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Abstract

We discuss the issue of evaluating inconsistency measures along the
three dimensions of rationality postulates, expressivity, and computa-
tional complexity. We survey a broad selection on inconsistency measures
and evaluate their performance on these three dimensions.

1 Introduction

In classical logic, the notion of inconsistency is a binary concept. Either a
formula (or a set of formulas) is inconsistent or not. However, quantifying
inconsistency is an important challenge for logical accounts to knowledge rep-
resentation as differences in the severity of inconsistency may indeed be recog-
nised for certain types of applications. Consider the following two classical
logic knowledge bases

K1 = {a,¬a, b,¬b} K2 = {¬b, a, a→ b, c}

Both K1 and K2 are classically inconsistent, i. e., there is no interpretation satis-
fying any of them. But looking closer into the structure of the knowledge bases
one can identify differences in the severity of the inconsistency. In K1 there are
two apparent contradictions, i. e., {a,¬a} and {b,¬b} are directly conflicting
formulas. In K2, the conflict is a bit more hidden. Here, three formulas are
necessary to produce a contradiction ({¬b, a, a → b}). Moreover, there is one
formula in K2 (c), which is not participating in any conflict and one could still
infer meaningful information from this by relying on e. g. paraconsistent rea-
soning techniques [5]. In conclusion, one should regard K1 as more inconsistent
than K2.

The analysis of the severity of inconsistency in the knowledge bases K1

and K2 above was informal. Formal accounts to the problem of assessing the
severity of inconsistency are given by inconsistency measures and there have
been a lot of proposals of those in recent years (see the other chapters in this
volume and the measures reviewed in Section 3). Up to today, the concept of



severity of inconsistency has not been axiomatized in a satisfactory manner
and the series of different inconsistency measures approach this challenge from
different points of view and focus on different aspects on what constitutes
severity. Consider the next two knowledge bases

K3 = {a,¬a, b} K4 = {a ∨ b,¬a ∨ b, a ∨ ¬b,¬a ∨ ¬b}

Again both K3 and K4 are inconsistent, but which one is more inconsistent
than the other? Our reasoning from above cannot be applied here in the same
fashion. The knowledge base K3 contains an apparent contradiction ({a,¬a})
but also a formula not participating in the inconsistency ({b}). The knowl-
edge base K4 contains a “hidden” conflict as four formulas are necessary to
produce a contradiction, but all formulas of K4 are participating in this. In
this case, it is not clear how to quantitatively assess the inconsistency of these
knowledge bases and different measures may order these knowledge bases differ-
ently. More generally speaking, it is not universally agreed upon which so-called
rationality postulates should be satisfied by a reasonable account of inconsis-
tency measurement, see [3] for a discussion. Besides concrete approaches to
inconsistency measurement the community has also proposed a series of those
rationality postulates in order to describe general desirable behaviour and the
classification of inconsistency measures by the postulates they satisfy is still
one the most important ways to evaluate the quality of a measure, even if the
set of desirable postulates is not universally accepted. For example, one of the
most popular rationality postulates is monotonicity which states that for any
K ⊆ K′, the knowledge base K cannot be regarded as more inconsistent as K′.
The justification for this demand is that inconsistency cannot be resolved when
adding new information but only increased. While this is usually regarded as a
reasonable demand there are also situations where monotonicity may be seen
as counterintuitive. Consider the next two knowledge bases

K5 = {a,¬a} K6 = {a,¬a, b1, . . . , b998}

We have K5 ⊆ K6 and following monotonicity, K6 should be regarded as least
as inconsistent as K5. However, when judging the content of the knowledge
bases in a “relative” manner, K5 may seem more inconsistent. More precisely,
K5 contains no useful information and all formulas of K5 are in conflict with
another formula. In K6, however, only 2 out of 1000 formulas are participating
in the contradiction. So it may also be a reasonable point of view to judge K5

more inconsistent than K6.
In this chapter, we will not give a final answer to the discussion on which

rationality postulate is desirable or not. We will, however, provide a compre-
hensive overview of the existing rationality postulates and the compliance of
different measures wrt. those, continuing work from [41]. It is up to the reader
and future work to conclude said discussion. Besides satisfaction of rationality



postulates we will address two more “objective” evaluation metrics, namely ex-
pressivity [38] and computational complexity [44, 43]. The former refers to the
ability of an inconsistency measure to differentiate many levels of the severity
of inconsistency. Consider the following family of knowledge bases

K1
7 = {a1,¬a1} K2

7 = {a1,¬a1, a2,¬a2} . . . Kn7 = {a1,¬a1, . . . , an,¬an}

Each knowledge base Ki+1
7 contains one more apparent contradiction than Ki7,

so it is reasonable to assess Ki+1
7 as strictly more inconsistent than Ki7. Fol-

lowing [38] we will present a formal framework for assessing the expressivity
of inconsistency measures and provide a comprehensive overview of the ex-
pressivity of different measures. Finally, we will consider the computational
complexity involved in computing the value of an inconsistency measure, fol-
lowing [44, 43]. As detecting inconsistency alone is an intractable problem, we
cannot hope to determine inconsistency values in an efficient manner. However,
inconsistency measures can be classified into different levels of the polynomial
hierarchy and thus algorithms determining them may exhibit significant differ-
ences in performance. As before, we provide a comprehensive overview of the
computational complexity landscape of different measures as well.

This chapter summarises the works [38, 41, 44, 43] and complements their
results by additionally considering more recent approaches to inconsistency
measurement. The rest of this chapter is organised as follows. In Section 2
we present necessary preliminaries on propositional logic and we review our
selection of inconsistency measures to be studied in Section 3. In Sections 4, 5,
and 6 presents the evaluation measures of rationality postulates, expressivity,
and computational complexity, respectively. We conclude in Section 7. Ap-
pendix 7 contains proofs of new technical results.

2 Preliminaries

Let At be some fixed propositional signature, i. e., a (possibly infinite) set of
propositions, and let L(At) be the corresponding propositional language con-
structed using the usual connectives ∧ (conjunction), ∨ (disjunction),→ (impli-
cation), and ¬ (negation). A literal is a proposition p or a negated proposition
¬p.

Definition 1. A knowledge base K is a finite set of formulas K ⊆ L(At). Let
K be the set of all knowledge bases.

A clause is a disjunction of literals. A formula is in conjunctive normal form
(CNF) if the formula is a conjunction of clauses. If X is a formula or a set of
formulas we write At(X) to denote the set of propositions appearing in X. For
a set S = {φ1, . . . , φn} let

∧
S = φ1 ∧ . . . ∧ φn.



Semantics for a propositional language is given by interpretations where an
interpretation ω on At is a function ω : At→ {true, false}. Let Ω(At) denote the
set of all interpretations for At. An interpretation ω satisfies (or is a model of)
an atom a ∈ At, denoted by ω |= a, if and only if ω(a) = true. The satisfaction
relation |= is extended to formulas in the usual way.

For Φ ⊆ L(At) we also define ω |= Φ if and only if ω |= φ for every φ ∈ Φ.
Define furthermore the set of models Mod(X) = {ω ∈ Ω(At) | ω |= X} for
every formula or set of formulas X. Two formulas or sets of formulas X1, X2

are equivalent, denoted by X1 ≡ X2, if and only if Mod(X1) = Mod(X2).
Furthermore, two sets of formulas X1, X2 are semi-extensionally equivalent
[36, 37]—or bijection equivalent [10]—if and only if there is a bijection s :
X1 → X2 such that for all α ∈ X1 we have α ≡ s(α) . We denote this by
X1 ≡b X2. If Mod(X) = ∅ we also write X |=⊥ and say that X is inconsistent.

3 Inconsistency Measures

Let R∞≥0 be the set of non-negative real values including ∞. Inconsistency
measures are functions I : K → R∞≥0 that aim at assessing the severity of
inconsistency in a knowledge base K, cf. [10]. The basic idea is that the
larger the inconsistency in K the larger the value I(K). Formally, we define
inconsistency measures as follows, cf. e. g. [15].

Definition 2. An inconsistency measure I is any function I : K→ R∞≥0.

There is a wide variety of inconsistency measures in the literature. In this
work, we select 22 inconsistency measures in order to discuss issues pertain-
ing to their evaluation. We briefly introduce these measures in this section
for the sake of completeness, but we refer for a detailed explanation to the
corresponding original papers.1

The measure Id(K) is usually referred to as a baseline for inconsistency
measures as it only distinguishes between consistent and inconsistent knowledge
bases.

Definition 3 ([15]). The drastic inconsistency measure Id : K → R∞≥0 is
defined as

Id(K) =

{
1 if K |=⊥
0 otherwise

for K ∈ K.

A set M ⊆ K is called a minimal inconsistent subset (MI) of K if M |=⊥
and there is no M ′ ⊂M with M ′ |=⊥. Let MI(K) be the set of all MIs of K.

1Implementations of these measures can also be found in the Tweety Libraries for Artificial
Intelligence [42] and an online interface is available at http://tweetyproject.org/w/incmes



Definition 4 ([15]). The MI-inconsistency measure IMI : K→ R∞≥0 is defined
as

IMI(K) = |MI(K)|

for K ∈ K.

Definition 5 ([15]). The MIc-inconsistency measure IMIC : K→ R∞≥0 is defined
as

IMIC(K) =
∑

M∈MI(K)

1

|M |

for K ∈ K.

A probability function P on L(At) is a function P : Ω(At) → [0, 1] with∑
ω∈Ω(At) P (ω) = 1. We extend P to assign a probability to any formula

φ ∈ L(At) by defining

P (φ) =
∑
ω|=φ

P (ω)

Let P(At) be the set of all those probability functions.

Definition 6 ([22]). The η-inconsistency measure Iη : K→ R∞≥0 is defined as

Iη(K) = 1−max{ξ | ∃P ∈ P(At) : ∀α ∈ K : P (α) ≥ ξ}

for K ∈ K.

A three-valued interpretation υ on At is a function υ : At→ {T, F,B} where
the values T and F correspond to the classical true and false, respectively. The
additional truth value B stands for both and is meant to represent a conflicting
truth value for a proposition. The function υ is extended to arbitrary formulas
as shown in Table 1. An interpretation υ satisfies a formula α, denoted by
υ |=3 α if either υ(α) = T or υ(α) = B. Inconsistency can be measured by
seeking an interpretation υ that assigns B to a minimal number of propositions.

Definition 7 ([10]). The contension inconsistency measure Ic : K → R∞≥0 is
defined as

Ic(K) = min{|υ−1(B)| | υ |=3 K}

for K ∈ K.

Let MC(K) be the set of maximal consistent subsets of K, i. e.

MC(K) = {K′ ⊆ K | K′ 6|=⊥ ∧∀K′′ ) K′ : K′′ |=⊥}

Furthermore, let SC(K) be the set of self-contradictory formulas of K, i. e.

SC(K) = {φ ∈ K | φ |=⊥}



α β υ(α ∧ β) υ(α ∨ β) α υ(¬α)
T T T T T F
T B B T B B
T F F T F T
B T B T
B B B B
B F F B
F T F T
F B F B
F F F F

Table 1: Truth tables for propositional three-valued logic.

Definition 8 ([10]). The MC-inconsistency measure Imc : K→ R∞≥0 is defined
as

Imc(K) = |MC(K)|+ |SC(K)| − 1

for K ∈ K.

Definition 9 ([10]). The problematic inconsistency measure Ip : K → R∞≥0 is
defined as

Ip(K) = |
⋃

M∈MI(K)

M |

for K ∈ K.

A subset H ⊆ Ω(At) is called a hitting set of K if for every φ ∈ K there is
ω ∈ H with ω |= φ.

Definition 10 ([39]). The hitting-set inconsistency measure Ihs : K→ R∞≥0 is
defined as

Ihs(K) = min{|H| | H is a hitting set of K} − 1

for K ∈ K with min ∅ =∞.

An interpretation distance d is a function d : Ω(At)× Ω(At) → [0,∞) that
satisfies (let ω, ω′, ω′′ ∈ Ω(At))

1. d(ω, ω′) = 0 if and only if ω = ω′ (reflexivity),

2. d(ω, ω′) = d(ω′, ω) (symmetry), and

3. d(ω, ω′′) ≤ d(ω, ω′) + d(ω′, ω′′) (triangle inequality).



One prominent example of such a distance is the Dalal distance dd defined via

dd(ω, ω′) = |{a ∈ At | ω(a) 6= ω′(a)}|

for all ω, ω′ ∈ Ω(At). If X ⊆ Ω(At) is a set of interpretations we define
dd(X,ω) = minω′∈X dd(ω′, ω) (if X = ∅ we define dd(X,ω) = ∞). For def-
initions 11, 12, and 13 below we assume dd fixed but the measures could be
defined using arbitrary distances.

Definition 11 ([12]). The Σ-distance inconsistency measure IΣ
dalal : K→ R∞≥0

is defined as

IΣ
dalal(K) = min

{∑
α∈K

dd(Mod(α), ω) | ω ∈ Ω(At)

}

for K ∈ K.

Definition 12 ([12]). The max-distance inconsistency measure Imax
dalal : K →

R∞≥0 is defined as

Imax
dalal(K) = min

{
max
α∈K

dd(Mod(α), ω) | ω ∈ Ω(At)

}
for K ∈ K.

Definition 13 ([12]). The hit-distance inconsistency measure Ihit
dalal : K→ R∞≥0

is defined as

Ihit
dalal(K) = min {|{α ∈ K | dd(Mod(α), ω) > 0}| | ω ∈ Ω(At)}

for K ∈ K.

For K ∈ K define

MI(i)(K) = {M ∈ MI(K) | |M | = i}

CN(i)(K) = {C ⊆ K | |C| = i ∧ C 6|=⊥}

Ri(K) =

{
0 if |MI(i)(K)|+ |CN(i)(K)| = 0

|MI(i)(K)|/(|MI(i)(K)|+ |CN(i)(K)|) otherwise

for i = 1, . . . , |K|.

Definition 14 ([31]). TheDf -inconsistency measure IDf
: K→ R∞≥0 is defined

as

IDf
(K) = 1−Π

|K|
i=1(1−Ri(K)/i)

for K ∈ K.



A minimal proof for α ∈ {x,¬x | x ∈ At} in K is a set π ⊆ K such that

1. α appears as a literal in π

2. π |= α, and

3. π is minimal wrt. set inclusion.

Let PKm(x) be the set of all minimal proofs of x in K.

Definition 15 ([21]). The proof-based inconsistency measure IPm
: K→ R∞≥0

is defined as

IPm
(K) =

∑
a∈At

|PKm(a)| · |PKm(¬a)|

for K ∈ K.

Definition 16 ([46]). Themv inconsistency measure Imv : K→ R∞≥0 is defined
as

Imv(K) =
|
⋃
M∈MI(K) At(M)|
|At(K)|

for K ∈ K.

Definition 17 ([7]). The nc-inconsistency measure Inc : K → R∞≥0 is defined
as

Inc(K) = |K| −max{n | ∀K′ ⊆ K : |K′| = n⇒ K′ 6|=⊥}

for K ∈ K.

The work [40] considers different families of inconsistency measures based

on many-valued logics. We focus here on the three instantiations Ifuz
tprod

, Ifuz,Σ
tmin

,

Ifuz,Σ
tprod

based on Fuzzy logic.
A fuzzy product interpretation ω is a function ω : L(At) → [0, 1] satisfying

ω(¬α) = 1 − ω(α), ω(α ∧ β) = ω(α)ω(β), and ω(α ∨ β) = ω(α) + ω(β) −
ω(α)ω(β). A fuzzy minimum interpretation ω is a function ω : L(At) → [0, 1]
satisfying ω(¬α) = 1 − ω(α), ω(α ∧ β) = min(ω(α), ω(β)), and ω(α ∨ β) =
max(ω(α), ω(β)). Let Ωprod and Ωmin be the sets of all fuzzy product interpre-
tations and fuzzy minimum interpretations, respectively.

Definition 18 ([40]). The product fuzzy inconsistency measure Ifuz
tprod

is defined
as

Ifuz
tprod

(K) = min{1− ω(
∧
K) | ω ∈ Ωprod}

for K ∈ K.



Definition 19 ([40]). The minimum-sum fuzzy inconsistency measure Ifuz,Σ
tmin

is defined as

Ifuz,Σ
tmin

(K) = min{
∑
α∈K

(1− ω(α)) | ω ∈ Ωmin}

for K ∈ K.

Definition 20 ([40]). The product-sum fuzzy inconsistency measure Ifuz,Σ
tprod

is
defined as

Ifuz,Σ
tprod

(K) = min{
∑
α∈K

(1− ω(α)) | ω ∈ Ωprod}

for K ∈ K.

Note that we do not consider the minimum fuzzy inconsistency measure,
i. e., the variant of Definition 18 with minimum product interpretation, as this
is equivalent to Id [40].

A set of maximal consistent subsets C ⊆ MC(K) is called an MC-cover if⋃
C∈C

C = K

An MC-cover C is normal if no proper subset of C is an MC-cover. A normal
MC-cover is maximal if

λ(C) = |
⋂
C∈C

C|

is maximal for all normal MC-covers.

Definition 21 ([1]). The MCSC inconsistency measure Imcsc : K → R∞≥0 is
defined as

Imcsc(K) = |K| − λ(C)

for all K ∈ K and any maximal MC-cover C. If there is no maximal MC-cover
we define Imcsc(K) = |K|.

Note that the case of the non-existence of a (maximal) MC-cover happens
when K contains an inconsistent formula such as a∧¬a. This special case was
only implicit in [1].

For a formula φ let φ[a1, i1 → ψ1; . . . , ak, ik → ψk] denote the formula φ
where the ijth occurrence of the proposition aj is replaced by the formula ψj ,
for all j = 1, . . . , k. For example,

(a ∧ b ∨ (¬a ∧ b))[a, 2→ >; b, 1→⊥] = (a∧ ⊥ ∨(¬> ∧ b))



Definition 22 ([4]2). The forgetting-based inconsistency measure Iforget : K→
R∞≥0 is defined as

Iforget(K) = min{k | (
∧
K)[a1, i1 → φ1; . . . ; ak, ik → φk] 6|=⊥, φj ∈ {⊥,>}}

for all K ∈ K.

A set {K1, . . . ,Kn} of pairwise disjoint subsets of K is called a conditional
independent MUS partition ofK, iff eachKi is inconsistent and MI(K1∪. . .∪Kn)
is the disjoint union of all MI(Ki).

Definition 23 ([18]). The CC inconsistency measure ICC : K → R∞≥0 is
defined as

ICC(K) = max{n | {K1, . . . ,Kn} is a conditional independent MUS partition of K}

for all K ∈ K.

Definition 24 ([17]). The independent set-based inconsistency measure Iis :
K→ R∞≥0 is defined as

Iis(K) = ln |{K ⊆ MI(K) | K consists of pairwise disjoint subsets}|

for all K ∈ K.

Note that [17] did not explicitly define the basis of the logarithm used in
the previous definition. As the exact choice only changes the scaling behaviour
of the measure, we make it explicit and use the natural logarithm.

The formal definitions of the considered inconsistency measures are sum-
marised in Figure 1.

We conclude this section with a small example illustrating the behavior of
the considered inconsistency measures.

Example 1. Let K8 and K9 be given as

K8 = {a, b ∨ c,¬a ∧ ¬b, d} K9 = {a,¬a, b,¬b}

Then

Id(K8) = 1 Id(K9) = 1

IMI(K8) = 1 IMI(K9) = 2

IMIC(K8) = 1/2 IMIC(K9) = 1

Iη(K8) = 1/2 Iη(K9) = 1/2

Ic(K8) = 1 Ic(K9) = 2

2Note that we give a slightly different but equivalent formalization.



Id(K) =

{
1 if K |=⊥
0 otherwise

IMI(K) = |MI(K)|

IMIC(K) =
∑

M∈MI(K)

1

|M |

Iη(K) = 1−max{ξ | ∃P ∈ P(At) : ∀α ∈ K : P (α) ≥ ξ}

Ic(K) = min{|υ−1(B)| | υ |=3 K}

Imc(K) = |MC(K)|+ |SC(K)| − 1

Ip(K) = |
⋃

M∈MI(K)

M |

Ihs(K) = min{|H| | H is a hitting set of K} − 1

IΣ
dalal(K) = min{

∑
α∈K

dd(Mod(α), ω) | ω ∈ Ω(At)}

Imax
dalal(K) = min{max

α∈K
dd(Mod(α), ω) | ω ∈ Ω(At)}

Ihit
dalal(K) = min{|{α ∈ K | dd(Mod(α), ω) > 0}| | ω ∈ Ω(At)}

IDf (K) = 1−Π
|K|
i=1(1−Ri(K)/i)

IPm(K) =
∑
a∈At

|PKm(a)| · |PKm(¬a)|

Imv(K) =
|
⋃
M∈MI(K) At(M)|
|At(K)|

Inc(K) = |K| −max{n | ∀K′ ⊆ K : |K′| = n⇒ K′ 6|=⊥}

Ifuz
tprod

(K) = min{1− ω(
∧
K) | ω ∈ Ωprod}

Ifuz,Σ
tmin

(K) = min{
∑
α∈K

(1− ω(α)) | ω ∈ Ωmin}

Ifuz,Σ
tprod

(K) = min{
∑
α∈K

(1− ω(α)) | ω ∈ Ωprod}

Imcsc(K) = |K| − λ(C)

Iforget(K) = min{k | (
∧
K)[a1, i1 → φ1; . . . ; ak, ik → φk] 6|=⊥, φj ∈ {⊥,>}}

ICC(K) = max{n | {K1, . . . ,Kn} is a CI partition of K}
Iis(K) = ln |{K ⊆ MI(K) | K consists of pairwise disjoint subsets}|

Figure 1: Definitions of the considered inconsistency measures



Imc(K8) = 1 Imc(K9) = 3

Ip(K8) = 2 Ip(K9) = 4

Ihs(K8) = 1 Ihs(K9) = 1

IΣ
dalal(K8) = 1 IΣ

dalal(K9) = 2

Imax
dalal(K8) = 1 Imax

dalal(K9) = 1

Ihit
dalal(K8) = 1 Ihit

dalal(K9) = 2

IDf
(K8) ≈ 0.083 IDf

(K9) ≈ 0.167

IPm
(K8) = 1 IPm

(K9) = 2

Imv(K8) = 1/2 Imv(K9) = 1

Inc(K8) = 3 Inc(K9) = 3

Ifuz
tprod

(K8) = 0.75 Ifuz
tprod

(K9) = 0.9375

Ifuz,Σ
tmin

(K8) = 1 Ifuz,Σ
tmin

(K9) = 2

Ifuz,Σ
tprod

(K8) = 1 Ifuz,Σ
tprod

(K9) = 2

Imcsc(K8) = 2 Imcsc(K9) = 4

Iforget(K8) = 1 Iforget(K9) = 2

ICC(K8) = 1 ICC(K9) = 2

Iis(K8) ≈ 0.693 Iis(K9) ≈ 1.386

4 Rationality Postulates

In the following, we recall 18 rationality postulates that have been proposed
in the literature [14, 35, 16, 31, 30, 37, 3]. A previous survey of rationality
postulates can be found in [41].

The first set of rationality postulates has been proposed in [14] in order to
provide a definition of a basic inconsistency measure. In order to state these
postulates we need one further definition.

Definition 25. A formula α ∈ K is called a free formula if α /∈
⋃

MI(K). Let
Free(K) be the set of all free formulas of K.

In other words, a free formula is basically a formula that is not directly
participating in any derivation of a contradiction. Using this definition and
the concepts already introduced before, the first five rationality postulates of
[14] can be stated as follows. For the remainder of this section, let I be any
function I : K→ R∞≥0, K,K′ ∈ K, and α, β ∈ L(At).

Consistency (CO) I(K) = 0 if and only if K is consistent

Normalization (NO) 0 ≤ I(K) ≤ 1



Monotony (MO) If K ⊆ K′ then I(K) ≤ I(K′)

Free-formula independence (IN) If α ∈ Free(K) then
I(K) = I(K \ {α})

Dominance (DO) If α 6|=⊥ and α |= β then I(K ∪ {α}) ≥ I(K ∪ {β})

The first postulate, CO, requires that consistent knowledge bases receive the
minimal inconsistency value zero and every inconsistent knowledge base have
a strictly positive inconsistency value. This postulate is actually the only gen-
erally accepted postulate and describes the minimal requirement for an in-
consistency measure. An inconsistency measure I that satisfies CO does not
distinguish between consistent knowledge bases and can, at least, distinguish
inconsistent knowledge bases from consistent ones.

The postulate NO states that the inconsistency value is always in the unit
interval, thus allowing inconsistency values to be comparable even if knowledge
bases are of different sizes. In later works, this postulate is usually regarded
as an optional feature, because many measures tend to assess inconsistency
absolutely and not relatively. The distinction between these two points of view
was already made in [9], but a thorough investigation of the implications for
taking either view on the validity of other postulates has still to be made.

MO requires that adding formulas to the knowledge base cannot decrease
the inconsistency value. Besides CO this is the least disputed postulate and
most inconsistency measures do satisfy it (see below).

IN states that removing free formulas from the knowledge base should not
change the inconsistency value. The motivation here is that free formulas do
not participate in inconsistencies and should not contribute to having a certain
inconsistency value.

DO says that substituting a consistent formula α by a weaker formula β
should not increase the inconsistency value. Here, as β carries less information
than α there should be less opportunities for inconsistencies to occur.3

The set of postulates was extended in [35] for the case of inconsistency
measurement in probabilistic logics. However, we can state these postulates
also for propositional logic.

Definition 26. A formula α ∈ K is called a safe formula if it is consistent and
At(α) ∩ At(K \ {α}) = ∅. Let Safe(K) be the set of all safe formulas of K.

A formula is safe if its signature is disjoint from the signature of the rest
of the knowledge base, cf. the concept of language splitting in belief revision
[34, 24]. Every safe formula is also a free formula [35].

3A weaker version of DO has also been discussed in [2, 6]. In this version the additional
condition α /∈ K is added to the postulate. The special case α ∈ K is usually the reason that
measures do not satisfy the original version of DO; we leave a thorough study of this weaker
version for future work.



Safe-formula independence (SI) If α ∈ Safe(K) then
I(K) = I(K \ {α})

Super-Additivity (SA) If K ∩ K′ = ∅ then I(K ∪ K′) ≥ I(K) + I(K′)

Penalty (PY) If α /∈ Free(K) then I(K) > I(K \ {α})

The postulate SI requires that removing isolated formulas from a knowledge
base cannot change the inconsistency value. This postulate is a weakening of
IN, i. e., if a measure I satisfies IN it also satisfies SI, cf. [35, 41] and Theorem 1.

SA is a strengthening of MO [35] and requires that the sum of the inconsis-
tency values of two disjoint knowledge bases not be larger than the inconsis-
tency value of the joint knowledge base.

PY is the complementary postulate to IN and states that adding a formula
participating in an inconsistency must have a positive impact on the inconsis-
tency value.

The following two postulates have been first used in [16]:

MI-separability (MI) If MI(K∪K′) = MI(K)∪MI(K′) and MI(K)∩MI(K′) = ∅
then I(K ∪ K′) = I(K) + I(K′)

MI-normalization (MN) If M ∈ MI(K) then I(M) = 1

MI focuses particularly on the role of minimal inconsistent subsets in the deter-
mination of the inconsistency value. It states that the sum of the inconsistency
values of two knowledge bases that have “non-interfering” sets of minimal in-
consistent subsets should be the same as the inconsistency value of their union.

MN demands that a minimal inconsistent subset is the atomic unit for mea-
suring inconsistency by requiring that the inconsistency value of any minimal
inconsistent subset be one.

The following postulates have been proposed in [30] to further define the
role of minimal inconsistent subsets in measuring inconsistency4:

Attenuation (AT) M,M ′ ∈ MI(K) and |M | > |M ′| implies I(M) < I(M ′)

Equal Conflict (EC) M,M ′ ∈ MI(K) and |M | = |M ′| implies I(M) =
I(M ′)

Almost Consistency (AC) Let M1,M2, . . . be a sequence of minimal incon-
sistent sets Mi with limi→∞ |Mi| =∞, then limi→∞ I(Mi) = 0

4Note that in the previous study on compliance of rationality postulates [41] the postulates
AT and EC were stated in a slightly different way, we give here the original definitions.



The postulate AT states that minimal inconsistent sets of smaller size should
have a larger inconsistency value. The motivation of this postulate stems from
the lottery paradox 5 [25].

The postulate EC is the counterpart of AT and requires minimal inconsistent
subsets of the same size to have the same inconsistency value.

AC considers the inconsistency values on arbitrarily large minimal inconsis-
tent subsets in the limit and requires this to be zero.

The following postulates are from [31].

Contradiction (CD) I(K) = 1 if and only if for all ∅ 6= K′ ⊆ K, K′ |=⊥

Free Formula Dilution (FD) If α ∈ Free(K) then I(K) ≥ I(K \ {α})

CD is meant as an extension of NO and states that a knowledge base is maxi-
mally inconsistent if all non-empty subsets are inconsistent. Note that CD only
makes sense if NO is satisfied as well. FD has been introduced to serve as a
weaker version of IN for normalised measures, i. e., measures satisfying NO. For
those, it may be the case that adding free formulas decreases the inconsistency
value as they measure a “relative” amount of inconsistency. We do not con-
sider here the property Monotony w.r.t. Conflict Ratio from [31] as it is too
specifically tailored for the measure IDf

.
The following property has been mentioned independently in [36] and [10]:

Irrelevance of Syntax (SY) If K ≡b K′ then I(K) = I(K′)

SY states that knowledge bases with pairwise equivalent formulas should receive
the same inconsistency value.

In [3] a series of further postulates have been discussed. For our current
study, we only consider the following two:

Exchange (EX) If K′ 6|=⊥ and K′ ≡ K′′ then I(K ∪ K′) = I(K ∪ K′′)

Adjunction Invariance (AI) I(K ∪ {α, β}) = I(K ∪ {α ∧ β})

EX is similar in spirit to SY and demands that exchanging consistent parts of
the knowledge base with equivalent ones should not change the inconsistency
value.

AI demands that the set notation of knowledge bases should be equivalent
to the conjunction of its formulas in terms of inconsistency values. In difference
to EX note that AI has no precondition on the consistency of the considered
formulas.

5Consider a lottery of n tickets and let ai be the proposition that ticket i, i = 1, . . . , n
will win. It is known that exactly one ticket will win (a1 ∨ . . . ∨ an) but each ticket owner
assumes that his ticket will not win (¬ai, i = 1, . . . , n). For n = 1000 it is reasonable for
each ticket owner to believe that he will not win but for e. g., n = 2 it is not. Therefore larger
minimal inconsistent subsets can be regarded less inconsistent than smaller ones.



Note that not all postulates are independent and that some are incompat-
ible. Some relationships are summarised in the following theorem, see [41] for
proofs of items 1–8, [2] for proofs of items 9 and 10, proofs of items 11 and 12
are trivial and omitted. In the theorem, a statement “A implies B” is meant
to be read as “if a measure satisfies A then it satisfies B”; a statement “A1,
. . . , An are incompatible” means “there is no measure satisfying A1, . . . , An

at the same time”.

Theorem 1.

1. IN implies SI

2. IN implies FD

3. SA implies MO

4. MN and AC are incompatible

5. MN and CD are incompatible

6. MO implies FD

7. MN, MI, and NO are incompatible

8. MN, SA, and NO are incompatible

9. CO, DO, and SA are incompatible

10. CO, DO, and MI are incompatible

11. MN implies EC

12. MN and AT are incompatible

See also [3, 2] for some more detailed discussions.
Tables 2 and 3 give the complete picture on which inconsistency measure

satisfies (3) or violates (7) the previously discussed rationality postulates.
Some of these results have been shown before in [23, 15, 16, 31, 10, 46, 37,
12, 21, 18, 39, 4, 41, 40]6, marked correspondingly in Tables 2 and 3. The
proofs and counterexamples of the remaining statements are given in the ap-
pendix. Note that in [46] it has been shown that Imv satisfies restricted versions
of MO and IN where only formulas are considered that do not use fresh propo-
sitions. Some results reported here correct previous statements. In particular,
IPm does not satisfy CO as claimed in [21], Inc does not satisfy IN, SI, and DO
as claimed in [41], and both IΣ

dalal and Ihit
dalal do not satisfy DO as claimed in

[12]. Due to a different phrasing of the postulates AT and EC in [41] compared

6Note that proofs of [37] are for propositional probabilistic logic. As this is a generalization
of propositional logic, the results apply here as well.



I CO NO MO IN DO SI SA PY MI MN

Id 3[16] 3[41] 3[16] 3[16] 3[16] 3[37] 7[37] 7[37] 7[37] 3[41]

IMI 3[15] 7[41] 3[15] 3[15] 7[31] 3[37] 3[37] 3[37] 3[16] 3[16]

IMIC 3[10] 7[37] 3[10] 3[10] 7[41] 3[37] 3[37] 3[37] 3[37] 7[41]

Iη 3[23] 3[23] 3[37] 3[37] 3[41] 3[37] 7[37] 7[37] 7[37] 7[41]

Ic 3[10] 7[41] 3[10] 3[10] 3[41] 3[41] 7[41] 7[41] 7[41] 7[41]

Imc 3[10] 7[41] 3[10] 3[10] 7[41] 3[41] 7[41] 7[41] 7[18] 7[41]

Ip 3[10] 7[41] 3[10] 3[10] 7[41] 3[41] 3[41] 3[41] 7[41] 7[41]

Ihs 3[39] 7[41] 3[39] 3[39] 3[39] 3[39] 7[39] 7[41] 7[39] 7[41]

IΣ
dalal 3[12] 7[41] 3[12] 3[12] 7 3[41] 3[41] 7[41] 7[41] 7[41]

Imax
dalal 3[12] 7[41] 3[12] 3[12] 3[12] 3[41] 7[41] 7[41] 7[41] 7[41]

Ihit
dalal 3[12] 7[41] 3[12] 3[12] 7 3[41] 3[41] 7[41] 7[41] 3[41]

IDf
3[31] 3[31] 7[41] 7[41] 7[41] 7[41] 7[41] 7[41] 7[41] 7[41]

IPm 7 7[41] 3[21] 7[21] 7[21] 3[41] 3[41] 3[41] 7[41] 7[41]

Imv 3[46] 3[41] 7[41] 7[41] 7[41] 7[41] 7[41] 7[41] 7[41] 3[41]

Inc 3[41] 7[41] 3[41] 7 7 7 3[41] 3[41] 7[41] 3[41]

Ifuz
tprod

3[40] 3[40] 3[40] 7[40] 7[40] 3[40] 7[40] 7[40] 7[40] 7[40]

Ifuz,Σ
tmin

3[40] 7[40] 3[40] 7[40] 3[40] 3[40] 3[40] 7[40] 7[40] 7[40]

Ifuz,Σ
tprod

3[40] 7[40] 3[40] 7[40] 7[40] 3[40] 3[40] 7[40] 7[40] 7[40]

Imcsc 3[1] 7 3[1] 3[1] 7[1] 3 3[1] 7 7[1] 7

Iforget 3[4] 7 3[4] 3[4] 7[4] 3 3 7 7 7

ICC 3 7 3[18] 3 7 3 7[20] 7 3[18] 3

Iis 3[17] 7 3[17] 3[17] 7 3 3 3 3[17] 3[17]

Table 2: Compliance of inconsistency measures with rationality postulates CO,
NO, MO, IN, DO, SI, SA, PY, MI, and MN; previous results are indicated by
a super-scripted reference of the original work (some of the results have been
shown in multiple publications, only the first occurrence is cited)

to their original definitions in [30], we also corrected some results pertaining to
these. See Appendix 7 for the corresponding proofs and counterexamples.

The only rationality postulate that almost all considered measures agree
upon is CO, which is not surprising as it captures the minimal requirement
for any inconsistency measure.7 Most measures also satisfy MO, which is also
the least disputed in the literature. The only cases where MO fails is usually
when NO is satisfied, cf. IDf

and Imv. However, note that MO and NO are
not generally incompatible as e. g. Iη satisfies both. Some other postulates are
violated by most of the considered inconsistency measures, in particular if they
address a very specific feature. For example, CD is motivated by the measure
IDf

—which is also the only one satisfying it—and can be seen as the coun-
terpart to CO as it describes a concept of maximal inconsistency. Of course,
requiring that a maximally inconsistent knowledge base receive the maximal

7The fact that IPm violates CO is also unintentional as the original paper [21] falsely
claimed that CO is satisfied



I AT EC AC CD FD SY EX AI

Id 7 3 7[41] 7[41] 3[41] 3[37] 3[41] 3[41]

IMI 7 7 7[41] 7[41] 3[41] 3[10] 7[41] 7[41]

IMIC 3[41] 3[41] 3[41] 7[41] 3[41] 3[10] 7[41] 7[41]

Iη 3[41] 3[41] 3[41] 7[41] 3[41] 3[37] 7[41] 7[41]

Ic 7[41] 7[41] 7[41] 7[41] 3[41] 7[10] 3[41] 3[41]

Imc 7[41] 3 7[41] 7[41] 3[41] 3[10] 7[41] 7[41]

Ip 7[41] 3[41] 7[41] 7[41] 3[41] 3[10] 7[41] 7[41]

Ihs 7 3 7[41] 7[41] 3[41] 3[39] 7[41] 7[41]

IΣ
dalal 7[41] 7[41] 7[41] 7[41] 3[41] 3[41] 7[41] 7[41]

Imax
dalal 7[41] 7[41] 7[41] 7[41] 3[41] 3[41] 7[41] 7[41]

Ihit
dalal 7 3 7[41] 7[41] 3[41] 3[41] 7[41] 7[41]

IDf
3[31] 3[41] 3[31] 3[31] 3[31] 3[41] 7[41] 7[41]

IPm 7[41] 7[41] 7[41] 7[41] 3[41] 7[41] 7[41] 7[41]

Imv 7 3 7[41] 7[41] 7[41] 7[41] 7[41] 7[41]

Inc 7 3 7[41] 7[41] 3[41] 3[41] 7[41] 7[41]

Ifuz
tprod

7[40] 7[40] 7[40] 7[40] 3[40] 7[40] 7[40] 3[40]

Ifuz,Σ
tmin

7[40] 3 7[40] 7[40] 3[40] 3[40] 7[40] 7[40]

Ifuz,Σ
tprod

7[40] 7[40] 7[40] 7[40] 3[40] 7[40] 7[40] 7[40]

Imcsc 7 3 7 7 3 3 7 7

Iforget 7 7 7 7 3 7 7[4] 3[4]

ICC 7 3 7 7 3 3 7 7
Iis 7 3 7 7 3 3 7 7

Table 3: Compliance of inconsistency measures with rationality postulates AT,
EC, AC, CD, FD, SY, EX, and AI; previous results are indicated by a super-
scripted reference of the original work (some of the results have been shown in
multiple publications, only the first occurrence is cited)

possible inconsistency value is a desirable property. The specific instance of this
requirement in CD, i. e., that maximal inconsistency is defined by not having
non-empty consistent subsets and that the maximal value is 1, is very specific
to IDf

. The value 1 only makes sense when the measure is normalized, so that
1 is indeed the maximal possible value. Moreover, the definition of maximal
inconsistency requires some more investigation.

One important thing to note from the results shown in Tables 2 and 3, is
that all investigated inconsistency measures satisfy different sets of postulates.
More precisely, there are no two inconsistency measures I and I ′ that satisfy
and violate the exact same set of postulates. This also means that we can find
knowledge bases K,K′ such that I(K) < I(K′) and I ′(K) ≥ I ′(K′), meaning
that all considered inconsistency measures are essentially different.8

8An earlier observation regarding a subset of the investigated measures has been made in
[10].



5 Expressivity

The drastic inconsistency measure Id (see Figure 1) is usually considered as a
very naive baseline approach for inconsistency measurement. Surprisingly, this
measure already satisfies many rationality postulates, cf. Tables 2 and 3. What
sets it apart from other more sophisticated inconsistency measures is that it
cannot differentiate between different inconsistent knowledge bases. However,
this demand is exactly what inconsistency measures are supposed to satisfy.
To address this issue, the work [38] initiated the analysis of the expressivity of
inconsistency measures. With expressivity of inconsistency measures we here
mean the number of different values an inconsistency measure can attain.

Example 2. Consider the knowledge bases K10 and K11 defined via

K10 = {a, b,¬a ∨ ¬b, c, d,¬c ∨ ¬d}
K11 = {a,¬a, b,¬b}

Both knowledge bases contain two minimal inconsistent subsets and, thus, IMI

is not able to differentiate their severity of inconsistency (recall that IMI takes
the number of minimal inconsistent subsets as the inconsistency values)

IMI(K10) = IMI(K11) = 2

On the other hand, IMIC does distinguish K10 and K11 (recall that IMIC sums
the reciprocal sizes of all minimal inconsistent subsets)

IMIC(K10) = 2/3 IMIC(K11) = 1

Therefore, IMIC can be regarded as more expressive than IMI wrt. K10 and K11

Example 3. Consider the family of knowledge bases Ki12 (for i ∈ N)

Ki12 = {a1 ∧ . . . ∧ ai,¬a1 ∧ . . . ∧ ¬ai}

Observe that Ki12 contains one minimal inconsistent subset (independently of
i) and therefore

IMI(Ki12) = 1

for all i ∈ N. However, Ic is able to distinguish every single member of the
family (recall that, roughly, Ic counts the number of propositions which are
involved in conflicts)

Ic(Ki12) = i

for i ∈ N. Therefore, Ic can be regarded as more expressive than IMI wrt. Ki12.



In the following, we recall the framework of [38] and investigate the expres-
sivity of inconsistency measures along four different dimensions of subclasses
of knowledge bases.

Definition 27. Let φ be a formula. The length len(φ) of φ is recursively
defined as

len(φ) =


1 if φ ∈ At
1 + len(φ′) if φ = ¬φ′
1 + len(φ1) + len(φ2) if φ = φ1 ∧ φ2

1 + len(φ1) + len(φ2) if φ = φ1 ∨ φ2

In other words len(φ) is the number of connectives plus the number of
occurrences of atom in φ. Furthermore, we treat φ1 → φ2 as an abbreviation
of ¬φ1 ∨ φ2 and therefore len(φ1 → φ2) = 2 + len(φ1) + len(φ2).

Definition 28. Define the following subclasses of the set of all knowledge bases
K:

Kv(n) = {K ∈ K | |At(K)| ≤ n}
Kf (n) = {K ∈ K | |K| ≤ n}
Kl(n) = {K ∈ K | ∀φ ∈ K : len(φ) ≤ n}
Kp(n) = {K ∈ K | ∀φ ∈ K : |At(φ)| ≤ n}

In other words, Kv(n) is the set of all knowledge bases that mention at most
n different propositions; Kf (n) is the set of all knowledge bases that contain
at most n formulas; Kl(n) is the set of all knowledge bases that contain only
formulas with maximal length n; and Kp(n) is the set of all knowledge bases
that contain only formulas that mention at most n different propositions each.
The motivation for considering these particular subclasses of knowledge bases is
that each of them considers a different aspect of the size of a knowledge base. As
a syntactical object, a knowledge base is a set of formulas, and both the number
of formulas (considered by the class Kf (n)) and the length of each formula
(Kl(n)) are the essential parameters that define its size. From a semantical
point of view, the number of propositions appearing in each formula (Kp(n))
and in the complete knowledge base (Kv(n)) define the scope of the knowledge.
Larger numbers for both of them also indicate larger scope and thus greater
size. Inconsistency measures should adhere to the size of the knowledge base in
terms of their expressivity. For example, the number of possible inconsistency
values of a particular measure should not decrease when moving from a set
Kv(n) to a set Kv(n′) with n′ > n, as knowledge bases with n′ formulas should
provide a larger variety in terms of inconsistency than knowledge bases of size
n. Indeed, this property is true for all considered measures as Kv(n) ⊆ Kv(n′)
(the same holds for all classes above).



The aim of an expressivity analysis is to investigate the number of different
values that a specific inconsistency measure can attain on different subclasses
of knowledge bases. This idea can be formalised by expressivity characteristics
[38].

Definition 29. Let I be an inconsistency measure and n > 0. Let α ∈
{v, f, l, p}. The α-characteristic Cα(I, n) of I wrt. n is defined as

Cα(I, n) = |{I(K) | K ∈ Kα(n)}|

In other words, Cα(I, n) is the number of different inconsistency values I
assigns to knowledge bases from Kα(n).

Table 4 shows the expressivity characteristics for all measures considered
in this paper. Proofs pertaining to measures Id, IMI, IMIC , Iη, Ic, Imc, Ip,
Ihs, IΣ

dalal, Imax
dalal, Ihit

dalal, IDf
, IPm , Imv, and Inc can be found in [38]. Proofs

pertaining to measures Ifuz
tprod

, Ifuz,Σ
tmin

, and Ifuz,Σ
tprod

can be found in [40]. The
remaining proofs are given in the appendix.

The evaluation shows that inconsistency measures behave quite differently
wrt. expressivity. First, the analysis clearly shows that the inconsistency mea-
sure Id is indeed a poor inconsistency measure as it has a constant expressivity
value in all four considered dimensions. Second, one can categorise measures
into different clusters pertaining to each expressivity characteristic and with
significant differences between the values in multiple order of magnitudes. For
example, for Cv we have one measure with constant expressivity value (Id) and
several with an expressivity value of linear size (Ic, Imax

dalal, and Imv). Next,
there are two measures with an expressivity value of exponential size (Iη and
Ihs) and, finally, several measures with infinite expressivity values. This gives
us a clear superiority relation wrt. each concrete expressivity characteristic.
Third, evaluating expressivity depends highly on the characteristic. As one
can see from Table 4, the rankings on expressivity induced by the character-
istics Cv and Cf are reversed in some places. Consider e. g., the measures Ip
and Ic. The measure Ip has a rather low expressivity value wrt. Cf but a
high value wrt. Cv. Conversely, Ic has a high expressivity value wrt. Cf but a
rather low value wrt. Cv. Similar observations can be made for other measures.
The reason for this is that the expressivity characteristics Cf and Cv provide
a means to differentiate between so-called syntactic measures and semantical
measures, cf. [13]. This categorisation aims at classifying measures on whether
they operate on the formula level (syntactic measures) or on the proposition
level (semantic measures). While the original definition of syntactical and se-
mantical measure is rather informal, the expressivity characteristics Cf and Cv
make this distinction more precise. In particular, Cv measures how susceptible
a measure is when the vocabulary, i. e. the semantical side of the knowledge
base, is restricted. Semantical measures such as Ic have a low expressivity



when the vocabulary is restricted. On the other hand, Cf measures how sus-
ceptible a measure is when the number of formulas, i. e., the syntactical part,
is restricted. Syntactical measures such as Ip have a low expressivity in this
case.

There are some measures (IΣ
dalal, IPm

, Ifuz
tprod

, Ifuz,Σ
tprod

, Iforget) that have in-
finite expressivity values in all considered dimensions. Just from the point of
view of expressivity, these measures seem to be good candidates for “good”
measures. However, as the previous section already discussed, the satisfaction
of certain rationality postulates may be of more importance than expressivity.

6 Computational Complexity

The final evaluation criterion we consider is computational complexity [32].
Following [44, 43], we consider the following three decision problems one can
consider for inconsistency measures. Let I be some inconsistency measure.

ExactI Input: K ∈ K, x ∈ R∞≥0

Output: true iff I(K) = x

UpperI Input: K ∈ K, x ∈ R∞≥0

Output: true iff I(K) ≤ x
LowerI Input: K ∈ K, x ∈ R∞≥0 \ {0}

Output: true iff I(K) ≥ x

In other words, ExactI is the problem of deciding whether a given value x is
the inconsistency value of a given knowledge base. The problems UpperI and
LowerI are about deciding whether a given value x is an upper/lower bound
of the inconsistency value of a given knowledge base, respectively.

Furthermore, we consider the following natural function problem:

ValueI Input: K ∈ K
Output: The value of I(K)

Table 5 gives an overview of the computational complexity landscape of the
considered measures. Proofs of the results pertaining to Id, IMI, IMIC , Iη, Ic, Imc,
Ip, Ihs, Ihit

dalal, IΣ
dalal, Imax

dalal, Inc, Imcsc, Iforget, ICC , Iis can be found in [43], see
also [28, 45] for proofs pertaining to some generalisations of Ic. Proofs pertain-
ing to the measure Imv can be found in [46]. Proofs pertaining to the measures

Ifuz
tprod

, Ifuz,Σ
tmin

, and Ifuz,Σ
tprod

for the problems ExactI , UpperI , and LowerI can

be found in [40]. Proofs pertaining to the measures IDf
and IPm

can be found
in the appendix. We refer to [32] and [44, 43] for the exact definitions of the
mentioned complexity classes, which will only informally be discussed below.

The analysis of the computational complexity of different measures shows
that measuring inconsistency can be significantly more or less complex de-
pending on the actual measure. In general, measures can be categorised into



four different classes [43]. The first class contains measures on the first level
of the polynomial hierarchy, i. e., those where the problem UpperI is NP-
complete. Under standard complexity-theoretic assumptions (such as assum-
ing that P 6= NP) these measures are significantly easier to deal with than the
other measures. In particular, the decision problem UpperI itself is not harder
than a satisfiability test in propositional logic and implementations for these
measures may benefit from the use of SAT solvers. The next class contains
measures on the second level of the polynomial hierarchy, i. e., those where the
problem UpperI is Πp

2-complete. The increase in complexity here is similar
(roughly) to the increase in complexity when going from the satisfiability prob-
lem in propositional logic to the satisfiability problem in e. g. disjunctive logic
programs under the answer set semantics [8]. Solvers for the latter could also
be used for the development of implementations for those measures. The mea-
sure ICC is presumably not contained in this second class (although a formal
proof is still missing) but Table 5 shows that it is at most on the third level
of the polynomial hierarchy, thus again presumably significantly more com-
plex than the previous measures. The final class contains measures beyond
the polynomial hierarchy (under standard complexity-theoretic assumptions),
i. e., the remaining measures. These measures are inherently more complex as
they need to count structures of exponential number (therefore, most of them
can be shown to be complete for some “counting” complexity class, those with
prefix C). For example, the measure IMI is defined to be the number of minimal
inconsistent subsets of the knowledge base. This task is hard for two reasons:
first, the number of minimal inconsistent subsets may be exponential in the size
of the knowledge base, and second, verifying whether some set is indeed a min-
imal inconsistent subset is hard itself, in fact it is Dp1-complete [33]. However,
for minimal inconsistent sets there are systems available such as [29, 26] that
allow the enumeration of those in an effective manner for reasonable problem
sizes.

In general, inconsistency measurement is an inherently intractable problem.
As the problem of recognising inconsistency is already on the first level of
the polynomial hierarchy (it is coNP-complete), we cannot hope for efficient
algorithms to measure inconsistency (unless P = NP). But this also means
that measures in the first category from above are optimal wrt. computational
complexity (there are minor complexity-theoretic differences in problems other
than UpperI for these measures, but this is, arguably, negligible compared to
the increase in complexity when moving to the second category of measures).

Implementations of the inconsistency measures discussed in this chapter
can also be found in the Tweety Libraries for Artificial Intelligence [42] and an
online interface is available as well9.

9http://tweetyproject.org/w/incmes



7 Discussion

Inconsistency measurement is a problem that is not easily defined in a formal
manner. Many approaches have been proposed, in particular in recent years,
each taking a different perspective on this issue. In this chapter, we addressed
the issue of evaluating the appropriateness of these different approaches by
considering three different evaluation metrics. First, we discussed rationality
postulates. Those aim at prescribing general desirable behaviour of an incon-
sistency measure and there have also been a lot of proposals in the recent
past. Many of them are mutually exclusive, describe orthogonal requirements,
and are not generally accepted in the community. Second, we discussed the
expressivity of inconsistency measures, i. e., the capability of an inconsistency
measure to discriminate between many inconsistent knowledge bases. In gen-
eral, we expect inconsistency measures to be sensitive towards the addition
and deletion of inconsistent parts, so a high expressivity can be regarded as a
favourable argument for an inconsistency measure. Finally, we discussed the
computational complexity of determining inconsistency values. As deciding in-
consistency is (presumably) an intractable problem itself, the task of measuring
inconsistency cannot be easier than that. Still, there are differences in the com-
putational complexity of different approaches and it usually better to focus on
approaches which are on e. g. the lower levels of the polynomial hierarchy. In
order to illustrate the behaviour of these three evaluation metrics, we evaluated
a selection of 22 inconsistency measures from the recent literature wrt. those.

This chapter is not intended to identify the best inconsistency measure
currently available, but only to highlight their advantages and disadvantages.
Different measures behave differently wrt. to the evaluation metrics. The mea-
sure Ic is computationally attractive but its expressivity is limited by the size
of the vocabulary. The measure IΣ

dalal has maximal expressivity but fails to
satisfy the DO rationality postulate. From these observations, only few general
assessments on the quality of each measure can be given. In particular, expres-
sivity and computational complexity are objective evaluation metrics. If given
two inconsistency measures I1 and I2 with identical behaviour, except that
I1 has strictly higher expressivity or strictly lower computational complexity
than I2, then I1 should be preferred to I2 (abstractly speaking). On the other
hand, rationality postulates are a subjective means to evaluate inconsistency
measures as the appropriateness of many of those is not generally agreed upon,
see e. g. [3]. Tables 2 and 3 showed that the behaviour of the evaluated mea-
sures differs significantly in light of the available rationality postulates. But in
contrast to expressivity and computational complexity, rationality postulates
actually address the underlying issue of formally defining “severity of incon-
sistency”. As a generally agreed upon definition is still an open question, the
rationality postulates discussed in this chapter can still serve as a guideline to
select an appropriate inconsistency measure wrt. some application. If an ap-



plication demands the satisfaction of one or more given rationality postulates,
among all measures that satisfy those postulates one can select a measure that
behaves well wrt. the other evaluation criteria expressivity and computational
complexity.

This survey points to a series of open research questions that may be inter-
esting to pursue. For example, the discussion on the “right” set of postulates
is not over. The analysis on the compliance of rationality postulates showed
that for all postulates we can find an inconsistency measures that satisfies it
and another one that violates it. Of course, this situation will only worsen the
more measures and postulates are being proposed. What is needed is a char-
acterising definition of an inconsistency measure using few postulates, as the
entropy is characterised by few simple properties as an information measure.
However, we are currently far away from a complete understanding of what an
inconsistency constitutes.

Furthermore, our analysis of computational complexity showed that incon-
sistency measurement may be significantly harder than inconsistency detection
(under the usual complexity theoretical assumptions). So far, the algorith-
mic study of inconsistency measurement has (almost) not been investigated at
all. Although straightforward prototype implementations of most measures are
available (see the remark at the end of the previous section), those implemen-
tations do not necessarily optimise runtime performance. Only a few papers
[27, 28, 29, 39] have addressed this challenge previously, mainly by developing
approximation algorithms. Besides more work on approximation algorithms,
another venue for future work is also to develop algorithms that work effec-
tively on certain language fragments—such as certain description logics—and
thus may work well in practical applications.

Although we surveyed a rather large selection of inconsistency measures,
the analysis is, of course, not complete. Incorporating recent works such as
[6, 2, 19] may shed some new light on the issues discussed in this chapter.
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editors, Proceedings of the Eleventh International Conference on Principles
of Knowledge Representation and Reasoning (KR’2008), pages 358–366,
Sydney, Australia, September 2008. AAAI Press, Menlo Park, California.
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Appendix: Proofs of Technical Results

Examples 4–6 give counterexamples for some false claims given in the literature,
see Tables 2 and 3. General corrections regarding the postulates AT and EC
can be found in Theorem 6 below.



Example 4. IPm
does not satisfy CO as falsely claimed in [21]. Consider the

knowledge base K = {¬(a ∧ a), a} where {a} is the only minimal proof of a
and there is no minimal proof for ¬a (as {¬(a ∧ a), a} does not contain ¬a as
a literal). It follows |PKm(a))| = 1, |PKm(¬a)| = 0 and therefore IPm(K) = 0,
despite the fact that K is inconsistent.

Example 5. Inc does not satisfy IN, SI, and DO as falsely claimed in [41].
For SI, consider the knowledge base K = {a ∧ ¬a} and observe that b is a
safe formula in K ∪ {b}. However, we have Inc(K) = 1 and Inc(K ∪ {b}) = 2
contradicting SI. Due to Theorem 1 Inc cannot satisfy IN as well. For DO,
consider the knowledge base K′ = {a, a∧ a, a∧ a∧ a,¬a}, the formula α = ¬a,
and the formula β = ¬a ∧ ¬a. Observe that α 6|=⊥ and α |= β. We have

Inc(K′ ∪ {α}) = Inc({a, a ∧ a, a ∧ a ∧ a,¬a}) = 3

Inc(K′ ∪ {β}) = Inc({a, a ∧ a, a ∧ a ∧ a,¬a,¬a ∧ ¬a}) = 4

contradicting DO for Inc.

Example 6. Ihit
dalal and IΣ

dalal do not satisfy DO as falsely claimed in [11, 12].
Consider the knowledge base K = {a, a∧ a, a∧ a∧ a,¬a}, the formula α = ¬a,
and the formula β = ¬a ∧ ¬a. Observe that α 6|=⊥ and α |= β. We have

Ihit
dalal(K ∪ {α}) = Ihit

dalal({a, a ∧ a, a ∧ a ∧ a,¬a}) = 1

Ihit
dalal(K ∪ {β}) = Ihit

dalal({a, a ∧ a, a ∧ a ∧ a,¬a,¬a ∧ ¬a}) = 2

IΣ
dalal(K ∪ {α}) = IΣ

dalal({a, a ∧ a, a ∧ a ∧ a,¬a}) = 1

IΣ
dalal(K ∪ {β}) = IΣ

dalal({a, a ∧ a, a ∧ a ∧ a,¬a,¬a ∧ ¬a}) = 2

contradicting DO for both Ihit
dalal and IΣ

dalal.

We now provide proofs for the missing statements regarding the compliance
of the rationality postulates of the measures Imcsc, Iforget, ICC , and Iis; see
the Tables 2 and 3. For all proofs in the Appendix we denote by +X a proof
that shows that property X is satisfied and by −X a proof that shows that
property X is violated.

Theorem 2. Imcsc satisfies SI, EC, FD, and SY. Imcsc does not satisfy NO,
PY, MN, AT, AC, CD, EX, and AI.

Proof.

−NO We have Imcsc({a,¬a}) = 2, so Imcsc violates NO.

+SI This follows from IN due to Theorem 1.

−PY Consider K = {a, b,¬a,¬b, a ∨ b} and observe that a ∨ b /∈ Free(K).
However, we have Imcsc(K) = Imcsc(K \ {a ∨ b}) = 4.



−MN Proposition 2 in [1] showed that Imcsc(M) = 2 for minimal inconsistent
sets M with |M | > 1.

−AT Consider the minimal inconsistent sets M = {a,¬a} and M ′ = {a, b,¬a∨
¬b}. We have |M | < |M ′| but Imcsc(M) = Imcsc(M ′) = 2.

+EC For any minimal inconsistent set M with |M | > 1 we have Imcsc(M) = 2
due to Proposition 6 in [1]. If |M | = 1 we have Imcsc(M) = 1.

−AC ConsiderMi = {a1, . . . , ai,¬a1∨. . .∨¬ai} for i ∈ N. Then limi→∞ |Mi| =
∞ but limi→∞ Imcsc(Mi) = 2.

−CD We have Imcsc({a ∧ ¬a, b ∧ ¬b}) = 2 but every non-empty subset of
{a ∧ ¬a, b ∧ ¬b} is inconsistent.

+FD This follows from MO due to Theorem 1.

+SY Let K,K′ be knowledge bases with K ≡b K′ and let s be a bijection
s : K → K′ such that α ≡ s(α) for all α ∈ K. Then |K| = |K′|
and observe that {α1, . . . , αk} ⊆ K is a consistent set if and only if
{s(α1), . . . , s(αk)} ⊆ K′ is a consistent set. It follows that Imcsc(K) =
Imcsc(K′).

−EX Consider K = {a ∧ ¬a}, K′ = {b ∧ c}, and K′′ = {b, c} and observe that
K′ ≡ K′′. However, we have Imcsc(K ∪ K′) = 2 6= 3 = Imcsc(K ∪ K′′).

−AI We have Imcsc({a ∧ ¬a}) = 1 6= 2 = Imcsc({a,¬a}).

Theorem 3. Iforget satisfies SI, SA, and FD. Iforget does not satisfy NO, PY,
MI, MN, AT, EC, AC, CD, and SY.

Proof.

−NO We have Iforget({a ∧ ¬a, b ∧ ¬b}) = 2, so Iforget violates NO.

+SI This follows from IN due to Theorem 1.

+SA Let K = K1∪K2 with K1∩K2 = ∅ and Iforget(K) = k. Let a1, . . . , ak ∈ At,
i1, . . . , ik ∈ N, and φ1, . . . , φk ∈ {⊥,>} be such that

(
∧
K)[a1, i1 → φ1; . . . ; ak, ik → φk] 6|=⊥

As each triple (aj , ij , φj) for j = 1, . . . , k identifies a replacement in either
K1 or K2 we can write the above as

(
∧
K1)[a1, i1 → φ1; . . . ; ak′ , ik′ → φk′ ]∧

(
∧
K2)[ak′+1, ik′+1 → φk′+1; . . . ; ak, ik → φk] 6|=⊥



assuming that the a1, . . . , ak are numbered adequately and 1 ≤ k′ ≤ k.
It follows that

(
∧
K1)[a1, i1 → φ1; . . . ; ak′ , ik′ → φk′ ] 6|=⊥ and

(
∧
K2)[ak′+1, ik′+1 → φk′+1; . . . ; ak, ik → φk] 6|=⊥

and therefore Iforget(K1) ≤ k′ and Iforget(K2) ≤ k − k′ and therefore
Iforget(K) ≥ Iforget(K1) + Iforget(K2).

−PY We have Iforget({a,¬a}) = Iforget({a, a∧a,¬a}) = 1 but a∧a /∈ Free({a, a∧
a,¬a}).

−MI Consider K = {a ∧ ¬a ∧ c} and K′ = {b ∧ ¬b ∧ ¬c} and observe that
MI(K∪K′) = {K,K′}, MI(K) = {K}, MI(K′) = {K′} but Iforget(K∪K′) =
3 6= 2 = 1 + 1 = Iforget(K) + Ic(K′).

−MN We have Iforget({a ∧ b,¬a ∧ ¬b}) = 2 but {a ∧ b,¬a ∧ ¬b} is minimally
inconsistent.

−AT Consider the minimal inconsistent sets M = {a∧¬a} and M ′ = {a,¬a}.
We have |M | < |M ′| but Iforget(M) = Iforget(M

′) = 1.

−EC Consider the minimal inconsistent sets M = {a∧¬a} and M ′ = {a∧ b∧
¬a ∧ ¬b}. We have |M | = |M ′| but Iforget(M) = 1 < 2 = Iforget(M

′).

−AC ConsiderMi = {a1, . . . , ai,¬a1∨. . .∨¬ai} for i ∈ N. Then limi→∞ |Mi| =
∞ but limi→∞ Iforget(Mi) = 1.

−CD We have Iforget({a,¬a}) = 1 but {a} ⊆ {a,¬a} is consistent.

+FD This follows from MO due to Theorem 1.

−SY Consider K = {a ∧ ¬a} and K′ = {a ∧ ¬a ∧ b ∧ ¬b}. Then K ≡b K′ but
Iforget(K) = 1 6= 2 = Iforget(K′).

Theorem 4. ICC satisfies CO, IN, SI, MN, EC, FD, and SY. ICC does not
satisfy NO, DO, PY, AT, AC, CD, EX, and AI.

Proof.

+CO For consistent K the set ∅ is the only conditional independent MUS
partition of K and therefore ICC(K) = 0. For inconsistent K, any set
{M} with M ∈ MI(K) is a conditional independent MU partition of K
and therefore ICC(K) ≥ 1.

−NO We have ICC({a,¬a, b,¬b}) = 2, so ICC violates NO.



+IN This follows from the fact that S is a conditional independent MUS par-
tition of K if S is a conditional independent MUS partition of K\{α} for
α ∈ Free(K \ {α}).

−DO Consider K = {a,¬a∧ b,¬c}, α = ¬b∧ c and β = c. Observe α 6|=⊥ and
α |= β. However, we have ICC(K ∪ {α}) = 1 < 2 = ICC(K ∪ {β}).

+SI This follows from IN due to Theorem 1.

−PY We have ICC({a,¬a, a∧a}) = ICC({a,¬a}) = 1 but a∧a /∈ Free({a,¬a, a∧
a}).

+MN For a minimal inconsistent M the set {M} is the maximal conditional
independent MUS partition of M and therefore ICC(M) = 1.

−AT This follows from MN due to Theorem 1.

+EC This follows from MN due to Theorem 1.

−AC This follows from MN due to Theorem 1.

−CD This follows from MN due to Theorem 1.

+FD This follows from MO due to Theorem 1.

+SY Let K,K′ be knowledge bases with K ≡b K′ and let s be a bijection
s : K → K′ such that α ≡ s(α) for all α ∈ K. Then |K| = |K′| and
observe that {M1, . . . ,Mk} is a conditionally independent MUS partition
of K if and only if

{{s(α) | α ∈Mi} | i = 1, . . . , k}

is a conditionally independent MUS partition of K′. It follows that
Imcsc(K) = Imcsc(K′).

−EX Consider K = {¬a,¬b}, K′ = {a, b}, and K′′ = {a∧b}. Observe K′ ≡ K′′
but ICC(K ∪ K′) = 2 6= 1 = ICC(K ∪ K′′).

−AI The counterexample for EX above also serves as a counterexample for AI.

Theorem 5. Iis satisfies SI, SA, PY, EC, FD, and SY. Iis does not satisfy NO,
DO, AT, AC, CD, EX, and AI.

Proof. −NO We have Iis({a,¬a, b,¬b}) = ln 4 ≈ 1.39, so Iis violates NO.

−DO Consider K = {a,¬a}, α = a and β = a ∧ a. Observe α 6|=⊥ and α |= β.
However, we have Iis(K ∪ {α}) = 1 < ln 3 = Iis(K ∪ {β}).



+SI This follows from IN due to Theorem 1.

+SA Let K,K′ with K ∩ K′ = ∅. Then MI(K) ∩ MI(K′) = ∅ and MI(K) ∪
MI(K′) ⊆ MI(K ∪ K′). Then by taking the union of any set of pairwise
disjoint subsets of MI(K) and any set of pairwise disjoint subsets of MI(K′)
one obtains a set of pairwise disjoint subsets of MI(K∪K′) (note that the
empty set is a set of pairwise disjoint subsets of both MI(K) and MI(K′)).
If iS is the number of sets of pairwise disjoint subsets of a set S then
iMI(K∪K′) ≥ iMI(K)iMI(K′). Therefore

Iis(K ∪ K′) = ln iMI(K∪K′)

≥ ln iMI(K)iMI(K′)

= ln iMI(K) + ln iMI(K′)

= Iis(K) + Iis(K′)

+PY If α /∈ Free(K) then MI(K \ {α}) ( MI(K). Then every set of pairwise
disjoint subsets S of MI(K \ {α}) is also a set of pairwise disjoint subsets
of MI(K). Let M ∈ MI(K) with α ∈ M . Then M /∈ MI(K \ {α}) and
{M} is a set of pairwise disjoint subsets of MI(K). Therefore, the set of
sets of pairwise disjoint subsets of MI(K) is a strict superset of the set of
sets of pairwise disjoint subsets of MI(K \ {α}). The claim follows from
the monotonicity of the logarithm.

−AT This follows from MN due to Theorem 1.

+EC This follows from MN due to Theorem 1.

−AC This follows from MN due to Theorem 1.

−CD This follows from MN due to Theorem 1.

+FD This follows from MO due to Theorem 1.

+SY Let K,K′ be knowledge bases with K ≡b K′ and let s be a bijection
s : K → K′ such that α ≡ s(α) for all α ∈ K. Observe that M =
{α1, . . . , αk} ∈ MI(K) iff s(M) = {s(α1, ) . . . , s(αk)} ∈ MI(K′). It fol-
lows that {M1, . . . ,Ml} is a set of pairwise disjoint subsets of MI(K) iff
{s(M1), . . . , s(Ml)} is a set of pairwise disjoint subsets of MI(K′) and
therefore the claim.

−EX Consider K = {¬a,¬b}, K′ = {a, b}, and K′′ = {a∧b}. Observe K′ ≡ K′′
but Iis(K ∪ K′) = ln 4 6= ln 3 = Iis(K ∪ K′′).

−AI The counterexample for EX above also serves as a counterexample for AI.



The following theorem corrects some previous statements from [41, 40]
where the postulates AT and EC have been stated in different way compared
to the original definition from [30]. More precisely, the following results shows
the compliance of all considered measures (except Imcsc, Iforget, ICC , and Iis

which have been dealt with above) with the postulates AT and EC. It corrects
previous results by showing that 1.) Id, IMI, Ihs, Imv, Ihit

dalal, and Inc do not
satisfy AT, 2.) IMI does not satisfy EC, and 3.) Id, Imc, Ihs, Ihit

dalal, Imv, Inc,
and Ifuz,Σ

tmin
satisfy EC. All other statements remain unchanged.

Theorem 6. For I ∈ {IMIC , Iη, IDf
}, I satisfies AT. For I ∈ {Id, IMI, Ic, Imc,

Ip, Ihs, IΣ
dalal, Imax

dalal, Ihit
dalal, IPm , Imv, Inc, Ifuz

tprod
, Ifuz,Σ
tmin

, Ifuz,Σ
tprod
}, I violates AT. For

I ∈ {Id, IMI, IMIC , Iη, Imc, Ip, Ihs, Ihit
dalal, IDf

, Imv, Inc, Ifuz,Σ
tmin
}, I satisfies EC.

For I ∈ {Ic, IΣ
dalal, Imax

dalal, IPm
, Ifuz
tprod

, Ifuz,Σ
tprod
}, I violates EC.

Proof.

Id −AT Consider M = {a, b,¬a∨¬b} and M ′ = {¬a, a}. We have |M | > |M ′|
but Id(M) = 1 = Id(M ′).

Id +EC For any pair of minimal inconsistent sets M,M ′ (independently of
whether they have the same cardinality) we always have Id(M) = 1 =
Id(M ′).

IMI −AT ConsiderM = {a, b,¬a∨¬b} andM ′ = {¬a, a}. We have |M | > |M ′|
but IMI(M) = 1 = IMI(M

′).

IMI +EC For any pair of minimal inconsistent sets M,M ′ (independently of
whether they have the same cardinality) we always have IMI(M) = 1 =
IMI(M

′).

IMIC +AT Let M,M ′ be minimally inconsistent with |M ′| < |M |. It follows
directly that IMIC(M) = 1/|M | < 1/|M ′| = IMIC(M ′).

IMIC +EC Let M,M ′ be minimally inconsistent with |M ′| = |M |. It follows
directly that IMIC(M) = 1/|M | = 1/|M ′| = IMIC(M ′).

Iη +AT In [23] it has been shown (Theorem 2.12, slightly rephrased here) that
for any minimal inconsistent M , Iη(M) = 1/|M |. Then the proof of AT
is analogous to the corresponding proof for IMIC (see above).

Iη +EC In [23] it has been shown (Theorem 2.12, slightly rephrased here) that
for any minimal inconsistent M , Iη(M) = 1/|M |. Then the proof of EC
is analogous to the corresponding proof for IMIC (see above).

Ic −AT Consider M = {a,¬a} and M ′ = {¬a ∧ a}. We have |M | > |M ′| but
Ic(M) = 1 = Ic(M ′).



Ic −EC Consider M = {a,¬a} and M ′ = {a∧b,¬a∧¬b}. We have |M | = |M ′|
but Ic(M) = 1 6= 2 = Ic(M ′).

Imc −AT Consider M = {a,¬a} and M ′ = {a ∧ ¬a}. We have |M | > |M ′|
but Imc(M) = 1 = Imc(M ′).

Imc +EC Let M ∈ MI(K), if |M | = 1 then Imc(M) = 1 and if |M | > 1 then
Imc(M) = |M | − 1.

Ip −AT Consider M = {a, b,¬a∨¬b} and M ′ = {¬a, a}. We have |M | > |M ′|
but Ip(M) = 3 > 2 = Ip(M ′).

Ip +EC For any minimally inconsistent M , Ip(M) = |M |.

Ihs −AT Consider M = {a, b,¬a∨¬b} andM ′ = {¬a, a}. We have |M | > |M ′|
but Ihs(M) = 1 = Ihs(M ′).

Ihs +EC For M ∈ MI(K) observe that for |M | = 1, Ihs(M) = ∞ and for
|M | > 1 we have Ihs(M) = 1.

IΣ
dalal −AT Consider M = {a, b,¬a ∨ ¬b} and M ′ = {¬a, a}. We have |M | >
|M ′| but IΣ

dalal(M) = 1 = IΣ
dalal(M

′).

IΣ
dalal −EC Consider M = {a,¬a} and M ′ = {a ∧ b,¬a ∧ ¬b}. We have
|M | = |M ′| but IΣ

dalal(M) = 1 6= 2 = IΣ
dalal(M

′).

Imax
dalal −AT Consider M = {a, b,¬a ∨ ¬b} and M ′ = {¬a, a}. We have |M | >
|M ′| but Imax

dalal(M) = 1 = Imax
dalal(M

′).

Imax
dalal −EC Consider M = {a,¬a} and M ′ = {a ∧ b ∧ c,¬a ∧ ¬b ∧ ¬c}. We

have |M | = |M ′| but Imax
dalal(M) = 1 6= 2 = Imax

dalal(M
′).

Ihitdalal −AT Consider M = {a, b,¬a ∨ ¬b} and M ′ = {¬a, a}. We have |M | >
|M ′| but Ihit

dalal(M) = 1 = Ihit
dalal(M

′).

Ihitdalal +EC Note that Ihit
dalal(M) = 1 for every minimal inconsistent M .

IDf
+AT For M ∈ MI(K) observe that IDf

(M) = 1/|M |. Then the proof of
AT is analogous to the corresponding proof for IMIC (see above).

IDf
+EC For M ∈ MI(K) observe that IDf

(M) = 1/|M |. Then the proof of
EC is analogous to the corresponding proof for IMIC (see above).

IPm −AT Consider M = {¬a, a} and M ′ = {¬a ∧ a}. We have |M | > |M ′|
but IPm

(M) = 1 = IPm
(M ′).

IPm
−EC Consider M = {a,¬a} and M ′ = {a ∧ b,¬a ∧ ¬b}. We have |M | =
|M ′| but IPm

(M) = 1 6= 2 = IPm
(M ′).



Imv −AT Consider M = {¬a, a} and M ′ = {¬a ∧ a}. We have |M | > |M ′|
but Imv(M) = 1 = Imv(M ′).

Imv +EC Observe Imv(M) = 1 for every minimal inconsistent set M .

Inc −AT Consider M = {¬a, a} and M ′ = {¬a∧a}. We have |M | > |M ′| but
Inc(M) = 1 = Inc(M ′).

Inc +EC Observe Inc(M) = 1 for every minimal inconsistent set M .

Ifuztprod
−AT Consider M = {¬a, a} and M ′ = {¬a ∧ a}. We have |M | > |M ′|

but Ifuz
tprod

(M) = 0.75 = Ifuz
tprod

(M ′).

Ifuztprod
−EC Consider M = {a,¬a} and M ′ = {a ∧ a,¬a ∧ ¬a}. We have

|M | = |M ′| but Ifuz
tprod

(M) = 0.75 6= 0.9375 = Ifuz
tprod

(M ′).

Ifuz,Σtmin
−AT Consider M = {¬a, a} and M ′ = {¬a ∧ a}. We have |M | > |M ′|

but Ifuz,Σ
tmin

(M) = 1 = Ifuz,Σ
tmin

(M ′).

Ifuz,Σtmin
+EC Observe that for a minimal inconsistentM with |M | = 1, Ifuz,Σ

tmin
(M) =

1/2 due to Proposition 3 in [40]. Furthermore, for a minimal inconsistent

M with |M | > 1 one can see that Ifuz,Σ
tmin

(M) = 1 (one can always define a
fuzzy minimum interpretation ω in such a way that all but one formula of
M are satisfied, i. e., ω(α) = 1, and exactly one formula β has ω(β) = 0.

Ifuz,Σtprod
−AT Consider M = {¬a, a} and M ′ = {¬a ∧ a}. We have |M | > |M ′|

but Ifuz,Σ
tprod

(M) = 1 = Ifuz,Σ
tprod

(M ′).

Ifuz,Σtprod
−EC Consider M = {a,¬a} and M ′ = {a ∧ b,¬a ∧ ¬b}. We have

|M | = |M ′| but Ifuz,Σ
tprod

(M) = 1 6= 1.5 = Ifuz,Σ
tprod

(M ′).

We now provide proofs for the missing statements regarding expressivity of
the measures Imcsc, Iforget, ICC , and Iis, see Table 4.

Theorem 7. Cv(Imcsc, n) = Cp(Imcsc, n) = ∞, Cf (Imcsc, n) = n + 1. For
n > 1, Cl(Imcsc, n) =∞.

Proof. Regarding Cv(Imcsc, n) = Cp(Imcsc, n) =∞, consider the family

Ki = {¬a, a, a ∧ a, . . . , a ∧ . . . ∧ a︸ ︷︷ ︸
i times

}

where each Ki and each formula in Ki mentions only a single atom, i ∈ N.
Note that each Ki contains exactly two maximal consistent subsets, namely



{¬a} and {a, a∧a, . . .}. Those two also comprise the single maximal MC cover
(which has an empty intersection). It follows that Imcsc(Ki) = |Ki|−0 = i+1.

Regarding Cf (Imcsc, n) = n + 1 note that Imcsc is integer-valued and
Imcsc(K) ≤ |K| by definition, showing that Cf (Imcsc, n) ≤ n + 1. To see that
Cf (Imcsc, n) ≥ n+1 consider K1, . . . ,Kn−1 from above showing that {2, . . . , n}
are possible values for Imcsc on knowledge bases of size n or smaller. Further-
more, we have Imcsc(∅) = 0 and Imcsc({a ∧ ¬a}) = 1, yielding Cf (Imcsc, n) ≥
n+ 1.

Regarding Cl(Imcsc, n) =∞ for n > 1, consider the family

K′i = {a1,¬a1, . . . , ai,¬ai}

and observe that Imcsc(K′i) = 2i.

Theorem 8. Cv(Iforget, n) = Cf (Iforget, n) = Cp(Iforget, n) = ∞. For n > 1,
Cl(Iforget, n) =∞.

Proof. Regarding Cv(Iforget, n) = Cf (Iforget, n) = Cp(Iforget, n) = ∞, consider
the family

Ki = {a ∧ . . . ∧ a︸ ︷︷ ︸
i times

∧¬a ∧ . . . ∧ ¬a︸ ︷︷ ︸
i times

}

where each Ki mentions only a single atom and consists of a single formula,
i ∈ N. Observe Iforget(Ki) = i.

Regarding Cl(Iforget, n) =∞ for n > 1, consider the family

K′i = {a1,¬a1, . . . , ai,¬ai}

and observe that Iforget(K′i) = i.

Theorem 9. Cv(ICC , n) = Cp(ICC , n) = ∞, Cf (ICC , n) = n + 1. For n > 1,
Cl(ICC , n) =∞.

Proof. Regarding Cv(ICC , n) =∞, consider the family

Ki = {a ∧ ¬a, a ∧ a ∧ ¬a, . . . , a ∧ . . . ∧ a︸ ︷︷ ︸
i times

∧¬a}

with ICC(Ki) = i.
Regarding Cf (ICC , n) = n + 1, observe that ICC is integer-valued. Fur-

thermore, ICC(K) ≤ |K| as any CI partition {K1, . . . ,Kn} of K must satisfy
Ki∩Kj 6= ∅ for all i, j and therefore n ≤ |K|. It follows that Cf (ICC , n) ≤ n+1.
For Cf (ICC , n) ≥ n+ 1 consider for i = 0, . . . , n the family

K′i = {a1 ∧ ¬a1, . . . , ai ∧ ¬ai}



with |K′i| = ICC(K′i) = i.
Regarding Cp(ICC , n) = ∞ and Cl(ICC , n) = ∞ for n > 1, consider the

family

K′′i = {a1,¬a1, . . . , ai,¬ai}

and observe that ICC(K′′i ) = i.

Theorem 10. Cv(Iis, n) = Cp(Iis, n) =∞, Cf (Iis, n) ≤ 2( n
bn/2c) +1. For n > 1,

Cl(Iis, n) =∞

Proof. Regarding Cv(Iis, n) = Cp(Iis, n) =∞, consider the family

Ki = {¬a, a, a ∧ a, . . . , a ∧ . . . ∧ a︸ ︷︷ ︸
i times

}

where each Ki and each formula in Ki mentions only a single atom, i ∈ N. Note

MI(Ki) = {{¬a, a}, {¬a, a ∧ a}, . . . , {¬a, a ∧ . . . ∧ a︸ ︷︷ ︸
i times

}}

It follows that every singleton subset of MI(Ki) and the empty set are the only
sets of pairwise disjoint subsets of MI(Ki). Therefore Iis(Ki) = ln(i+ 1).

Regarding Cf (Iis, n) ≤ 2( n
bn/2c) + 1, recall that Cf (IMI, n) =

(
n
bn/2c

)
+ 1 [38].

More specifically, the number of minimal inconsistent subsets of a knowledge
base with at most n formulas is in {0, 1, . . . ,

(
n
bn/2c

)
}. If a knowledge base has

k minimal inconsistent subsets, i. e. |MI(K)| = k, then there are at most 2k

sets of pairwise disjoint subsets of MI(K) (if all minimal inconsistent subsets
are pairwise disjoint). Furthermore, the empty set is always a set of pairwise
disjoint subsets of MI(K). Therefore, there are between 1 and 2k sets of pairwise
disjoint subsets of MI(K) (possibly not all values in-between are attained due
to combinatorial reasons, but we are only interested in an upper bound here).
Taking the case of a consistent knowledge base into account this shows that

Cf (Iis, n) ≤ 2( n
bn/2c) + 1.

Regarding Cl(Iis, n) =∞ for n > 1, consider the family

K′i = {a1,¬a1, . . . , ai,¬ai}

and observe that Iis(K′i) = ln 2i = i ln 2.

We now provide proofs for the missing statements regarding the computa-
tional complexity of the measures IDf

and IPm
, see Table 5.

Theorem 11. ExactIDf
, UpperIDf

, LowerIDf
are in PSPACE and ValueIDf

is in FPSPACE.



Proof. It suffices to show that IDf
(K) can be computed in polynomial space for

all K. Note that the set of all values |MI(i)(K)| and |CN(i)(K)| for i = 1, . . . , |K|
can be stored in polynomial space and that IDf

(K) can be computed from
those values in polynomial space. As we can reuse space, we only need to show
that computing each |MI(i)(K)| and |CN(i)(K)| for each i = 1, . . . , |K| needs at
most polynomial space. But this is clear, as we can enumerate each subset S
of cardinality i (again reusing space), perform a check whether S ∈ MI(i)(K)

(or S ∈ CN(i)(K)) and update some counter. Note that S ∈ MI(i)(K) and

S ∈ CN(i)(K) can be verified by enumerating all interpretations and checking

for satisfiability (and additionally for S ∈ MI(i)(K) checking each subset with
one element less for satisfiability). This can all be done in polynomial space.

Theorem 12. ExactIPm
, UpperIPm

, LowerIPm
are in PSPACE and ValueIPm

is in FPSPACE.

Proof. It suffices to show that IPm
(K) can be computed in polynomial space

for all K. We now sketch an algorithm for computing IPm
(K) running in

polynomial space. For each proposition a we keep two counters ca and c¬a
that keeps track of the number of minimal proofs we encountered for a and ¬a,
respectively. Note that we only need polynomial space to store these counters.
Then by reusing space we enumerate each subset S of K and check for each
proposition a whether S is a minimal proof for a and/or ¬a, and update the
corresponding counter. Note that checking whether a set S is a minimal proof
for some α can be done by enumerating all interpretations (one after the other)
and checking for entailment.



Cv(I,n) Cf (I,n) Cl(I,n) Cp(I,n)

Id 2 2 2∗ 2
IMI ∞

(
n
bn/2c

)
+ 1 ∞∗ ∞

IMIC ∞ ≤ Ψ(n)‡ ∞∗ ∞
Iη Φ(2n)† ≤ Φ(

(
n
bn/2c

)
)† ∞∗∗ ∞∗

Ic n+ 1 ∞ ∞∗ ∞
Imc ∞

(
n
bn/2c

)∗∗ ∞∗ ∞
Ip ∞ n+ 1 ∞∗ ∞
Ihs 2n + 1 n+ 1 ∞∗∗ ∞∗
IΣ

dalal ∞ ∞∗ ∞∗ ∞
Imax

dalal n+ 2 ∞∗ b(n+ 7)/3c∗∗ n+ 2

Ihit
dalal ∞ n+ 1 ∞∗ ∞
IDf ∞ ≤ Ψ(n)‡ ∞∗ ∞
IPm ∞ ∞ ∞∗ ∞
Imv n+ 1 ∞∗ ∞∗ ∞
Inc ∞ n+ 1 ∞∗ ∞
Ifuz
tprod

∞ ∞ ∞∗ ∞
Ifuz,Σ
tmin

∞ n+ 1 ∞∗ ∞
Ifuz,Σ
tprod

∞ ∞ ∞∗ ∞
Imcsc ∞ n+ 1 ∞∗ ∞
Iforget ∞ ∞ ∞∗ ∞
ICC ∞ n+ 1 ∞∗ ∞
Iis ∞ ≤ 2( n

bn/2c) + 1 ∞∗ ∞

Table 4: Characteristics of inconsistency measures (n ≥ 1);
∗only for n > 1; ∗∗only for n > 3
†Φ(x) is the number of fractions in the Farey series of order x and can
be defined as Φ(x) = |{k/l | l = 1, . . . , x, k = 0, . . . , l}|, see e. g.
http://oeis.org/A005728
‡Ψ(n) is the number of profiles of monotone Boolean functions of n variables,
see e. g. http://oeis.org/A220880



ExactI UpperI LowerI ValueI
Id Dp1 ∩ coDp1 NP-c coNP-c FNP-c
IMI C=NP-h CNP-c CNP-c #·coNP-c

IMIC C=NP-h CNP-h CNP-h P#·coNP

Iη Dp1-c NP-c coNP-c FPNP[n]

Ic Dp1-c NP-c coNP-c FPNP[logn]-c

Imc C=NP-h CNP-c CNP-c #·coNP-c†

Ip Dp2-c Πp
2-c Σp2-c FPΣ

p
2 [logn]

Ihs Dp1-c NP-c coNP-c FPNP[logn]

IΣ
dalal Dp1-c NP-c coNP-c FPNP[logn]-c

Imax
dalal Dp1-c NP-c coNP-c FPNP[logn]

Ihit
dalal Dp1-c NP-c coNP-c FPNP[logn]-c
IDf PSPACE PSPACE PSPACE FPSPACE
IPm PSPACE PSPACE PSPACE FPSPACE

Imv Dp2-c Πp
2-c Σp2-c FPΣ

p
2 [logn]

Inc Dp2 Πp
2-c Σp2-c FPΣ

p
2 [logn]

Ifuz
tprod

DP
1 NP-c coNP-c ?

Ifuz,Σ
tmin

DP
1 NP-c coNP-c ?

Ifuz,Σ
tprod

DP
1 NP-c coNP-c ?

Imcsc Dp1-c NP-c coNP-c FPNP[logn]

Iforget Dp1-c NP-c coNP-c FPNP[logn]-c

ICC Dp3 Πp
3 Σp3 FPΣ

p
3 [logn]

Iis C=NP-h CNP-c CNP-c #·coNP-c‡

Table 5: Computational complexity of the considered inconsistency measures
(all statements are membership statements, an additionally attached “-c” (“-
h”) also indicates completeness (hardness) for the class); we note that all hard-
ness results for #·coNP are under subtractive reductions; †we show complexity
of the (minor) variation that omits subtracting one from the result; ‡we con-
sider here the problem variant that does not apply a logarithm on the result;
“?” indicates unknown results


