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Abstract

We propose a general scheme for adding probabilistic reason-
ing capabilities to any knowledge representation formalism.

1 Introduction

The ability to reason under uncertainty is a core requirement
for most intelligent systems and many approaches for un-
certain reasoning have been proposed in the area of knowl-
edge representation and reasoning (KR) and artificial in-
telligence (Al) in general, see €. g. (Pear]l 1988). In general,
we can distinguish between qualitative uncertain reasoning
and quantitative uncertain reasoning. The former encom-
passes approaches such as default logic (Reiter 1980), an-
swer set programming (Gelfond and Lifschitz 1991), or ab-
stract argumentation (Dung 1995). The latter makes use of
formalisms such as probability theory (Pearl 1988), or fuzzy
logic (Hajek 1998). A common approach to define a new
quantitative model for uncertain reasoning is to take some
non-qualitative approach—which may either be a qualitative
model as mentioned before or something completely differ-
ent such as propositional logic—add quantities to the syn-
tax and define a new quantitative semantics on top of that.
This approach is followed by e. g. probabilistic logics (Nils-
son 1986; Halpern 1990); distribution semantics for logic
programming (Sato 1995), then implemented in ProbLog
(Raedt, Kimmig, and Toivonen 2007); P-log (Baral, Gel-
fond, and Rushton 2004); probabilistic approaches to formal
argumentation (Li, Oren, and Norman 2011; Hunter 2012),
any many more.
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We aim at unifying many of the aforementioned ap-
proaches and define a general methodology for reasoning
with quantitative uncertainty. This allows for a general study
of its properties while abstracting away from any specific
instantiation. We focus on probability theory as a means
for quantitative uncertain reasoning but a similar method-
ology can be defined by building on other formalisms such
as fuzzy logic or Dempster-Shafer theory. We start by con-
sidering an arbitrary base logic and define its probabilistic
augmentation by extending the syntax to allow for annotated
probabilities on each formula. Therefore, a knowledge base
of probabilistic augmentation consists of a set of formulas,
each annotated with a probability. We define a general prob-
abilistic semantics on top of the built-in semantics of the
base logic by (1) considering each subset of the knowledge
base, (2) performing ordinary inference within the subset,
and (3) accumulating the inferences by taking the probabil-
ities into account. This gives us a general methodology for
defining probabilistic versions of existing knowledge repre-
sentation formalisms, and is inspired by many concrete re-
alisations such as the distribution semantics for logic pro-
gramming (Sato 1995).

2 Preliminaries

We consider a very general definition for a logic. For a set S
let 2° denote its power set.

Definition 1. A logic £ is a tuple L = (W, V, |=) where
W is the set of well-formed formulas, V is the set of “in-
ferrable” formulas, and =C 2"V x V is an inference rela-
tion.

As we aim to model a wide range of logics we explicitly
distinguish between well-formed formulas YV and formulas
that can be inferred in the formalism V.

We write K |= ¢ (“C entails ¢”) instead of (IC, ¢) €|= for
KCW,¢eV.KCWis -inconsistent if K |= ¢ for all
¢ € V; otherwise K is |=-consistent.

Example 1. Let us consider answer set programming
(Gelfond and Lifschitz 1991) and define Lasp =
(Wasp, Vasp, Easp) where Wasp is the set of all extended
logic program rules; and Vasp is the set of all ground liter-
als.

For a set P C Whagp (also called answer set program)
and a set M of ground literals the reduct PM is defined via



PM = {head(r) < body™ (r) | r € ground(P), MN
body™ (r) = 0}.

A set M of ground literals is called answer set if it is
the minimal model of PM. Then P \=psp H for a ground
literal H iff H € M for all answer sets M.' If there
are no answer sets in P, we define P |=psp ¢ for all
@ € Vasp(Pred,U, V) (P is |Easp-inconsistent).

3 Probabilistic Augmentations
Let L = (W, V, ) be some logic, which will also be re-
ferred to as base logic in the following. We define its proba-
bilistic augmentation Z(L) = (W, V, E) as follows.

The languages W and V consist of the quantification of
formulas of £ with probabilities: W = {¢ : p | ¢ €
W,p € [0,1]}andV = {¢ : p | ¢ € V,p € [0,1]}.
The semantics of Z(L) are defined in terms of probabilities
of subsets of a knowledge base I C W. For every K C W
define K| ={¢ | ¢ : p € K} C W. In other words, K |
is the flattened—i.e. without probabilities—version of the
knowledge base K. We define now the general probability

P of subsets of a probabilistic knowledge base K C W via
Pe(K') = H¢:pe/C/pH¢:pe)C\ic'(1 —p) forall K’ C K.
Observe that Py is indeed a probability distribution over
subsets of /.

Theorem 1. For every K C W, Z)c'gc Pc(K') = 1.

Based on the general probability Px we can define the
degree of belief of any formula ¢ € V wrt. K via IIx(¢) =
ZIC’QC,Ith(z: Pi(K).

In other words, a probabilistic knowledge base  C W
defines a probability distribution over all subsets of K. For
each subset K’ C K, we consider its flattened version ' |
and decide using the base logic £, whether K’ | infers ¢. We
sum up the probabilities of all subsets where this is the case
in order to obtain the degree of belief of ¢ wrt. the proba-
bilistic knowledge base K.

Based on IIx we define probabilistic inference I; via
KE¢ : piflx(¢) = pforall K C W.

Let us consider the probabilistic augmentation of an an-
swer set program Z(Lagp) and let us illustrate its semantics
by the means of an example.

Example 2. Consider the following answer set program
augmented with probabilities:

arill +— alarm, notreal :0.2

real < alarm, notdrill :0.9

alarm 1

Hence, K EA; real 0.72 as the only subset
K' Easp realis K' = {r+ a, notd; a}.

4 Conclusion

We developed a general scheme for adding probabilistic
reasoning capabilities to any knowledge representation for-

"=asp can also be defined credulously by requiring that H is
contained in some answer set.

2Although no formal definitions are provided, at first sight
(Dragiev et al. 2016) might seem close in spirit to our proposal.

malism. Pivotal in our proposal is the notion of probabilis-
tic augmentation of a knowledge representation formalism,
which extends it by enabling probabilities to be expressed
on the logical formulas of the chosen formalism.

This work lays the foundation for a general approach to
probabilistic reasoning that has the potential to create syn-
ergies between different fields interested in incorporating
probability into a specific framework. Our logical setting is
general enough to capture a wide variety of logics as a base
logic such as classical logic, modal logic, and even abstract
argumentation.

References

Baral, C.; Gelfond, M.; and Rushton, N. 2004. Probabilistic
Reasoning With Answer Sets. In Lifschitz, V., and Niemel,
L, eds., Logic Programming and Nonmonotonic Reasoning,
21-33. Springer Berlin Heidelberg.

Dragiev, S.; Russo, A.; Broda, K.; Law, M.; and Turliuc, C.
2016. An abductive-inductive algorithm for probabilistic
inductive logic programming. In Proceedings of the 26th
International Conference on Inductive Logic Programming
(Short papers), 20-26.

Dung, P. M. 1995. On the acceptability of arguments
and its fundamental role in nonmonotonic reasoning, logic
programming and n-person games. Artificial Intelligence
77(2):321-357.

Gelfond, M., and Lifschitz, V. 1991. Classical negation in
logic programs and disjunctive databases. New Generation
Computing 9(3/4):365-386.

Hajek, P. 1998. Metamathematics of Fuzzy Logic. Dor-
drecht: Kluwer.

Halpern, J. Y. 1990. An Analysis of First-Order Logics of
Probability. Artificial Intelligence 46:311-350.

Hunter, A. 2012. Some foundations for probabilistic abstract
argumentation. In Proceedings of the 4th International Con-
ference on Computational Models of Argument, 117—-128.

Li, H.; Oren, N.; and Norman, T. J. 2011. Probabilistic argu-
mentation frameworks. In Proceedings of the First Interna-
tional Workshop on the Theory and Applications of Formal
Argumentation, 1-16.

Nilsson, N. J. 1986. Probabilistic logic. Artificial intelli-
gence 28(1):71-87.

Pearl, J. 1988. Probabilistic reasoning in intelligent sys-
tems: networks of plausible inference. Springer-Verlag.

Raedt, L. D.; Kimmig, A.; and Toivonen, H. 2007. Problog:
A probabilistic prolog and its application in link discovery.
In Proceedings of the 20th International Joint Conference
on Artificial Intelligence, 2462-2467.

Reiter, R. 1980. A logic for default reasoning. Artificial
Intelligence 13:81-132.

Sato, T. 1995. A statistical learning method for logic pro-
grams with distribution semantics. In Proceedings of the
12th International Conference on Logic Programming, 715—
729.



