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Abstract

We survey the state of the art of inconsistency measurement in prob-
abilistic logics. Compared to the setting of inconsistency measurement
in classical logic, the incorporation of probabilistic assessments brings
new challenges that have to be addressed by computational accounts to
inconsistency measures. For that, we revisit rationality postulates for
this setting and discuss the intricacies of probabilistic logics. We give an
overview on existing measures and discuss their compliance with the ra-
tionality postulates. Finally, we discuss the relationships of inconsistency
measures for probabilistic logic with Dutch books from economics.

1 Introduction

In this chapter, we will focus on measuring inconsistency in probabilistic logics.
As opposed to classical knowledge bases, we enrich formulas with probabilities.
A formula with probability 1 is supposed to be true (like a classical true for-
mula), a formula with probability 0 is supposed to be false (like a classical
negated true formula). Probabilities between 0 and 1 express our uncertainty
about the truth state. In particular, we are often interested in conditional
probabilities.

Example 1. Suppose we want to design an expert system for medical decision
support. A group of medical experts is asked about their beliefs about the
relationships between particular diseases and corresponding symptoms. Let
us assume that the experts state the following beliefs about disease d and
symptoms s, So:

e the probability of a patient with disease d exhibiting both symptom s;
and symptom s5 is at least 60%;

e the probability of a patient with disease d exhibiting symptom s; but not
symptom s5 is at least 50%;



e the probability of a patient with disease d exhibiting symptom s; is at
most 80%.

Taken together, the experts’ beliefs are inconsistent: according to the first two
items, the probability of symptom s1, given disease d, should be at least 110%.
We have to adapt the beliefs in order to restore consistency. How should we pro-
ceed? Which pieces of information should be changed to restore consistency?
Moreover, which pieces are to blame for the inconsistency, and to which degree?
Once chosen which statement to change, should it be deleted or adapted by
raising or lowering the probability in order to approximate consistency? These
are the kind of questions an inconsistency measure for probabilistic logic can
help to answer. O

In the following, we will mainly focus on propositional probabilistic knowl-
edge bases to keep things simple. Our logical language is similar to the ones
considered in [28, 29, 24, 22]. Many ideas can be transfered to relational lan-
guages. We will give some examples and further references as we proceed.

We will start our discussion with a quick introduction to propositional prob-
abilistic logics. Subsequently, we will introduce a collection of rationality pos-
tulates in Section 3. While many of these properties are direct translations
from the classical setting, we will consider additional postulates that take the
role of probabilities into account. One important postulate in this context is
Continuity, which basically states that minor changes in probabilities should
not yield major changes in the degree of inconsistency. Interestingly, Conti-
nuity is in conflict with some classical postulates. In Section 4, we will then
discuss six approaches to measure inconsistency in probabilistic logics. We will
start with measures that are inspired by classical approaches and then look at
several measures that make stronger use of the probabilities in the knowledge
bases. We compare these measures with respect to the postulates that they sat-
isfy or violate. In Section 5, we will sketch some applications of inconsistency
measures. We will briefly discuss how they can be used to repair inconsistent
knowledge bases and to reason with knowledge bases that contain conflicts of
different kinds.

2 Preliminaries

We consider a propositional language built up over a finite set of atomic propo-
sitions (atoms) A = {aq,...,a,} in the usual way. That is, formulas are con-
structed inductively by connecting atomic propositions with logical connectives
like =, A, V, —. L 4 denotes the set of all well-formed propositonal formulas over
A. Additionally, T denotes a tautology a V —a for some a € A, and L denotes
a contradiction —T.

A possible world w over A is a conjunction of |A| = n literals containing
either a or —a for each a € A. For instance, if A = {a,b,c}, then a AbA ¢ and



a A b A —c are two of the 23 = 8 possible worlds over {a,b,c}. We denote by
Wy = {wi,...,wan} the set of all possible worlds over A. w € W, satisfies
a € A (w = a) iff ais a positive literal in w (a is not negated in w). For
instance, a A b A —c satisfies a and b but falsifies ¢. = can be extended to all
¢ € L4 recursively as usual. For instance, w = —¢ iff w = ¢ does not hold,
w E o1 A s iff wE 1 and w E @y and so on.

A probabilistic conditional (or simply conditional) is an expression of the
form (¢|v)[q, q], where ¢,1) € L 4 are propositional formulas and ¢, g € [0,1] N
Q are rational numbers with ¢ < ¢. Intuitively, (p|¢)[g,q] says that “the
probability that ¢ is true given that 1 is true lies within the interval [g, q]”.
(L4 | L4) denotes the set of all conditonals over A. A conditional (¢]))[q, q]
with equal lower and upper bound is called precise and denoted by (p|v)[q]
to improve readability. Similarly, if the condition is tautological, we write
(¢)[g, q) rather than (¢|T)[g, q] and call (¢)[g, q] an unconditional probabilistic
assessment.

A probabilistic interpretation m : W4 — [0,1], with Ej m(w;) =1, is a
probability mass over the set of possible worlds. Each probabilistic inter-
pretation 7 induces a probability measure P, : L4 — [0,1] by means of
Pr(p) = ijlzso m(wj). Let P(A) be the set of all probabilistic interpreta-
tions m : W4 — [0,1]. A conditional (¢[t)[q, q] is satisfied by =, also denoted
by 7 = (¢[¥)[g, 4] i Pr(o A) = qPr(¥) and Pr( A) < ¢Pr(¢). Note that
when Py (1) > 0, a probabilistic conditional (¢|1)[g, q| is constraining the con-
ditional probability of ¢ given 1; but any 7 with P, (3) = 0 trivially! satisfies
the conditional (p[1))[g,q] (this semantics is adopted by Halpern [16], Frisch
and Haddawy [13] and Lukasiewicz [24], for instance). For a conditional ¢ we
denote by Mod(c) the set of models of ¢, i.e., Mod(c) = {7 | 7 |= c}.

In order to take account of information that was presented multiple times,
we regard a knowledge base as a finite multiset x of probabilistic conditionals.
Formally, a knowledge base « is defined by a multiplicity function M, : (L4 |
L 4) — N such that M, (C) > 0 for only finitely many C € (L4 | L4). M. (C)
is the number of occurrences of C in k. Let K denote the set of all knowledge
bases. We write C € « iff M,,(C) > 0. For two knowledge bases k1, ko we
define multiset union U, multiset intersection N, and multiset difference \ via

MI{1UI€2 (C) = Mlﬂ (C) + Ml‘&2 (C)
Mﬁlﬁﬁq (C) = min{Mﬁl (C)v MKQ (O)}
Mm\nQ (C) = maX{O, Mm (C) - Mﬂz (C)}

for all C € (La | L4). The cardinality of s is [k] = > ez, 00 Mn(C). If
K is such that M, is non-zero exactly for Ci,...,Cy,, we denote x by {C] :
M (Cy),...,Ch s M(Cpn) }.

L An approach that does not trivialize when Px (1)) = 0 can be found in [6].



Example 2. £ = {(a)[0.2] : 2,a[0.8] : 1} denotes the knowledge base that
contains two instances of the conditional (a)[0.2], one instance of the conditional
a[0.8] and no other conditionals. We have

{(0)[0.2] : 2, (@)[0.8] : 1} U {(a)[0.8] : 1, (b)[0.5] : 1}
={(a)[0.2] : 2, (a)[0.8] : 2, (b)[0.5] : 1}

and

{(@[0.2] : 2,(@)[0.8] : 1}\ {(a)[0.2] : 1} = {(a)[0.2] : 1, (a)[0.8] : 1}.

If  is an ordinary set in the sense that M, (C) = 1 for all C € k, we omit the
postfix : 1 to improve readability. For each knowledge base x we assume some
arbitrary but fixed canonical enumeration (k) = (c1,...,cn) that represents x
as a sequence of its elements (including duplicates).

A probabilistic interpretation © : W — [0, 1] satisfies a knowledge base k,
denoted by 7 |= &, if m = ¢ for all ¢ € k. We let Mod(k) = {7 | 7 = k} and
call the elements of Mod(x) the models of k. A knowledge base x is consistent
(or satisfiable) if Mod(k) # @. k is precise if all conditionals in k are precise.

Knowledge bases k1, ko are extensionally equivalent, denoted by k1 =€ ko, if
and only if Mod(k1) = Mod(k2). Knowledge bases k1, k2 are semi-extensionally
equivalent [45], denoted by k1 =° kg, if and only if there is a bijection py, «, :
K1 — kg such that ¢ = p,, x,(c) for every ¢ € k1. This means that two knowl-
edge bases k1 and ko are semi-extensionally equivalent if we find a mapping
between the conditionals of both knowledge bases such that each conditional
of k1 is extensionally equivalent to its image in k2. Note that k1 =° ko implies
K1 = ko [45].

3 Rationality Postulates

There are many ways of measuring the inconsistency of a set of formulas
in some formal language. For example, we may have an idiosyncratic mea-
surement that maps every consistent set to —3.2 and every inconsistent set
to 7. Besides the arbitrariness of those values, such a measurement does
not allow one to express that one theory is “more inconsistent” than an-
other. And yet, this is something one may want to express. For instance,
the knowledge base k1 = {(p)[0.5], (—p)[0.5001]} seems “less inconsistent” than
ke = {(p)[1], (—=p)[1]} because the probabilities in x5 need to be adjusted more
drastically than those in 1. If we are mainly interested in measuring the incon-
sistency of a knowledge base, it is reasonable to postulate that every consistent
knowledge base is associated to the same measurement, say 0; similarly, we
would expect that the degree of inconsistency of k; is lower than the one of
k2. In the following, we will discuss a collection of rationality postulates that



have been proposed for inconsistency measures. As we will see, not all of these
postulates can be satisfied simultaneously.

To begin with, we introduce inconsistency measures for probabilistic log-
ics and some additional terminology. Inconsistency measures for probabilistic
knowledge bases are defined analogously to those for classical knowledge bases.

Definition 1. An inconsistency measure Z is a function Z : K — [0, c0).

The value Z(k) for a knowledge base & is called the inconsistency value of
k with respect to Z. Minimal inconsistent sets of probabilistic knowledge bases
are defined analogously to their classical counterparts.

Definition 2. A set M of probabilistic conditionals is minimal inconsistent if
M is inconsistent and every M’ C M is consistent.

We let MI(x) denote the set of the minimal inconsistent subsets of xk € K.
Intuitively, the conditionals in a minimal inconsistent subset of a knowledge
base are those that are responsible for an atomic conflict.

Example 3. Consider the knowledge base
k= {(a)[0.2] : 1, (a)[0.8] : 1, (@ A D)[0.6] : 1,(bV d)[1] : 1,(c)[0.5] : 1}

Here, we have two minimal inconsistent subsets {(a)[0.2] : 1, (a)[0.8] : 1} and
{(a)[0.2] : 1, (a A b)[0.6] : 1}.

Conditionals that do not take part in such a conflict are called free.

Definition 3. A probabilistic conditional ¢ € k is free in & if and only if ¢ ¢ M
for all M € MI(k).

For a conditional or a knowledge base C' let A(C) C A denote the set of
atoms appearing in C'. A conditional is safe with respect to a knowledge base
K if it does not share any atoms with x [45].

Definition 4. A probabilistic conditional ¢ € k is safe in k if and only if

Alc)NA(k\ {c}) = 2.

The notion of a free conditional is more general than the notion of a safe
conditional [45].

Proposition 1. If ¢ is safe in k then c is free in k.

Example 4. We continue Example 3. Here, (bV d)[1] : 1 is a free formula and
(¢)[0.5] : 1 is both free and safe.

We first consider a set of qualitative postulates from [45] that have direct
counterparts for classical knowledge bases. k,x’ denote knowledge bases and ¢
a probabilistic conditional.



Consistency « is consistent if and only if Z(k) =0
Monotonicity Z(k) < Z(k U {c})

Super-additivity If kN’ = @ then Z(k U k') > Z(k) + Z(x')
Weak independence If ¢ € & is safe in x then Z(k) =Z(k \ {c})
Independence If ¢ € & is free in « then Z(k) =Z(x \ {c})
Penalty If ¢ € k is not free in x then Z(k) > Z(x \ {c})
Irrelevance of syntax If k1 =° kg then Z(k1) = Z(ko)

Ml-separability If Ml(k; U k3) = MI(k1) U Ml(k2) and Ml(k1) N Ml(kg) = &
then Z(k1 U ka) = Z(k1) + Z(k2)

Normalisation Z(x) € [0, 1]

The property consistency demands that Z(x) takes the minimal value 0 if and
only if x is consistent. Monotonicity demands that Z is non-decreasing under
the addition of new information. Super-additivity strengthens this condition
for disjoint knowledge bases. The properties weak independence and indepen-
dence say that the inconsistency value should remain unchanged when adding
“innocent” information. Penalty is the counterpart of independence and de-
mands that adding inconsistent information increases the inconsistency value.
Irrelevance of syntazx states that the inconsistency value should not depend on
the syntactic representation of conditionals. We use the equivalence relation
=* here since all inconsistent knowledge bases are equivalent with respect to
=¢. For an inconsistency measure Z, imposing irrelevance of syntax to hold
in terms of =¢ would yield Z(k) = Z(x’) for every two inconsistent knowledge
bases k,x’. The property Mi-separability states that determining the value of
Z(k1 U Ka) can be split into determining the values of Z(k1) and Z(k2) if the
minimal inconsistent subsets of k1 U ko correspond to the disjoint union of
those of k1 and k2. Normalisation states that inconsistency values should be
bounded from above by one.

The following proposition states some relationships between these proper-
ties. The proof can be found in [45].

Proposition 2. Let 7 be an inconsistency measure and let x,x’ be some
knowledge bases.

1. If 7 satisfies super-additivity then Z satisfies monotonicity.
2. If T satisfies independence then Z satisfies weak independence.

3. If T satisfies Ml-separability then 7 satisfies independence.



4. k C &’ implies Ml(k) C MI(x’).
5. If 7 satisfies independence then MI(k) = MI(x’) implies Z(x) = Z(x').

6. If 7 satisfies independence and penalty then MI(k) € MI(x') implies
I(k) < Z(K').

Our qualitative properties do not take the crucial role of probabilities into
account. In order to account for these we need some further notation. Let k
be a knowledge base. For & € [0,1]%* we denote by x[#] the knowledge base
that is obtained from k by replacing the probabilities of the conditionals in &
by the values in Z. More precisely, if (k) = ((¢1]¥1)[q1, @1ls - - -5 (@n]¥n)[@n, @n])
then (k[Z]) = ((p1|1)[x1,x2], ..., (Pn|n)[Tan—1, Tas]) for &= (x1,...,29,) €
[0,1]?". Similarly, for a single probabilistic conditional ¢ = (¢[t)[g,q] and
x1,22 € [0,1] we abbreviate c[z1,x2] = (¢|)[r1,x2]. The characteristic func-
tion of a knowledge base x takes a probability vector Z € [0, 1]2‘”| and replaces
the probabilities in k accordingly. The formal definition makes use of the or-
der on the probabilistic conditionals of a knowledge base that we discussed in
Section 2.

Definition 5. Let x € K be a knowledge base. The function A, : [0, 1]?/*| — K
with A, (%) = k[Z] is called the characteristic function of k.

The characteristic inconsistency function is composed of the characteristic
function and an inconsistency measure and shows how different probability
vectors @ € [0, 1]1*! affect the inconsistency value.

Definition 6. Let Z be an inconsistency measure and let x € K be a knowledge
base. The function

GI,H : [07 1]2|H| - [Oa OO)

with 0z, = Z o A, is called the characteristic inconsistency function of T and
K.

The following property continuity [45] describes our main demand for con-
tinuous inconsistency measurement, i.e., a “slight” change in the knowledge
base should not result in a “vast” change of the inconsistency value.

Continuity For any 7 € [0,1]2%, lim 07 . (%) = 07 (%)
T—Y

The above property demands a certain smoothness of the behavior of Z.
Given a fixed set of probabilistic conditionals this property demands that
changes in the quantitative part of the conditionals trigger a continuous change
in the inconsistency value. Note that we require the qualitative part of the con-
ditionals, i.e. premises and conclusions of the conditionals, to be fixed. This



makes this property not applicable for the classical setting. In the probabilistic
setting satisfaction of this property is helpful for the knowledge engineer in
restoring consistency. Observe that for every knowledge base x € K there is
always a Z € [0, 1]2/%I such that x[Z] is consistent, cf. [43].

Even though the property continuity is a natural requirement in the prob-
abilistic setting, it is incompatible with two of our qualitative postulates.

Proposition 3. Let Z be an inconsistency measure and let k,x’ be some
knowledge bases.

1. There is no Z that satisfies consistency, independence, and continuity.
2. There is no Z that satisfies consistency, Ml-separability, and continuity.

The proof can be found in [9]. These incompatibility results suggest that, in
order to drive the rational choice of an inconsistency measure for probabilistic
knowledge bases, we must abandon at least one postulate among consistency,
independence and continuity (recall that Ml-separability entails independence).
The property consistency seems to be indisputable since the least one can
expect from an inconsistency measure is that it separates inconsistent from
consistent cases, or some inconsistency from none. Therefore, we should give up
either independence or continuity. A simple solution is to give up independence
for its weaker version weak independence that is compatible with consistency
and continuity [9].

In fact, there are more compelling reasons for giving up independence rather
than continuity. The property independence was introduced based on the no-
tion that minimal inconsistent subsets are the purest form of inconsistency [20],
capturing all its causes in a knowledge base [19]. This notion can be traced back
to the work of Reiter on the diagnosis problem [37] and to the standard AGM
framework of belief revision [1], where minimal inconsistent subsets have a cen-
tral role. Nevertheless, in the probabilistic case, minimal inconsistent subsets
may fail to detect all causes of inconsistency, as the next example illustrates.

Example 5. Recall the situation in Example 1, formalized into the knowl-
edge base k = {(s1 A $2)[0.6,1], (s1 A —s2)[0.5,1],(51)[0,0.8]}. Suppose we
want to schedule a meeting among the 3 different experts responsible for
these assignments in order to reconcile them. To save resources, we plan
to invite only the physicians whose probabilistic assessments are somehow
causing the inconsistency. If minimal inconsistent subsets are supposed to
capture such causes, the third physician would not be invited, for Ml(x) =
{{(s1 A $2)[0.6,1], (s1 A —s2)[0.5,1]}}, and (s1)[0,0.8] is free in k. Suppose
the expert who elicited the first conditional, (s; A s2)[0.6, 1], admits that the
lower bound is rather high and relaxes it to (s1 A s2)[0.5,1], being compat-
ible with (s1 A —s2)[0.5,1]. Nonetheless, the updated knowledge base k' =
{(s1 A 52)[0.5,1], (s1 A —82)[0.5,1], (s1)[0,0.8]} would still be inconsistent, for
the first two conditionals imply (s1)[1], contradicting the third one. O



The arguments above indicate that we should give up independence rather
than continuity. In this case, we can still demand weak independence consis-
tently. The formulation of a weak form of continuity that could be consistent
with independence seems a harder and less natural alternative.

4 Approaches

In the following we survey approaches to inconsistency measures for probabilis-
tic logics from the literature.

4.1 Classical approaches

We start with existing approaches to inconsistency measurement for classical
logic and adapt those to the probabilistic case, see also [45] where those mea-
sures were adapted to probabilistic conditional logic with precise probabilities.
In particular, we have a look at the drastic inconsistency measure, the Ml in-
consistency measure, the MI® inconsistency measure, and the n-inconsistency
measure, see e.g. [20, 23] for the classical definitions. What these approaches
have in common, due to their origin, is that they concentrate on the qualitative
part of inconsistency rather than the quantitative part, i.e. the probabilities.

The simplest approach to define an inconsistency measure is by just differ-
entiating whether a knowledge base is consistent or inconsistent.

Definition 7. Let Zgpastic : K — [0, 00) be the function defined as

7 (k) = 0 if s is consistent
drastic 1 1 if k is inconsistent

for k € K. The function Zq,astic is called the drastic inconsistency measure.

The drastic inconsistency measure allows only for a binary decision on in-
consistencies and does not quantify the severity of inconsistencies. One thing
to note is that Zqyastic is the upper bound for any inconsistency measure that
satisfies consistency and normalization, i.e., if T satisfies consistency and nor-
malization then I(k) < I(k) for every r € K [44].

The next inconsistency measure quantifies inconsistency by the number of
minimal inconsistent subsets of a knowledge base.

Definition 8. Let Zy : K — [0, 00) be the function defined as
Tya(x) = IMI(#)

for k € K. The function Zy is called the Ml inconsistency measure.



The definition of the Ml inconsistency measure is motivated by the intuition
that the more minimal inconsistent subsets the greater the inconsistency.

Only considering the number of minimal inconsistent subsets may be too
simple for assessing inconsistencies in general. Another indicator for the sever-
ity of inconsistencies is the size of minimal inconsistent subsets. A large mini-
mal inconsistent subset means that the inconsistency is distributed over a large
number of conditionals. The more conditionals involved in an inconsistency
the less severe the inconsistency is. Furthermore, a small minimal inconsistent
subset means that the participating conditionals strongly represent contradic-
tory information. The following inconsistency measure is from [20] and aims
at differentiating between minimal inconsistent sets of different size.

Definition 9. Let ZG, : K — [0, 00) be the function defined as

W= Y o

MeMI(k)
for k € K. The function I,\% is called the MI inconsistency measure.

Note that ZG,(k) = 0 if MI(k) = @. The MI%inconsistency measure sums
over the reciprocal of the sizes of all minimal inconsistent subsets. In that way,
a large minimal inconsistent subset contributes less to the inconsistency value
than a small minimal inconsistent subset.

The work [23] employs probability theory itself to measure inconsistency in
classical theories by considering probability measures on classical interpreta-
tions. Those ideas can be extended for measuring inconsistency in probabilistic
logics by considering probabilistic interpretations on probabilistic interpreta-
tions. Let 7 : P(A) — [0, 1] be a probabilistic interpretation on P(.A) such that
7t(m) > 0 only for finitely many m € P(A). Let P?(A) be the set of those prob-
abilistic interpretations. Then define the probability measure P; analogously
via

P= S #m 1)
TeP(A),ml=c

for a conditional ¢. This means that the probability (in terms of 7#) of a
conditional is the sum of the probabilities of probabilistic interpretations that
satisfy c. Note also that by restricting 7 to assign a non-zero value only to
finitely many 7 € P(A), the sum in (1) is well-defined.

Now consider the following definition of the n-inconsistency measure.

Definition 10. Let Z,, : K — [0, 00) be the function defined as
Z,(k) = 1 —max{n | 37 € P*(A) : Ve € r : 7(c) > n}

for k € K. The function Z,, is called the n-inconsistency measure.



The idea of the n-inconsistency measure is that it looks for the largest prob-
ability that can be consistently assigned to the conditionals of a knowledge base
and defines the inconsistency value inversely proportional to this probability.

Example 6. We continue Example 5 and consider
K= {(51 A 52)[063 l]a (51 A _‘52)[0'53 l]a (51)[0v 08]}
Recall that MI(k) = {{(s1 A $2)[0.6, 1], (s1 A =82)[0.5,1]}} and therefore
Idrastic(’i) =1
IMI(H) =1
Tin(k)1/2
Finally, consider 7« € P?(A) such that #(m) = #t(ma) = 1/2 for

7T1(51 A 32) =0.8 7T1(—|81 A 82) =0.2 71'1(31 A —\52) =0 7T1(—|31 A —\82) =0
7T2(51 /\82)20 772(_\81/\82):0 71'2(81/\_'52):0.8 7'('2(_\81/\_\82):0

Observe that

T ': (81 A\ 82)[0.6, 1] T ': (81)[0,08]
o ': (51 AN “82)[0.57 1] T2 ': (Sl)[0,08]

and therefore

#((51 A $)[0.6,1]) = 0.5
T (81 AN “52)[0.5, 1}) =0.5
#(5)[0,0.8)) = 1

and thus #(c) > 0.5 for all ¢ € k. It can be easily seen that there cannot be
some 7" with 7(c) > 0.5 for all ¢ € x and therefore Z,(x) = 0.5.

The inconsistency measures discussed above were initially developed for
inconsistency measurement in classical theories and therefore allow only for
a “discrete” measurement. Hence, all of the above discussed inconsistency

measures do not satisty continuity. In particular, we have the following results
[45].

Proposition 4. Ty, satisfies consistency, monotonicity, irrelevance of syn-
tax, weak independence, independence, and normalisation.



Proposition 5. 7y satisfies consistency, monotonicity, super-additivity, ir-
relevance of syntax, weak independence, independence, Ml-separability, and
penalty.

Proposition 6. I,\C,;l satisfies consistency, monotonicity, super-additivity, irrele-
vance of syntazx, weak independence, independence, MI-separability, and penalty.

Proposition 7. Z, satisfies consistency, monotonicity, irrelevance of syntaz,
weak independence, independence, and normalisation.

However, satisfaction of continuity is crucial for an inconsistency measure
in probabilistic logics in order to assess inconsistencies in a meaningful manner
[45]. In the following, we continue with a survey of inconsistency measures
that take the probabilities of conditionals into account and therefore address
the postulate continuity.

4.2 Distance-based approaches

The measures presented in [45] rely on distance measures defined as follows.

Definition 11 (Distance measure). A function d : R” x R™ — [0,00) (with
n € NT) is called a distance measure if it satisfies the following properties (for
all 7,9, 27 € R"):

1. d(#,9) = 0 if and only if ¥ = § (reflexivity)

2. d(Z,9) = d(y, %) (symmetry)

3. d(%,7) < d(Z,2) + d(Z,7) (triangle inequality)

The simplest form of a distance measure is the drastic distance measure dy
defined as do(Z,4y) = 0 for ¥ = § and do(&,y) = 1 for & # ¢ (for &, 5 € R™ and
n € NT). A more interesting distance measure is the p-norm distance.

Definition 12. Let n,p € N*. The function d, : R" x R" — [0,00) defined
via

dp(fa g) = </‘I1 - y1|p +...+ |=’17n - yn|p
for = (x1,...,20),9= (Y1,---,Yn) € R™ is called the p-norm distance.

Special cases of the p-norm distance include the Manhattan distance (for
p=1) and the Fuclidean distance (for p = 2).

Now we can define the “severity of inconsistency” in a knowledge base by
the minimal distance of the knowledge base to a consistent one. As we are able
to identify knowledge bases of the same qualitative structure in a vector space,
we can employ distance measures for measuring inconsistency.



Definition 13. Let d be a distance measure. Then the function Z; : K —
[0,00) defined via

Zi(k) = inf{d(Z, ) | kK = k[Z] and k[F] is consistent} (2)
for k € K is called the d-inconsistency measure.

The idea behind the d-inconsistency measure is that we look for a consistent
knowledge base that both 1.) has the same qualitative structure as the input
knowledge base and 2.) is as close as possible to the the input knowledge
base. That is, if the input knowledge base is x[Z] we look at all € [0, 1]I*l
such that x[g] is consistent and & and ¥ are as close as possible with respect
to the distance measure d. While using the drastic distance measure gives us
drastic inconsistency measure—that is Zy, = Zarastic [45]—using p-norms gives
us genuinely novel inconsistency measures.

Example 7. We continue Example 5 and consider
K= {(51 A 52)[0& 1]7 (51 A _‘52)[0'5a 1]7 (51)[Ov 08]}
Then we have
Za, (k) =0.3
Id2 (H) ~ 0.55
In order to see Zy, (k) = 0.3 observe that changing the interval of (s1 As2)[0.6, 1]
to [0.5,1] and of (s1)[0,0.8] to [0,1] restores consistency. More precisely, the
probabilistic interpretation n defined via
7T(81 A\ 82) =0.5
71'(51 A _|82) =0.5
m(—s1 A sg) = w(—81 A —s2) =0
satisfies (s1 A $2)[0.5,1], (81 A —82)[0.5,1], and (s1)[0, 1]. Note that we changed
the probability interval of the first conditional by a value of 0.1 and that of
the last interval by 0.2, yielding a sum of 0.3. It can be seen that no smaller

modification yields a consistent knowledge base, so we have Zy, (k) = 0.3.
In order to see Zy, (k) ~ 0.55 consider the knowledge base k' given via

k' ={(s1 A 52)[0.5,1], (51 A —82)[0.4,1], (51)[0,0.9]}

Observe ' can be obtained from x’ by changing each probability interval by
a value of 0.1, thus the distance between the probability intervals wrt. the
Euclidean distance do is v/0.12+0.12 +0.12 ~ 0.55. It can also easily be
seen that k' is consistent and no other knowledge base with smaller Euclidean
distance is consistent.

Taking results from [45, 9] into account we obtain the following picture
regarding compliance with rationality postulates?. For reasons of simplicity,

2Note that [9] corrects some false claims from [45].



we only consider the instantiation of Z; with the p-norm distance dj,, see [45]
for a more general treatment.

Proposition 8. Let p > 1. Z,, satisfies consistency, monotonicity, super-
additivity (only for p = 1), irrelevance of syntaz, weak independence, and con-
tinuity.

For a variant of the above measure that also works with infinitesimal prob-
abilities we refer to [26].

4.3 Violation-based approaches

The next family of inconsistency measures is based on the idea of measuring
the violation of the numerical constraints that define the satisfaction relation
for conditionals. For this purpose, it is convenient to represent the conditional
satisfaction constraints in matrix notation [28, 21]. We assume an arbitrary
but fixed order on W4 (e.g., lexicographically) so that we can identify each
probabilistic interpretation 7 with the vector (mw(wy),...,m(wy)), n = [Wal,
where the worlds are enumerated according to our order.

Recall that 7 = (i2|0)[g, @) iff Pr(9 A1) > qPr(1) and Pr(pAth) < GPy(8).
Subtracting the right-hand-side of the inequalities and putting in the definition
of Py, we notice that these are linear inequalities over 7. For instance, P (¢ A
1) > qPr(¢) is true if and only if

0< P‘n’((P/\"/)) —ng(¢) = Pn(ﬁﬂ/”/)) —Q(Pw(ﬁﬂ/\w)+Pw(ﬁ90/\1/)))
= (1= q)Pr(pAY) = qPr(-p N Y)

—(1—q) Y wwj)—q >, w(w)

wj=p AP wj =AY

[
NE

(1 =) - Lgpnwy (wy) — g+ Lmpapy (wy)) - 7(wy)

Il
S .

U

where the indicator function 1z : Wa — {0,1} yields 1 if the argument
satisfies the formula F' € L4 and 0 otherwise, and a is a n-dimensional row
vector whose i-th component is a; = (1 — q) - Lipagy(w)) — ¢ - L—gpnpy (w;).
Note that a7m > 0 is equivalent to b < 0, where b = —a. We can write all
constraints for our knowledge base in this form. Thus, given some knowledge
base x, we can arrange the vectors corresponding to the constraints in a matrix
A, such that an interpretation 7 satisfies « if and only if A, 7 < 0. We call
A, the constraint matriz of k.

If x is inconsistent, the system of inequalities A x < 0 cannot be satisfied by
a probability vector. However, we can relax the constraint to A 7w < € for some



non-negative vector €. The minimum size of a vector that makes the system
satisfiable is the minimum wviolation value of the knowledge base and can be
understood as an inconsistency measure [30, 9].

Formally, the minimal violation value of a knowledge base is defined by an
optimization problem. The problem is parameterized by a vector norm that
measures the size of e.

Definition 14 (Minimal Violation Value with respect to ||.||). Let x be a
knowledge base with corresponding constraint matrix A, (of size m x n). Let
Il be some continuous vector norm. The minimal violation value of k with
respect to ||.|| is defined by

min 3
Lomin el 3)
subject to A, x <,

n

in = 1,

i=1

We denote the minimal violation value of x by Z (k).

Proposition 9. Zj is an inconsistency measure and satisfies Consistency,
Monotonicity, Weak Independence, Irrelevance of syntax and Continuity.
7| satisfies neither Independence nor MI-Separability.

Proofs for these results can be found in [30, 9]. Measuring inconsistency by
measuring the error in the system of inequalities is conceptually less intuitive
than measuring the distance to a consistent knowledge base. However, it has
some computational advantages as we discuss soon and still measures the degree
of inconsistency continuously.

Example 8. Let x, = {(a)[p], (a)[1 — p|} for 0 < p < 0.5. For instance,
k0.5 = {(A)[0.5],(A)[0.5]} is consistent and kg = {(A)[0], (A)[1]} is inconsis-
tent. Intuitively, the degree of incomsistency of x, should increase as p de-
creases from 0.5 to 0. We let Z;, Zo and Z,, denote the minimal violation

measure with respect to the Manhattan norm |z = Y1, |2;], Euclidean
norm ||.|[2 = /> iy 27 and Maximum norm ||z = max{|z1|,...,|zs|}, re-

spectively. Table 1 shows the corresponding inconsistency values.

Inspecting (3) shows that computing minimal violation values is a convex
optimization problem (the objective function is convex and all constraints are
linear). This has the principal advantage that we do not have to deal with non-
global local optima and have polynomial runtime guarantees with respect to



R0.5  K0.49 R0.4 0.2 Ko

i 0 0.02 0.2 0.6 1
I, 0 0.014 0.141 0.424 0.707
T O 0.01 0.1 0.3 0.5

Table 1: Some minimal violation inconsistency values (Example 8).

the number of optimization variables and constraints. However, the number of
optimization variables is still exponential in the number of atomic propositions
(recall that each optimization variable corresponds to the probability of an
interpretation).

We can do slightly better when using the Euclidean norm, which gives us
a quadratic optimization problem. When using the Manhattan or the Maxi-
mum norm, the minimal violation value can actually be computed by a linear
optimization problem. For the Manhattan norm ||z|; = Y"1, |2;|, we can im-
mediately rewrite (3) as a linear program because the vector € is constrained
to be non-negative. Therefore, the absolute value function can be ignored.

Proposition 10. The minimal violation value Zj |, (x) with respect to the
Manhattan norm can be computed by solving the following linear program:

min € 4
Jmin > a

subject to  Aix <,

x>0,
e > 0.

For the Maximum norm ||z||o = max{|x1],...,|z,|}, we can replace the
relaxing vector € with a scalar because we are only interested in the maximum

component. Again, we can ignore the absolute value function due to the non-
negativity of e.

Proposition 11. The minimal violation value Z _(x) with respect to the



Maximum norm can be computed by solving the following linear program:

(a:,er)Ig]]g"Jrl ¢ (5)

subject to Az <e-1,

n
i=1

x>0,
€e>0,

where T € R™ denotes the column vector that contains only ones.

Let us relate these linear programs to the probabilistic satisfiability problem
[14, 21], that is, to the problem of deciding whether a given knowledge base
is consistent. This problem comes down to finding a solution x € R"™ of the
following system of linear inequalities:

A,z <0,

n

in = 1,

A standard way to solve this system is to apply Phase 1 of the Simplex algo-
rithm. This comes down to solving a linear program like

(z,sI)nGIHI{}“Jrl s (6)

subject to A,z <0,

Note that the vector (0,1) € R"*! is always a feasible vertex from which we
can start the Simplex algorithm for this problem. x is consistent iff the optimal
solution s* = 0. Notice that the structure of (6) is very similar to the structure
of (5). We have the same number of optimization variables and constraints and
there is only a minor difference in the first and second constraint. (4) does also
have a very similar structure even though it adds a number of optimization
variables that is linear in the size of the knowledge base. However, since n is
exponential in the number of atoms of our language, this difference is usually



negligible. In this sense, computing minimal violation measures for Manhattan
and Maximum norm is barely harder than performing a probabilistic satisfia-
bility test. Since inconsistency measures generalize probabilistic satisfiability
tests, this is some evidence that these measures belong to the most efficient
inconsistency measures. Note also that even though the Simplex algorithm
has exponential runtime in the worst-case, it usually takes time linear in the
number of optimization variables and quadratic in the number of constraints
in practice [25]. In fact, due to the similarity between (6), (5) and (4), we can
speed up computing minimal violation values for the Manhattan and Maximum
norm by using similar techniques like for the probabilistic satisfiability prob-
lem. In particular, column generation techniques proved useful in this context
[14, 18, 11, 7].

4.4 Dutch-book measures

In formal epistemology, there is an interest in measuring the incoherence of an
agent whose beliefs are given as probabilities over propositions or previsions
(expected values) for random variables — a Bayesian agent. If we have propo-
sitions from classical logic, the formalized problem at hand is exactly the one
we are investigating. When the agent’s degrees of belief are represented by a
knowledge base, to measure the agent’s incoherence is to measure the inconsis-
tency of such a knowledge base. Schervish, Kadane and Seidenfeld [40, 41, 39]
have proposed ways to measure the incoherence of an agent based on Dutch
books.

Dutch books have been proposed by De Finetti as a foundation for prob-
ability theory [10]. Dutch book arguments are based on the agent’s betting
behavior induced by her degrees of belief, typically used to show her irra-
tionality. These arguments rely on an operational interpretation of (imprecise)
degrees of belief, in which their lower /upper bounds determines when the agent
considers as fair to take part in a gamble, defined as follows:

Definition 15. A gamble on p|¢, with ¢, € L4, is an agreement between
an agent and a bettor with two parameters, the stake A € R and the relative
price q € [0, 1], stating that:

e the agent pays A X g to the bettor if ¢ is true and ¢ is false;
e the bettor pays A x (1 — ¢) to the agent if ¢ is true and ¢ is true;

e the gamble is called off, causing neither profit nor loss to the involved
parts, if v is false.

A Dutch book is a set of gambles that will cause the agent a sure loss, no
matter which possible world is the case. For instance, suppose an agent is
willing to take part in two gambles, on ¢ and on —p, both with stake 10 and



relative price 0.6. No matter whether ¢ or — is the case, the agent has to pay
10 X 0.6 = 6 to the bettor, while receiving only 10 x 0.4 = 4 back, which causes
her a net loss of 2.

A central result of De Finetti’s theory of probabilities lies in the fact that
if an agent respects the laws of probabilities, no Dutch books are possible.
That is, a Dutch book (sure loss) is possible only when the agent gambles are
inconsistent with the laws or probability.

To relate the epistemic state of an agent to her vulnerability to Dutch
books, we need a willingness-to-gamble assumption: if an agent believes that
the probability of a proposition ¢ being true given that another proposition v
is true lies within [g, ], she finds acceptable (fair) gambles on @[y with stake
A > 0 and relative price ¢ and gambles with stake A < 0 and relative price ¢.
An agent is vulnerable to (or exposed to) a given Dutch book if she sees as fair,
under the willingness-to-gamble assumption, each of the gambles in the Dutch
book. We assume any set of gambles the agent sees as fair contains exactly two
gambles on (¢;|1);) per each conditional (¢;|4;)[g;, @] € K, the base formalizing
the agent’s beliefs: one with stake \; > 0 and relative price g;; and the other
with stake —); < 0 and relative price g;. This is not restrictive, since gambles
on the same (p;|t);) with the same relative price can be merged by summing
the stakes, and the absence of a gamble is equivalent to a stake equal to zero.
We can thus denote any set of gambles the agent finds acceptable simply by
the absolute value of its stakes A1, A1, ..., Am, A > 0, where m = |x|.

If the set of probabilistic conditionals that represents an agent’s epistemic
state turns out to be inconsistent, then she is exposed to a Dutch book, and
vice-versa [27]. In other words, an agent sees as fair a set of gambles that
causes her a guaranteed loss if, and only if, the knowledge base codifying her
(conditional) degrees of belief is inconsistent. In this way, Dutch book argu-
ments were introduced to show that a set of degrees of belief must obey the
axioms of probability and are a standard proof of incoherence (introductions to
Dutch books and their relation to incoherence can be found in [42] and [10]).
Hence, a natural approach to measuring an agent’s degree of incoherence is
through the magnitude of the sure loss she is vulnerable to. The intuition says
that, the more incoherent an agent is, the greater the guaranteed loss that can
be imposed on her through a Dutch book. Nevertheless, with no bounds on
the stakes, such loss would also be unlimited for incoherent agents. To better
understand the loss a Dutch book causes to an agent, we formalize it in the
following.

Consider the knowledge base k = {(¢;]v:)[q:, @:]|1 < i < m} representing an
agent’s epistemic state. Let A\;, \; > 0 denote gambles on (¢;]t;) the agent sees
as acceptable, the first with relative price g; and stake A; > 0, the second with
relative price ¢; and stake —X; <0, for 1 <i<m. A setof gambles the agent
sees as fair can then be represented by the vector G = (A1, A1, ..., Any Am ). If



a possible world w; is the case, the total net loss for the agent is
(G wj) = Z Tong (W5) = Gily, (w5)) = NilLp ny; (W) — qily, (w;)) -

Given the knowledge base k representing an agent’s epistemic state, the set
of gambles G is a Dutch book if £,,(G,w;) < 0 for all w; € W4. When G is
a Dutch book, the sure loss is defined as the amount the agent is guaranteed
to lose, which is £3""¢(G) = miny ;ew, £x(G,w;). If G is a not a Dutch book,
there is a possible world where the agent does not lose (maybe wins), then
287e(G) = 0. For an arbitrary set of gambles G that the agent sees as fair,
we thus define £7'"°(G) = max{min,,ew, £x(G,w;),0}. The maximum Dutch-
book sure loss an agent is vulnerable to is given by maxg ¢5""¢(G). To see that
this maximization in unbounded, note that if £5*"¢(G) = ¢ > 0 for some G =
(A1, A L - Ay Am), then G/ = ()\1, ALy ey Ay A implies Loy (G) = Ae > 0
for any positive scalar A € R. Consequently, any incoherent agent is vulnerable
to an unbounded sure loss, and this quantity is not suitable to measure her
incoherence.

Different strategies to measure incoherence as a finite Dutch-book loss are
found in the Bayesian Statistics and formal epistemology literature. Schervish
et al. propose a flexible formal approach to normalize the maximum sure loss
generating a family of incoherence measures for upper and lower previsions
on bounded random variables [41], which we adapt to our case. The simplest
measures of this family arise when the sure loss is normalized by either the
sum of the absolute values of the stakes, |G|li = >, A + A; < 1, or their
maximum, [|G|lec = max{A;,\; | 1 < ¢ < m}. We define the inconsistency
measures Z5% : K — [0,00) and ZB%* : K — [0,00) on knowledge bases as
these two 1ncoherence measures on the corresponding agents represented by
these knowledge bases 3:

sum gsure(g) max gsure (g>
IHE (k) = Max — = TR and IHg"(k) = Max = — T

Even though incoherence measures based, on one hand, on Dutch books
proposed by the formal epistemology community and inconsistency measures
based, on the other hand, on violations minimization proposed by Artificial
Intelligence researchers may seem unrelated at first, they are actually two sides
of the same coin. The linear programs that compute the maximum guaranteed
loss an agent is exposed to are technically dual to those that minimize violations
to measure inconsistency [9] *:

Theorem 1. For any « € K, Z3%" (k) = ) (k) and ZBE" (k) = ).y, (k).

3If [|G]i = |IGlle = 0, then £3*"*(G) = 0 and we define ¢5%7*(G)/||G]1 =
€7 (9)/IGllee = 0.

4Nau [27] has already investigated this matter, mentioning some similar results.



Theorem 1 gives an operational interpretation, based on betting behav-
ior, for the inconsistency measures Zj_ and Z; |,. Naturally, the result also
implies that ZH%" and ZH3" hold the same properties as 7 and Zj,,, re-
spectively.

More elaborate measures proposed by Schervish et al. [41] normalize the
sure loss by the amount the agent (or bettor) can possibly lose, either per
gamble or in total. These quantities are called escrows. Let ¢ = (q1,...,qm),
G=A{q1,---,Gm) and 1,, = (1...1) and be tuples with m elements. In a single
gamble with stake A\; > 0 and relative price ¢;, the agent’s (or the bettor’s)
escrow is e = \; x ¢; (or €2 = A\; x (1 — ¢;)). Conversely, in a gamble with
stake —)\; < 0 and relative price G;, the agent’s (or the bettor’s) escrow is
ed = i X (1 —¢q;) (or e%’ =\ X q;). Hence, if G = (A1, A1, .-+ Ams Am) is @ set
of gambles, €*(G) = (e}, e4,... €4, e%) (or e’(G) = (e}, b, ... eb,,eb)) is the
vector containing how much the agent (or the bettor) can lose per each gamble.
Normalizing the sure loss by the maximum or the sum of this vector’s elements

yields inconsistency measures defined as:

N () R L (9}
Eos () = eagyy, ¢ Fon () T g,
b,sum . w . b,max _ w
Eon ) =gy, e ) T g

These four inconsistency measures (Z%5"", Z55™ T and T57") sat-
isfy most of the rationality postulates [9]:

Proposition 12. Z{5™ T05™ THMY and ThH are well-defined, satisfy
Consistency, Monotonicity and Weak Indepedence and are continuous for prob-
abilities within (0, 1). Furthermore, Z5 5" and I%’Z,mz satisfy Super-additivity,
and 7555 satisfies Normalization.

From their definition, one can see that Z555"", I%%”m, I55"" and Ij}ggax
also satisfy Irrelevance of syntax, since the net loss of a gamble on |y does
not depend on how these formulas are written.

4.5 Fuzzy-logic measure

In [8], another inconsistency measure on probabilistic knowledge bases is pro-
posed that makes use of Fuzzy concepts. The central notion of [8] is the candi-
dacy function. A candidacy function is similar to a fuzzy set [15] as it assigns
a degree of membership of a probabilistic interpretation belonging to the mod-
els of a knowledge base. More formally, a candidacy function € is a function
¢ : P(A) — [0,1]. A uniquely determined candidacy function €, can be as-
signed to a (consistent or inconsistent) knowledge base x as follows. For a



probabilistic interpretation m € P(A) and a set of probabilistic interpretations
S CP(A) let d(m, S) denote the distance of 7 to S with respect to the Euclidean
norm, i.e., d(m, S) is defined via

d(m,S) = inf Z (r(w) — 7' (w))? | 7" €8

weW 4

Let h : RT — (0,1] be a strictly decreasing, positive, and continuous log-
concave function with A(0) = 1. Then the candidacy function ¢” for a knowl-
edge base k is defined as

¢i(m) = [T n (V2Hid(r, Mod({e})))

CER

for every m € P(A). Note that the definition of the candidacy function ¢”
depends on the size of the signature A. The intuition behind this definition is
that a probabilistic interpretation 7 that is near to the models of each proba-
bilistic conditional in & gets a high candidacy degree wrt. €. It is easy to see
that it holds that €"(7) = 1 if and only if 7 € Mod(()x). Using the candidacy

function €” the inconsistency measure Z” , can be defined via

Ilna(k) =1-  ax, ¢h(m) (7)

for a knowledge base k. The following results has been shown in [8].

Proposition 13. I

o na satisfies consistency, monotonicity, continuity, and
normalization.

The function Z"

o aq does not satisfy super-additivity as shown in [44].

Example 9. Let A = {aj,as} be a propositional signature and let x; =
{(a1)[1], (a1)[0]} and k2 = {(a2)[1], (a2)[0]} be knowledge bases and let k =
k1 U ka. Note that both k1 and ko are inconsistent and k1 Nk = . As Iéland
is defined on the semantic level and does not take the names of propositions
into account it follows that Z% (k1) = Z" ,(k2). As the situations in x; and
Ko are symmetric and k; is symmetric with respect to (a;)[1] and (a;)[0] there

are probabilistic interpretations m; with Z (k;) = 1—€" (m;) for i = 1,2 and

cand
d(m1, Mod({(a1)[1]})) = d(m1, Mod({(a1)[0]}))
= d(m2, Mod({(az)[1]}))

= d(my, Mod({(az2)[0]}))

Let # = d(m1,Mod({(a1)[1]})) and let h* : RT — (0,1] be a strictly de-
creasing, positive, and continuous log-concave function with A*(0) = 1 and



(H1) =0.75. In

cand

h* ( 2‘A|x) = 0.5. Then it follows €"’ (71) = 0.25 and 77

order to satisfy super-additivity Ié’and must satisfy

Ih (H) > Iéland(nl) +Iéland(’y‘:2) =15

cand
which is a contradiction since Ié‘and satisfies normalization.
On the other hand, Z" , complies with our notion of irrelevance of syntaz®

Proposition 14. 7"

2 nq Ssatisfies drrelevance of syntaz.

Proof. Let k1 and ko be such that k1 =° ko. Without loss of generality, assume
k1 ={c1,...,cp} and kg = {dy,...,d,} with ¢; = d; for i = 1,... n. It follows
Mod({c¢;}) = Mod({d;}) for i = 1,...,n and therefore

d(m,Mod({c;}) = d(m, Mod({d;})

for every m and i = 1,...,n. It follows QZI = €ﬁ2 and therefore the claim. [

4.6 Entropy measures

In [38] an inconsistency measure is presented that is based on the notion of
generalized divergence which generalizes cross-entropy. Given vectors ¥, 2 €
(0,1]™ with ¥ = (y1,...,yn) and Z = (z1,...,2,), the generalized divergence
D(g, 2) from ¥ to 7 is defined

IR Yi
D(y,z) = Zyi log, S Y + 2
i=1 v
We abbreviate further
. . RN - Yi Zi
D*(7,2) = D(7,2) + D(Z,) = > Jyilogy — + zilogs "
i=1 v ¢

In [38], the measure Zyq is only defined for conditionals with point probabil-
ities. So let k = {c1,...,¢n} and ¢; = (W;|p;)[d;] for i = 1,... ,n. Then the
inconsistency measure Zgq is defined via

Tya(s) = min{D*(7, 7) | 7 € P(A) and
Yi = (1 — d;i) Pr(ip;) and 2z; = d; Pr(—tp; A ;) for i =1,...,n}

5Tn [44] it has been shown, however, that Z"

 nqViolates a slightly different notion of irrel-
evance of syntax.



Let ¢*, Z*, Py« be some parameters such that D?(7*, %) is minimal and y} =

(1 —d;)Pr- (i) and 2} = d; Pr« (—); A ;) are satisfied for ¢ = 1,...,n. Then
it follows that

Yi — 2 = P (i N i) — di Pr(4)

for i = 1,...,n. Minimizing D?(#, ) amounts to finding a probabilistic inter-
pretation 7* such that ¢* and z* are as close as possible to each other with
respect to D?. In particular, if there is a 7* such that y* = z* it follows
that Pr«(¢; A @;) — diPr+(p;) = 0 and therefore m € Mod((v);]p;)[d;]) (for
i=1,...,n),1.e, k is consistent. Furthermore, the more y; differs from z; the
more Py« (1);|p;) differs from d; (for i = 1,...,n). The measure Zyq is similar
in spirit to Z; as they both minimize the distance of a knowledge base to a
consistent one. However, the implementation of those measures is different as
they use different distance measures. The following result has been shown in
[44].

Proposition 15. The function Zyq satisfies consistency, monotonicity, super-
additivity, weak independence, and continuity.

Another approach to inconsistency measuring based on entropy can be de-
rived from works on consistency repairing in de Finetti’s coherence setting
[3, 4, 5]. In order to correct incoherent conditional probabilities, a discrepancy
based on Kullback-Leibler divergence is minimized, which can be understood as
an inconsistency measure. In the following, we adapt the approach of [3, 4, 5]
to our semantics, keeping their focus on sets of conditionals with point proba-
bilities.

Consider the knowledgebase k = {c1,...,¢n}, with ¢; = (¢¥i]¢;)[q:] and d; €
(0,1) 6 for i = 1,...,n . The approach of [5] is based on the following scoring
rule, which can be seen as evaluating the accuracy of a set of probabilistic
conditionals in a possible world w:

Sorv(Fw) =Y Tpapp@)g + > Ligapy)n(—g). (8
1=1

=1

Any probabilistic interpretation = € P(A), which is a probability mass over
the worlds w € W4, defines an expected value E;(Scrv (K, w)). For a fixed ,
the point probabilities ¢ = (q1, ..., ¢,) that maximizes E.(Scrv (k[q],w)) are

given by the vector ¢™ = <P"1§“0(112\11§1) et P"I()“D&/j\d;")> € [0,1]"

. The following
discrepancy between a knowledge base x and a probabilistic interpretation 7
gives the expected gap in accuracy, when measured by Scgry, between the
suboptimal k = k[g] and the maximally accurate [q7]:

%n [5], extreme probabilities (0 or 1) are avoided for technical reasons.



derv(k,m) = EW(SCRV(HW”LU))—SCRV(K,IU))

™ 1—4ag7
> Pw(wi)(qfln%ﬂl—q?)ln % )

1<i<n, Py (1) >0 1—a

This discrepancy directly yields an inconsistency measure for precise prob-
abilistic knowledge bases. In [5], 7 must be such that 7(\/, ;) = 1, but we
drop that restriction due to the semantics we are adopting.

ICRV("'@) = min{dCRV(/@, 7T)|7T S P(.A)}

Proposition 16. Zo iy satisfies consistency, monotonicity and continuity.

5 Applications

The inconsistency measures introduced in the previous section give us a tool
to analyze inconsistent knowledge bases. Our final goal is to reason over these
knowledge bases in a sensible way. There are at least two ideas that we can
consider for this purpose.

1. Repair the inconsistent knowledge base and apply classical probabilistic
reasoning algorithms.

2. Apply paraconsistent reasoning algorithms that can deal with inconsis-
tent knowledge bases.

The distance-based approaches in Section 4.2 are particularly well suited for
repairing knowledge bases. In fact, when computing the inconsistency value of
the knowledge base, we usually do so by finding a consistent knowledge base
that minimizes the selected distance to the original knowledge base. However,
there are some obstacles. First of all, if we consider only point probabilities,
whether or not a unique closest consistent knowledge base exists depends on
the selected norm. For instance, uniqueness is guaranteed for the Euclidean
norm, but not for the Manhattan and Maximum norm. As a simple example,
consider the knowledge base {(a)[0.2],a[0.6]}. With respect to the Manhattan
norm, each repair {(a)[p] : 2} with p € [0.2,0.6] is minimal and the choice
would be arbitrary without further assumptions.

Second, even if a unique solution exists, repairing the knowledge base
means loss of information. To make this clear, consider the knowledge bases
{(a)[0.4],a]0.6]} and {(a)[0.1],a[0.9]}. Both knowledge bases have the unique
minimal repair {(a)[0.5] : 2} with respect to the Euclidean norm. The fact
that the second knowledge base has a significantly higher variance is lost. If



we think of the knowledge bases as representing the opinions of two different
experts, 0.5 is close to both experts’ opinion in the first knowledge base, but
not in the second.

In cases like this, where we have to shift a huge amount of probability mass
to repair the knowledge base, applying paraconsistent reasoning mechanisms
can be a better choice. We can derive such reasoning mechanisms from the
fuzzy- and violation-based approaches. The idea is to replace the models of a
knowledge base with those probabilistic interpretations that are close enough
to being a model. That is, if the knowledge base is consistent, we use the
usual models to perform reasoning. If it is inconsistent, we use the probabilistic
interpretations that are closest to being a model. For the fuzzy-based measures
from Section 4.5, this means that we use those interpretations that maximize
the candidacy value with respect to € [8]. For the violation-based measures
from Section 4.3, we use those interpretations that minimize the violation of
the knowledge base [30, 35]. We explain this approach in somewhat more detail
for minimum violation measures.

As a first step, we define the generalized models of a knowledge base k as
the set of probabilistic interpretations that minimize the violation value (3) in
Definition 14. More strictly speaking, we let

GMod(k) = {m € P(|)(m,€) minimizes (3) for some € € R}.

Intuitively, GMod(x) contains those probability distributions that violate the
knowledge base minimally. In particular, if £ is consistent, we have Mod(k) =
GMod(k). However, often we have some special conditionals that should not
be violated at all. We call these conditionals integrity constraints. We assume
that the integrity constraints are consistent. Now given a knowledge base
and a set of integrity constraints IC', we define the corresponding generalized
models as the set of probabilistic interpretations that satisfy /C' and minimally
violate k.

Definition 16. Let k, IC be knowledge bases such that IC' is consistent. Let
|I]l be some continuous vector norm. The set of generalized models of k with
respect to IC and ||.|| is defined by

GMod‘Il'(‘jl(n) = {m € Mod(IC) | (m,€) minimizes (3) for some € € R}.

If IC and ||.|| are clear from the context or not important for the discussion,
we will just write GMod(k) to keep our notation simple. GMod(k) is guaranteed
to be non-empty and has some nice technical properties that allow us to reason
as efficiently with generalized models as with classical models in many cases.

There are two major approaches to perform reasoning over consistent prob-
abilistic knowledge bases. In both cases, our final goal is to answer conditional
probabilistic queries, that is, to compute the conditional probability of a for-
mula ¢ given another formula ¢. We denote such queries by (¢ | ). The first



Query ||.|x I-1l2 [BIES

(P|N) [0.1,0.9] [0.376,0.624] [0.366,0.633]
(P|Q) [0.1,0.9] [0.533,0.679] [0.536,0.689]
(P|R) [0.1,0.9] [0.321,0.467] [0.314,0.463]
(N) [1,1] [0.801,0.801]  [0.789,0.789]

Table 2: Generalized entailment results (rounded to 3 digits) for Nixon diamond
with IC' = @ (Example 10).

approach is to compute upper and lower bounds on the conditional probability
of ¢ given v with respect to all models of x [28, 17]. This approach is often
referred to as the probabilistic entailment problem. The second approach is a
two-stage process. We first select a best model that satisfies the knowledge
base and then use this model to compute the conditional probability of ¢ given
¥ [29, 22]. The ’best’ model is determined by an evaluation function. For
instance, we may be interested in maximizing entropy or minimizing some no-
tion of distance to a prior distribution. We refer to this approach as the model
selection problem. Both approaches can be easily generalized to inconsistent
knowledge bases by just replacing the probabilistic interpretations that satisfy
the knowledge base (the classical models) with those that minimally violate
the knowledge base (the generalized models) [34, 35]. A detailed description
and discussion of both approaches can be found in [36]. The following example
illustrates how our generalization of the probabilistic entailment problem to
inconsistent knowledge bases can be applied.

Example 10. Let us consider the Nizon diamond. We believe that quakers
(Q) are usually pacifists (P) while republicans (R) are usually not. However,
we know that Nixon (V) was both a quaker and a republican. Let us model
our beliefs with the following knowledge base:

r={(PQ)0.9],(P|R)0.1], (N)[1], (@A R [ N)[1]}.

K is inconsistent. For instance, its minimal violation value with respect to
the Euclidean norm is Zj (k) =~ 0.42. Let us set IC = @ and ask for the
probability that Nixon was a pacifist. Table 2 shows the result and some
additional queries that show in which way the knowledge in « has been relaxed.

We can in particular see that the Manhattan norm yields the most conserva-
tive results in the sense that it provides very large answer intervals. However,
the answer is still bounded away from the trivial bounds 0 and 1. For the
Fuclidean and the Maximum norm, we maintain the knowledge that quakers
are probably pacifists and that republicans are probably not (the probabilities
are bounded away from 0.5). We also notice in Table 2 that the probability



Query ||.[x [HE [-llso
( [0.1,0.9] [0.384,0.615] [0.376,0.624]
(P [0.1,0.9] [0.517,0.615] [0.520,0.624]
(P|R) [0.1,0.9] [0.384,0.482] [0.376,0.481]
(N 1.1] [1,1] [1,1]

Table 3: Generalized entailment results (rounded to 3 digits) for Nixon diamond
with IC' = {(N)[1]} (Example 10).

that the person under consideration is Nixon (NN) has also been subject to
change. However, since we have no doubts about Nixon’s existence, we let
(N)[1] become an integrity constraint. That is, we now let IC = {(N)[1]} and

={(PQ)[0.9], (P | R)[0.1], (@R | N)[1]}
Table 3 shows the new generalized entailment results.

The generalizations of both the probabilistic entailment problem and the
model selection problem satisfy some interesting properties. Intuitively, these
properties can be described as follows:

Counsistency If kUIC is consistent, the generalized reasoning results coincide
with the classical reasoning results.

Independence If some subset of k U IC is consistent, then generalized rea-
soning results that depend only on this subset coincide with the classical
reasoning results.

Continuity If kUIC is topologically close to a consistent knowledge base, then
the generalized reasoning results will be close to the classical reasoning
results.

A thorough discussion of these properties and their exact preconditions can be
found in [32, 36].

In several applications, we want to override general rules by more specific
rules. This can be modeled by a knowledge base that is partitioned into subsets
with different priorities. If we assume that each subset of the partition is
consistent with given integrity constraints, we can consider another form of
generalized probabilistic reasoning. Similar as before, we start with the models
of the integrity constraints My. We then select from M, those models that
minimally violate the conditionals with highest priority yielding a subset M of
M. We continue in this way, constructing M1 by selecting from M, those
models that minimally violate the conditionals with the next highest priority.
A detailed description of this approach and its properties can be found in [31].



The following example illustrates how this approach can be used to generalize
the probabilistic entailment problem to knowledge bases with priorities.

Example 11. We consider a probabilistic version of an access control policy
scenario from [2]. Suppose we have different files and different users and want
to automatically deduce the probability that a user has access to a file. If the
probability is 1, we might grant access immediately, otherwise we might send
a confirmation request to the system administrator. If the probability is very
low, say smaller than 0.1, we might want to send a warning in addition.

We model this problem using a relational probabilistic language similar to
[24, 12]. We build up formulas over a finite set of typed predicate symbols, a
finite set of typed individuals and an infinite set of (typed) variables. We allow
the usual logical connectives, but do not allow quantifiers.

We use the types User and File and the predicates grantAccess(User, File),
employee( User), exec(User), blacklisted(User), confidential(File), where exec
abbreviates executive manager. Let alice and bob be individuals of type User
and let filel, file2 be individuals of type File.

Our priority knowledge base has the form k = (k1, k2, k3, k4, k5, IC'), where
a higher index means higher priority. That is, x1 has the lowest and x5 has
the highest priority (disregarding the integrity constraints IC that cannot be
violated at all). The subsets of the knowledge base are defined as follows:

k1 = {(grantAccess(U, F))[0], (blacklisted(U))[0.05]}

= {(grantAccess(U, F) | employee(U))[0.5],

blacklisted(U) | employee(U))[0.01]}

grantAccess(U, F') | confidential(F))[0]}

grantAccess(U, F) | exec(U))[0.7],

blacklisted(U) | exec(U))[0.001]}

exec(alice))[1], (employee(bod))[1], (confidential(filel))[1]}

(
(
(
= {(
= {(
(
(
(employee(U) | exec(U))[1], (grantAccess(U, F) | blacklisted(U)(F))[0]}

=
1 C {
On the first level, we define generic knowledge. If no knowledge is available, we
do not want to grant access to anybody. Also, we make the assumption that it
is rather unlikely that a user is blacklisted. On the second level, we increase the
access probability and decrease the blacklist probability for employees. On level
3, we make an exception for confidential files. Afterwards, we further increase
access probability and decrease blacklist probability for executive managers on
level 4. The last level contains domain knowledge. We know that alice is an
executive manager, bob is an employee and file! is confidential. Our integrity
constraints state that executive managers are employees and that we do not
grant access to blacklisted users.

We have the following rounded reasoning results when using the Euclidean



norm to determine our strict priority models:

grantAccess(alice, file1)]0.7] grantAccess(bob, file1)[0]
grantAccess(alice, file2)]0.7] grantAccess(bob, file2)[0.5]
blacklisted(alice)[0.0001] blacklisted(bob)[0.01].

The results make intuitively sense. For instance, the first query shows that for
the executive manager alice, the access rule (grantAccess(U, F') | exec(U))[0.7]
with priority 4 has been applied, while (grantAccess(U, F') | confidential(F'))[0]
with priority 3 and (grantAccess(U, F))[0] with priority 1 have been ignored.
Similarly, we can see that for the employee bob the rule (grantAccess(U, F) |
confidential(F))[0] with priority 3 applies because filel is confidential and bob
is not an executive manager.

Generalized reasoning approaches can also be applied in multi-agent sys-
tems. For instance, in [33], multi-agent decision problems have been investi-
gated where each agent has individual beliefs and utilities. Generalized Prob-
abilistic Entailment can be used to derive group beliefs from the individual
beliefs. Then expected utilities for the group can be computed from these
group beliefs. Since this approach yields utility intervals rather than point
utilities, one can define different preference relations. These approaches satisfy
independence and continuity properties similar to the ones that we discussed
after Example 10 and also satisfy some desirable social choice properties [33].

6 Summary

In this chapter, we gave an overview of approaches to measuring inconsistency
in probabilistic logics. The most important property that distinguishes mea-
sures for probabilistic logics from measures for classical logics is Continuity.
Continuity guarantees that minor changes of probabilities cannot result in ma-
jor changes in the inconsistency value. This property seems highly desirable
for analyzing inconsistencies in probabilistic logics because conflicts can be re-
solved by carefully adjusting probabilities in the knowledge base. However,
as explained in Section 3, Continuity is actually in conflict with Independence
and MI-Separability that have been considered for classical measures. As ar-
gued in Section 3, our position is that these properties should be given up for
probabilistic knowledge bases in favor of Continuity.

In Section 4, we discussed different approaches for measuring inconsistency
in probabilistic logics. The first class of measures was directly adapted from in-
consistency measures for classical logics. While these measures are able to mea-
sure inconsistencies qualitatively, they do not take probabilities into account.
Distance-based measures attempt to minimize the distance in probabilities from
the original knowledge base to a consistent repair. They measure inconsistency



continuously and usually yield a repair as a byproduct. However, they can be
difficult to compute due to their non-convex nature. Violation-based measures
attempt to find a better tradeoff between computational and analytic prop-
erties. To do so, they do not minimize the distance in probabilities directly,
but try to minimize the error in the numerical constraints that correspond to
the knowledge base. While this approach is less intuitive than minimizing the
distance directly, it still measures inconsistency continuously and can be solved
by convex programming techniques in general, and even via linear program-
ming for two specific measures. These two measures are equivalent to some
measures based on Dutch books, from the Bayesian philosophy /statistics com-
munity, which were then presented. Afterwards, we discussed a measure based
on fuzzy logic that relies on assigning degrees of membership of probabilistic
interpretation belonging to models of a knowledge base. Finally, we discussed
measures that rely on the notion of entropy.

In Section 5, we sketched some applications of inconsistency measures for
probabilistic logics in repairing and reasoning with inconsistent knowledge
bases. Distance-based measures are well suited for repairing knowledge bases.
Adapting the probabilities in the knowledge base in a minimal way seems
to be the most intuitive way to repair inconsistent probabilistic knowledge
bases. However, by replacing the inconsistent knowledge base with a repair,
we may lose information about the variance in the information. So instead,
we may want to infer probabilities directly from the inconsistent knowledge
base. Violation-based measures are well suited for this purpose. By replac-
ing the models of a knowledge base with those probability distributions that
minimally violate the knowledge base, we can transfer reasoning approaches
for consistent knowledge bases to inconsistent ones. As we discussed, these
generalizations guarantee that classical reasoning results on the consistent part
of the knowledge base remain unaffected (Independence) and that reasoning
results over knowledge bases that are close to consistent knowledge bases are
not too far from the classical reasoning results (Continuity).
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