, fm2 is used.

Graph Types In order to further investigate the background of the prior re-
sults, the different graph types are examined. Six additional datasets that consist
of one graph type each, are created. Each one contains 100 graphs for training
and 20 graphs for testing. Essentially, the 100-of-each training set and the test
set are split into six subsets consisting of only one graph type per set.

In Table 3, the training results, alongside the settings that were used to
retrieve these values, are presented. Several observations can be made from the
results. Firstly, a set of parameter settings does not work equally well on all
graph types. While four out of six graph types only learn to decide on one
class for all instances, Grounded and Stable graphs show first signs of a deeper
learning process. Increasing the number of epochs to 1000 yields exactly the same
accuracies for Barabási-Albert, Erdős-Rényi, Scc, and Watts-Strogatz graphs,
but improves the values for Grounded and Stable. This leads to the assumption
that the graph types are of different difficulty for the network to learn. The fact
that 98.86% (Scc) or even 99.89% (Watts-Strogatz) of the graphs’ nodes belong
to one class supports this assumption. Classifying such unevenly distributed
classes is quite a difficult task for a neural network.

Using Graph Convolutional Networks for Abstract Argumentation 9

Dataset Accuracy Yes Accuracy No Accuracy total F1 Score

5-of-each 0.0000 1.0000 0.7701 0.0000
10-of-each 0.1869 0.9795 0.7972 0.2976
25-of-each 0.2025 0.9810 0.8020 0.3199
50-of-each 0.2170 0.9797 0.8043 0.3377
75-of-each 0.2174 0.9793 0.8041 0.3380
100-of-each 0.2210 0.9786 0.8044 0.3419

Table 4. Classification results after training with different-sized training sets. Param-
eter settings: epochs: 500, learning: 0.01, dropout rate: 0.05 However, a difference in
training set size might require different settings. For example, a larger dataset might
need more epochs to converge than a smaller ones.

Another observation is that the set of Barabási-Albert graphs is the only one
where the majority of instances is in the class Yes. This might help creating
a dataset with more evenly distributed classes. Generally, it is certainly helpful
to have some graphs with more Yes instances in a dataset in order to generate
more diversity. Having a diverse dataset is a vital aspect when training neural
networks. Otherwise, the network might overfit to irrelevant features or might
not work for some application scenarios.

Dataset Size Besides the influence of a dataset’s diversity, the amount of data
also has an impact on the training process. Table 4 shows some classification
results for the different datasets described in Section 4.1. As expected, it indicates
that bigger training sets have a greater potential to improve classification results.
Nonetheless, utilizing more training data does not automatically mean better
results. As displayed in Table 4, adding more than 50 graphs of each type does
not yield a significant increase in accuracy. The values for overall accuracy and
accuracy for class No do not change much at all (both less than 3.5%) when
adding more training data. It is, however, crucial to look into the accuracy of
class Yes as well as the F1 scores, because it indicates that the network actually
learned some features of a preferred extension, instead of guessing No for all
instances. Training with 25 graphs per type (150 in total) already results in
20.25% accuracy of class Yes—only 1.85% less than a training with a total of 600
graphs yields. Training with 50 graphs per type increases the accuracy for Yes
by another 1.45%, which may still be regarded as significant when considering
that the difference to the next bigger training set is merely 0.04%. In summary,
the increase in accuracy for class Yes rather quickly starts stagnating when
more data is added.

Optimisation Training a neural network is a task that demands careful ad-
justment of various parameters and other aspects. This section describes several
approaches that may optimise the results gathered so far.

The main problem with the previous results is that the model seems to un-
derfit. A reason for that might be that the training set is badly balanced in

10 I. Kuhlmann, M. Thimm

Number of
Epochs

Learning
rate

Dropout Accuracy
Yes

Accuracy
No

Accuracy
total

F1 Score

500 0.1 0.05 0.2488 0.9705 0.8045 0.3693
500 0.01 0.05 0.2589 0.9669 0.8041 0.3781
500 0.001 0.05 0.2372 0.9735 0.8042 0.3578

250 0.01 0.05 0.2659 0.9644 0.8037 0.3839
750 0.01 0.05 0.2728 0.9622 0.8037 0.3899

500 0.01 0.01 0.2682 0.9637 0.8038 0.3859
500 0.01 0.1 0.2494 0.9697 0.8041 0.3693

Table 5. Classification results after training with a more balanced dataset in regard
to instances per class.

terms of number of instances per class. A dataset where the two classes are
about equally distributed might lead to an improvement. Therefore, an addi-
tional training set is generated, which conists of 100 Barabási-Albert graphs and
a total of 100 graphs of the other types (20 graphs of each). The results for train-
ing with this dataset under different parameter settings (regarding the learning
rate, number of epochs, and dropout rate) are displayed in Table 5. It becomes
clear that the overall accuracy does not improve significantly in comparison to
the previous results. Nevertheless, the accuracy of class Yes increased to values
between 23.72% (500 epochs, learning rate 0.001, dropout 0.05) and 27.28% (750
epochs, learning rate 0.01, dropout 0.05). So, these results might be considered
a slight improvement, because they are more evenly distributed than the former
ones. Another observation is that changes in number of epochs, learning rate, or
dropout rate do not lead to any significant improvements in total accuracy. In
fact, most alterations in parameter settings yield slightly worse results.

Looking into the actual numbers of instances of Yes and No reveals that
instances of the latter class are still the majority (54.4%). To further equalize the
number of instances per class, the training set is augmented by 27 more Barabási-
Albert graphs (7300 arguments). The distribution of ground truth labels is now
50.6% YES and 49,4% No, respectively. Training the neural network with this
dataset (parameters are set to 500 epochs, a learning rate of 0.01, and a dropout
rate of 0.05) results in a total accuracy of 80.0%. However, the accuracy of class
Yes increased to 29.7%, while the corresponding value for class No marginally
decreased to 95.0%. This demonstrates that using a more balanced training set
(in respect of instances per class) also leads to more balanced results. Since the
test set consists of 77.0% instances of class No, the total accuracy does not
increase, though.

Competition data In order to get a sense of how the training results transfer
to other data, two differently trained models are tested on the competition data
(see Section 4.1). The first model is trained with the 50-of-each dataset. The
learning rate is set to 0.01, dropout to 0.05, and number of epochs to 500. The
second model uses the same settings, but is trained with the more balanced

Using Graph Convolutional Networks for Abstract Argumentation 11

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Accuracy Yes

Accuracy No

Accuracy total

0.17

0.93

0.63

0.1

0.97

0.62

Yes/No balanced

50-of-each

Fig. 2. Results for testing with benchmark data.

dataset containing 127 Barabási-Albert graphs and 100 others as illustrated
above. Figure 2 displays a comparison of the results. The overall accuracy is
very similar for both training sets: about 17% lower than for the regular test set,
and the class-specific accuracy values are lower, too. This might be due to the
benchmark dataset containing graphs that are smaller or larger than the ones in
the training set. Also, additional types of graphs are included in the benchmark
dataset.

Runtime performance Aside from the quality of the classification results,
another aspect that needs to be considered is the time efficiency. In order to put
GCN’s efficiency into perspective, it is compared to CoQuiAAS, the SAT-based
argumentation solver used to provide ground truth labels for the training and
test sets.

For the GCN approach, only the time for evaluating the test set is measured,
since a neural network can, once it is trained, classify as many arguments as
one wishes. Both methods are evaluated on classifying the entire test set (see
Section 4.1) using the same hardware. The difference is enormous: While the
GCN classifies the entire test set within < 0.5 seconds, CoQuiAAS needs about
an hour (60.98 minutes). It is to be noted that the value for testing using a
trained GCN varies a bit depending on the training conditions. For example, a
measurement taken after training with the biggest training set (600 graphs) is
0.22 seconds. Training with half the data lead to 0.13 seconds.

Table 6 reveals the big fluctuations in the amounts of time CoQuiAAS needs
to decide for a single argument whether it is included in a preferred extension
or not. While the lowest value is at 0.002 seconds, the highest one is at 19.27
seconds—which is about 8674 times as much. It is also worth noting that, if
evaluating the whole test set takes the GCN 0.22 seconds, it takes an average of
7·10−6 = 0.000007 seconds. That means, the minimal amount of time CoQuiAAS
needed to evaluate an argument is still 317 times as much as the average amount
of time the GCN takes. We only report on the mean runtime for the GCN
approach as classification is independent of the instance, it is only polynomial in

12 I. Kuhlmann, M. Thimm

Method Property Time in seconds

CoQuiAAS maximum 19.274452
CoQuiAAS mean 0.119561
CoQuiAAS minimum 0.002222
GCN mean 0.000007

Table 6. Time measurements in comparison.

the size of the trained network. It follows that the GCN approach has constant
runtime wrt. the size of the instance.

Of course, one needs to consider that a neural network also needs time for
training and possibly for preprocessing. Using the GCN framework, the training
process took approximately between 20 minutes and two hours—depending on
the dataset size and the parameter settings such as number of epochs or learning
rate. For other network models and frameworks, training might take a lot longer.
Nonetheless, once sufficient data is provided and the network is trained, it can
be used for any test set and it is extremely fast.

5 Conclusion

All in all, the attempt of training a graph-convolutional network on abstract
argumentation frameworks in order to decide whether an argument is included
in a preferred extension or not was rather moderate. The overall accuracy did
under no circumstances exceed 80.5%. When testing with benchmark data, it
was even lower (63%). However, extending the diversity of the training set, for
instance, by adding different-sized graphs or by adding new types of graphs,
might improve this result.

Furthermore, training a neural network model involves adjusting a great num-
ber of parameters. Also, some of these parameters depend on each other. Con-
sidering that training a neural network requires careful adaption of the training
data, the parameter settings, and the network architecture itself, and that some
aspects also affect others, examining all reasonable possibilities exceeds the ex-
tent of this work.

The training results are moderate: On the one hand, the overall classifica-
tion accuracy does not exceed 80.5%, which is not good enough for practical
applications, but on the other hand, it proves that the network learned at least
some rudimental features of a preferred extension. The fact that instances from
both classes can be classified correctly reinforces this statement. The accuracy
for class Yes is far lower (< 30%) than the accuracy for class No (> 90%) in
all training procedures. A reason for this effect may be that the majority of the
training data is not included in an extension and thus labelled as No. Using
a training set where the distribution of instances per class is more balanced,
counteracts this effect to some degree. Using benchmark data for testing leads
to an overall accuracy of about 63%. The decrease in accuracy in comparison to

Using Graph Convolutional Networks for Abstract Argumentation 13

the specifically generated test set might be due to graph sizes and types that are
unknown to the network model, as they were not included in the training data.

Moreover, a GCN’s classification process is very time efficient: the entire test
set (30,603 arguments) is classified in < 0.5 seconds. For comparison: the SAT
solver CoQuiAAS takes about an hour for the same dataset.

Generally, neural networks seem to be suited to perform the task of classi-
fying arguments as “included in a preferred extension” or “not included in a
preferred extension”. After all, it did work to a certain degree. Nevertheless,
the chosen network architecture seems to be inadequate for the task of abstract
argumentation. It is quite possible that a different network architecture leads
to better results. For example, an increased number of layers in a network or
more neurons per layer may increase the network’s ability to learn more com-
plex features. The results gathered in this paper show signs of underfitting, so
a deeper network would be a plausible strategy. Besides, GCNs were originally
constructed to process undirected graphs, yet argumentation frameworks are
represented as directed graphs. If a better suited neural network is found, the
next step could be to expand the classification problem to a regession problem by
training the network to predict entire extensions, or even all possible extensions
of an argumentation framework.

Acknowledgements The research reported here was partially supported by the
Deutsche Forschungsgemeinschaft (grant KE 1686/3-1).

References

1. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghe-
mawat, S., Irving, G., Isard, M., et al.: Tensorflow: a system for large-scale machine
learning. In: OSDI. vol. 16, pp. 265–283 (2016)

2. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Reviews of
modern physics 74(1), 47 (2002)

3. Atkinson, K., Baroni, P., Giacomin, M., Hunter, A., Prakken, H., Reed, C., Simari,
G.R., Thimm, M., Villata, S.: Toward artificial argumentation. AI Magazine 38(3),
25–36 (October 2017)

4. Besnard, P., Hunter, A.: Constructing argument graphs with deductive arguments:
a tutorial. Argument & Computation 5(1), 5–30 (2014)

5. Cerutti, F., Gaggl, S.A., Thimm, M., Wallner, J.P.: Foundations of implementa-
tions for formal argumentation. In: Baroni, P., Gabbay, D., Giacomin, M., van der
Torre, L. (eds.) Handbook of Formal Argumentation, chap. 15. College Publica-
tions (February 2018)

6. Cerutti, F., Giacomin, M., Vallati, M.: Generating challenging benchmark afs.
COMMA 14, 457–458 (2014)

7. Cerutti, F., Oren, N., Strass, H., Thimm, M., Vallati, M.: A benchmark framework
for a computational argumentation competition. In: COMMA. pp. 459–460 (2014)

8. Ding, B.N.K.L.: Neural network fundamentals with graphs, algorithms and appli-
cations. Mac Graw-Hill (1996)

9. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artificial intelligence
77(2), 321–357 (1995)

14 I. Kuhlmann, M. Thimm

10. Dvořák, W., Dunne, P.E.: Computational problems in formal argumentation and
their complexity. In: Baroni, P., Gabbay, D., Giacomin, M., van der Torre, L. (eds.)
Handbook of Formal Argumentation, chap. 14. College Publications (February
2018)

11. Erdos, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hung.
Acad. Sci 5(1), 17–60 (1960)

12. Gaggl, S.A., Linsbichler, T., Maratea, M., Woltran, S.: Summary report of the
second international competition on computational models of argumentation. AI
Magazine 39(4) (2018)

13. Garćıa, A.J., Simari, G.R.: Defeasible logic programming: Delp-servers, contex-
tual queries, and explanations for answers. Argument & Computation 5(1), 63–88
(2014)

14. Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer percep-
tron)—a review of applications in the atmospheric sciences. Atmospheric envi-
ronment 32(14), 2627–2636 (1998)

15. Hammond, D.K., Vandergheynst, P., Gribonval, R.: Wavelets on graphs via spec-
tral graph theory. Applied and Computational Harmonic Analysis 30(2), 129–150
(2011)

16. Jain, A.K., Mao, J., Mohiuddin, K.M.: Artificial neural networks: A tutorial. Com-
puter 29(3), 31–44 (1996)

17. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907 (2016)

18. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in neural information processing systems.
pp. 1097–1105 (2012)

19. Lagniez, J.M., Lonca, E., Mailly, J.G.: Coquiaas: A constraint-based quick abstract
argumentation solver. In: Tools with Artificial Intelligence (ICTAI), 2015 IEEE
27th International Conference on. pp. 928–935. IEEE (2015)

20. Michie, D., Spiegelhalter, D.J., Taylor, C.C.: Machine learning, neural and statis-
tical classification. Citeseer (1994)

21. Modgil, S., Prakken, H.: The ASPIC+ framework for structured argumentation:
A tutorial. Argument & Computation 5, 31–62 (2014)

22. Niu, D., Liu, L., Lü, S.: New stochastic local search approaches for computing
preferred extensions of abstract argumentation. AI Communications 31(4), 369–
382 (June 2018)

23. Schmidt, R.F., Lang, F., Heckmann, M.: Physiologie des menschen: mit patho-
physiologie. Springer-Verlag (2011)

24. Thimm, M.: Stochastic local search algorithms for abstract argumentation under
stable semantics. In: Modgil, S., Budzynska, K., Lawrence, J. (eds.) Proceedings of
the Seventh International Conference on Computational Models of Argumentation
(COMMA’18). Frontiers in Artificial Intelligence and Applications, vol. 305, pp.
169–180. Warsaw, Poland (September 2018)

25. Thimm, M., Villata, S.: The first international competition on computational mod-
els of argumentation: Results and analysis. Artificial Intelligence 252, 267–294
(2017)

26. Toni, F.: A tutorial on assumption-based argumentation. Argument & Computa-
tion 5(1), 89–117 (2014)

27. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’networks. nature
393(6684), 440 (1998)

