
Some Complexity Results on Inconsistency Measurement

Matthias Thimm
Institute for Web Science and Technologies,

Universität Koblenz-Landau,
Germany

Johannes P. Wallner
HIIT, Department of Computer Science,

University of Helsinki,
Finland

Abstract

We survey a selection of inconsistency measures from
the literature and investigate their computational com-
plexity wrt. decision problems related to bounds on the
inconsistency value and the functional problem of deter-
mining the actual value. Our findings show that those
inconsistency measures can be partitioned into three
classes related to their complexity. The first class con-
tains measures whose complexity are located on the first
level of the polynomial hierarchy, the second class con-
tains measures on the second level of the polynomial hi-
erarchy, and the third class is located beyond the second
level of the polynomial hierarchy. We provide member-
ship results for all the investigated problems and com-
pleteness results for most of them.

draft 2015/01/30

1 Introduction
Inconsistency measurement is about the quantitative assess-
ment of the severity of inconsistencies in knowledge bases.
Consider the following two knowledge basesK1 andK2 for-
malised in propositional logic:

K1 = {a, b ∨ c,¬a ∧ ¬b, d} K2 = {a,¬a, b,¬b}
Both knowledge bases are classically inconsistent as for
K1 we have {a,¬a ∧ ¬b} |=⊥ and for K2 we have, e. g.,
{a,¬a} |=⊥. These inconsistencies render the knowledge
bases useless for reasoning if one wants to use classical rea-
soning techniques. In order to make the knowledge bases
useful again, one can either rely on non-monotonic/para-
consistent reasoning techniques (Makinson 2005; Priest
1979) or one revises the knowledge bases appropriately
to make them consistent (Hansson 2001). Looking at the
knowledge bases K1 and K2 one can observe that the sever-
ity of their inconsistency is different. In K1, only two out of
four formulas (a and ¬a∧¬b) are “participating” in making
K1 inconsistent while for K2 all formulas contribute to its
inconsistency. Furthermore, for K1 only two propositions
(a and b) are conflicting and using e. g. paraconsistent rea-
soning one could still infer meaningful statements about c
and d. For K2 no such statement can be made. This leads to
the assessment thatK2 should be regarded more inconsistent
than K1.

Copyright © 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Inconsistency measures can be used to analyse inconsis-
tencies and to provide insights on how to repair them. An
inconsistency measure I is a function on knowledge bases,
such that the larger the value I(K) the more severe the in-
consistency in K. A lot of different approaches of incon-
sistency measures have been proposed, mostly for classi-
cal propositional logic (Hunter and Konieczny 2008; 2010;
Ma et al. 2010; Mu et al. 2011; Xiao and Ma 2012; Grant
and Hunter 2011; 2013; McAreavey, Liu, and Miller 2014;
Jabbour et al. 2015).

In this paper, we address the computational complexity
of inconsistency measurement by investigating a selection
of 13 inconsistency measures for propositional logic from
the literature mentioned above. Inconsistency measurement
is, by definition, a computationally intractable problem as it
goes beyond merely detecting inconsistency (which is itself
an coNP-complete problem for propositional logic). How-
ever, no systematic investigation of the complexity of in-
consistency measures—and a comparison of measures wrt.
it—has been conducted so far. The only complexity anal-
yses on inconsistency measures we are aware of were pre-
sented in (Ma et al. 2010) and (Xiao and Ma 2012) and
each focused on a particular inconsistency measure. In (Ma
et al. 2010) the complexity of a variant of the contension
inconsistency measure Ic (Grant and Hunter 2011) and in
(Xiao and Ma 2012) the complexity of the measure Imv
from (Xiao and Ma 2012) itself are investigated (we will
recall the formal definitions of these measures in Sec. 3
and the corresponding results in Sec. 4, respectively). Re-
cently, the algorithmic challenges in computing inconsis-
tency measures have gained some attention (Ma et al. 2010;
McAreavey, Liu, and Miller 2014; Thimm 2016b) and there-
fore calls for a theoretical investigation on the complexity of
the involved computational problems. In this paper, we take
a first step in this direction by providing a detailed analysis
on the computational complexity of 13 measures wrt. three
decision problems, namely deciding whether a given value
is an upper, resp. lower bound, or is the exact value, as well
as the functional problem of determining the inconsistency
value. We mainly focus on the decision problems of decid-
ing whether a given value is an upper, or resp. a lower bound,
since, as we will see, the complexity classification of these
decision problems gives crucial insights into the computa-
tional complexity of the inconsistency measure at hand.

The main contributions of this paper are as follows.

• We show that the complexity of the decision problems of
the inconsistency measures Id, Iη , Ic, Ihs, IΣ

dalal, Imax
dalal ,

and Ihit
dalal is located on the first level of the polynomial hi-

erarchy. These results imply that one can compute the ex-
act value with logarithmically many calls to an NP-oracle.
This in particular suggests the applicability of maximum
satisfiability solvers (Ansótegui, Bonet, and Levy 2013;
Morgado et al. 2013) and similar systems for computing
these measures.

• We establish completeness for a class in the second level
of the polynomial hierarchy for decision problems for
measures Ip, Imv , and Inc. Thus, these measures can
be computed with logarithmically many calls to a Σp2 ora-
cle. Systems capable of dealing with such high complex-
ity are, e. g., answer-set programming solvers (Brewka,
Eiter, and Truszczynski 2011).

• We prove that counting problems underlying inconsis-
tency measures IMI and Imc are #·coNP-complete. Un-
der complexity theoretic assumptions, our results imply
that (i) these underlying counting problems are com-
putationally more challenging than propositional model
counting, a problem itself seen as highly intractable and
important (Gomes, Sabharwal, and Selman 2009), and
(ii) that decision problems associated with these mea-
sures presumably are not contained in a class of the
polynomial hierarchy. Algorithms for computing these
problems can be built upon systems for enumerating
minimal unsatisfiable sets such as (Marques-Silva 2012;
McAreavey, Liu, and Miller 2014; Liffiton et al. 2015).
Additionally, we show that measures IMI, Imc and the re-
lated measure IMIC can be computed in polynomial space.

Before we give the details of our technical contributions in
Section 4, we first provide some necessary preliminaries in
Section 2 and introduce the inconsistency measures used in
our analysis in Section 3. We conclude with a discussion in
Section 5.

2 Preliminaries
In the following, we introduce some necessary preliminaries
on propositional logic and computational complexity.

2.1 Propositional Logic
Let At be some fixed propositional signature, i. e., a (possi-
bly infinite) set of propositions, and let L(At) be the corre-
sponding propositional language constructed using the usual
connectives ∧ (conjunction), ∨ (disjunction), → (implica-
tion), and ¬ (negation). A literal is a proposition p or a
negated proposition ¬p. A clause is a disjunction of liter-
als. A formula is in conjunctive normal form (CNF) if the
formula is a conjunction of clauses.

Definition 1. A knowledge baseK is a finite set of formulas
K ⊆ L(At). Let K be the set of all knowledge bases.

If X is a formula or a set of formulas we write At(X) to
denote the set of propositions appearing in X . Semantics to
a propositional language is given by interpretations and an

interpretation ω on At is a function ω : At → {true, false}.
Let Ω(At) denote the set of all interpretations for At. An
interpretation ω satisfies (or is a model of) an atom a ∈ At,
denoted by ω |= a, if and only if ω(a) = true. The satisfac-
tion relation |= is extended to formulas in the usual way.

For Φ ⊆ L(At) we also define ω |= Φ if and only if ω |=
φ for every φ ∈ Φ. Define furthermore the set of models
Mod(X) = {ω ∈ Ω(At) | ω |= X} for every formula or set
of formulas X . If Mod(X) = ∅ we also write X |=⊥ and
say that X is inconsistent.

We also make use of the notation φ[ω] for a formula φ
and a (partial) interpretation ω, which denotes the uniform
replacement of each proposition x ∈ dom ω by> if ω(x) =
true and by ⊥ if ω(x) = false.1 If ω is partial, i. e. defined
on a subset of variables in φ, this results in a formula with
reduced vocabulary.

2.2 Computational Complexity
We assume familiarity with the complexity classes P, NP,
and coNP. We also make use of the polynomial hierar-
chy, that can be defined (using oracle Turing machines) as
follows: Σp0 = ∆p

0 = P, Σpi+1 = NPΣpi , ∆p
i+1 = PΣpi for

i ≥ 0. Here, CD denotes the class of decision problems solv-
able in class C with access to an oracle for some problem
complete in D. A language is in Dpi iff it is the intersection
of a language in Σpi and a language in Πp

i . Further, PC[log]

contains all problems that can be solved with a deterministic
polynomial-time algorithm that may make logarithmically
many calls to a C oracle. The class PSPACE contains all
problems that can be solved in polynomial space. We also
make use of the functional complexity classes FPNP[logn]

and FPΣp2 [logn], i. e. classes containing problems whose so-
lutions can be computed with a polynomial-time algorithm
that may make a logarithmically bounded number of oracle
calls to an NP, resp. Σp2, oracle. The class FPSPACE is
the class of function problems whose solutions can be com-
puted in polynomial space. For function complexity classes
we utilize metric reductions to show hardness. A functional
problem A reduces to a functional problem B if there exist
polynomial-time computable functions f and g s. t. for input
x for A it holds that g(x, y) is a correct solution for problem
A iff y is a correct solution for input f(x) for problem B.

Some of the inconsistency measures inherently count
certain semantical structures, making counting complexity
(see (Valiant 1979b; 1979a)) a natural tool for our analysis.
While decision problems typically ask whether at least one
solution for a problem exists, counting problems ask for the
number of solutions. The most well-known counting com-
plexity class is #P, the class containing problems asking
for the number of accepting paths in a non-deterministic
polynomial-time Turing machine. The prototypical #P-
complete problem is #SAT, the problem of finding the num-
ber of models of a given formula. In this paper we use the
class #·coNP from the counting complexity class hierar-
chy defined in (Hemaspaandra and Vollmer 1995). Towards
the definition of this class we first define counting problems

1dom f denotes the domain of a function f .

which are in turn defined via witness functions w, which
assign to a string from an input alphabet Σ a finite set of
strings from an alphabet Γ. An instance for a counting prob-
lem consists of a given input string x from alphabet Σ and
the task is to return |w(x)|, i. e. the cardinality of witnesses
defined by witness function w associated with the counting
problem. If C is a complexity class of decision problems,
then #·C is the class of all counting problems for whose
witness function w it holds that
• for every input string x, every y ∈ w(x) is polynomially

bounded by x; and
• the decision problem of deciding y ∈ w(x) for given

strings x and y is in C.
For example, for #SAT the witness function is Mod(φ) for
input strings φ corresponding to formulas. It holds that
#·P = #P and #·P ⊆ #·coNP. The main type of re-
duction used for classes like #·coNP are subtractive re-
ductions (Durand, Hermann, and Kolaitis 2005), since Tur-
ing reductions do not preserve counting complexity classes
#·Πp

i . Let #A and #B be counting problems. We denote
their witness sets by A(x) and B(y) for input strings x and
y. The counting problem #A reduces to #B via a strong
subtractive reduction if there exist polynomial-time com-
putable functions f and g s. t. for each input string xwe have
B(f(x)) ⊆ B(g(x)) and |A(x)| = |B(g(x))| − |B(f(x))|.
Intuitively, we may overcount the solutions and carefully
subtract what we overcounted. A strong subtractive reduc-
tion is called parsimonious if B(f(x)) = ∅ for all input
strings x, i. e. |A(x)| = |B(g(x))|. Subtractive reductions
are the transitive closure of strong subtractive reductions.

The class #·coNP contains several natural counting
problems complete for this class, including problems in the
field of knowledge representation and reasoning, e. g. count-
ing the number of explanations in the context of abduc-
tion (Hermann and Pichler 2010).

3 Inconsistency Measures
Inconsistency measures are functions I : K → [0,∞] that
aim at assessing the severity of the inconsistency in a knowl-
edge base K, cf. (Grant and Hunter 2011). The basic idea
is that the larger the inconsistency in K the larger the value
I(K). However, inconsistency is a concept that is not eas-
ily quantified and there have been quite a number of pro-
posals for inconsistency measures so far, in particular for
classical propositional logic, see e. g. (McAreavey, Liu, and
Miller 2014; Jabbour et al. 2015) for some recent works.
Formally, we define inconsistency measures as follows, cf.
e. g. (Hunter and Konieczny 2008).
Definition 2. An inconsistency measure I is a function
I : K → [0,∞] satisfying I(K) = 0 if and only if K is
consistent, for all K ∈ K.

Here, we select a representative set of 13 inconsistency
measures from the literature in order to conduct our anal-
ysis on computational complexity, taken from (Hunter and
Konieczny 2010; Grant and Hunter 2011; Knight 2002;
Thimm 2016b; Grant and Hunter 2013; Xiao and Ma 2012;
Doder et al. 2010). We briefly introduce these measures in

Id(K) =

{
1 if K |=⊥
0 otherwise

IMI(K) = |MI(K)|

IMIC(K) =
∑

M∈MI(K)

1

|M |

Iη(K) = 1−max{ξ | ∃P ∈ P(At) : ∀α ∈ K : P (α) ≥ ξ}

Ic(K) = min{|υ−1(B)| | υ |=3 K}

Imc(K) = |MC(K)|+ |SC(K)| − 1

Ip(K) = |
⋃

M∈MI(K)

M |

Ihs(K) = min{|H| | H is a hitting set of K} − 1

IΣ
dalal(K) = min{

∑
α∈K

dd(Mod(α), ω) | ω ∈ Ω(At)}

Imax
dalal (K) = min{max

α∈K
dd(Mod(α), ω) | ω ∈ Ω(At)}

Ihit
dalal(K) = min{|{α ∈ K | dd(Mod(α), ω) > 0}| | ω ∈ Ω(At)}

Imv(K) =
|
⋃
M∈MI(K) At(M)|
|At(K)|

Inc(K) = |K| −max{n | ∀K′ ⊆ K : |K′| = n⇒ K′ 6|=⊥}

Figure 1: Definitions of the considered inconsistency mea-
sures

this section for the sake of completeness, but we refer for a
detailed explanation to the corresponding original papers.

The formal definitions of the considered inconsistency
measures can be found in Figure 1, while the necessary no-
tation for understanding these measures follows below.

The measure Id(K) (Hunter and Konieczny 2008) is usu-
ally referred to as a baseline for inconsistency measures
as it only distinguishes between consistent and inconsis-
tent knowledge bases. The measures IMI(K) (Hunter and
Konieczny 2008), IMIC(K) (Hunter and Konieczny 2008),
Ip (Grant and Hunter 2011), and Imv (Xiao and Ma 2012)
are defined using minimal inconsistent subsets. A set M ⊆
K is called minimal inconsistent subset (MI) of K if M |=⊥
and there is noM ′ ⊂M withM ′ |=⊥. Let MI(K) be the set
of all MIs of K. For Imc (Grant and Hunter 2011), let fur-
thermore MC(K) be the set of maximal consistent subsets
of K, i. e., MC(K) = {K′ ⊆ K | K′ 6|=⊥ ∧∀K′′) K′ :
K′′ |=⊥}, and let SC(K) be the set of self-contradictory
formulas of K, i. e., SC(K) = {φ ∈ K | φ |=⊥}. Note
also that Inc (Doder et al. 2010) uses the concept of max-
imal consistency in its formal definition, but in a slightly
different manner. The measure Iη (Knight 2002) considers
probability functions P of the form P : Ω(At) → [0, 1]
with

∑
ω∈Ω(At) P (ω) = 1. Let P(At) be the set of all

those probability functions and for a given probability func-
tion P ∈ P(At) define the probability of an arbitrary for-

mula φ via P (φ) =
∑
ω|=φ P (ω). The measure Ic (Grant

and Hunter 2011) utilizes three-valued interpretations for
propositional logic (Priest 1979).2 A three-valued interpre-
tation υ on At is a function υ : At → {T, F,B} where
the values T and F correspond to the classical true and
false, respectively. The additional truth value B stands for
both and is meant to represent a conflicting truth value for
a proposition. Taking into account the truth order ≺ de-
fined via T ≺ B ≺ F , an interpretation υ is extended to
arbitrary formulas via υ(φ1 ∧ φ2) = min≺(υ(φ1), υ(φ2)),
υ(φ1 ∨ φ2) = max≺(υ(φ1), υ(φ2)), and υ(¬T) = F ,
υ(¬F) = T , υ(¬B) = B. An interpretation υ satisfies
a formula α, denoted by υ |=3 α if either υ(α) = T or
υ(α) = B. For Ihs (Thimm 2016b), a subset H ⊆ Ω(At)
is called a hitting set of K if for every φ ∈ K there is
ω ∈ H with ω |= φ. The Dalal distance dd is a dis-
tance function for interpretations in Ω(At) and is defined
as d(ω, ω′) = |{a ∈ At | ω(a) 6= ω′(a)}| for all ω, ω′ ∈
Ω(At). If X ⊆ Ω(At) is a set of interpretations we de-
fine dd(X,ω) = minω′∈X dd(ω′, ω) (if X = ∅ we de-
fine dd(X,ω) = ∞). We consider the inconsistency mea-
sures IΣ

dalal, Imax
dalal , and Ihit

dalal from (Grant and Hunter 2013)
but only for the Dalal distance. Note that in (Grant and
Hunter 2013) these measures were considered for arbitrary
distances and that we use a slightly different but equivalent
definition of these measures.

We conclude this section with a small example illustrating
the behavior of the considered inconsistency measures on
the example knowledge bases from the introduction.

Example 1. Let K1 and K2 be given as

K1 = {a, b ∨ c,¬a ∧ ¬b, d} K2 = {a,¬a, b,¬b}

Then

Id(K1) = 1 Id(K2) = 1

IMI(K1) = 1 IMI(K2) = 2

IMIC(K1) = 1/2 IMIC(K2) = 1

Iη(K1) = 1/2 Iη(K2) = 1/2

Ic(K1) = 1 Ic(K2) = 2

Imc(K1) = 1 Imc(K2) = 3

Ip(K1) = 2 Ip(K2) = 4

Ihs(K1) = 1 Ihs(K2) = 1

IΣ
dalal(K1) = 1 IΣ

dalal(K2) = 2

Imax
dalal (K1) = 1 Imax

dalal (K2) = 1

Ihit
dalal(K1) = 1 Ihit

dalal(K2) = 2

Imv(K1) = 1/2 Imv(K2) = 1

Inc(K1) = 3 Inc(K2) = 3

4 Analysis of Computational Complexity
In this paper, we consider the following three decision prob-
lems for our investigation of the computational complexity

2Note that slightly different formalizations of this idea have
been given in (Hunter and Konieczny 2010; Ma, Qi, and Hitzler
2011).

of inconsistency measurement. Let I be some inconsistency
measure.
EXACTI Input: K ∈ K, x ∈ [0,∞]

Output: TRUE iff I(K) = x

UPPERI Input: K ∈ K, x ∈ [0,∞]
Output: TRUE iff I(K) ≤ x

LOWERI Input: K ∈ K, x ∈ (0,∞]
Output: TRUE iff I(K) ≥ x

Note that for any inconsistency measure I according to Def-
inition 2 the decision problems EXACTI and UPPERI are at
least NP-hard as deciding whether I(K) = 0 is equivalent
to deciding whether K is consistent, which itself is equiva-
lent to the satisfiability problem SAT. Similarly, the prob-
lem LOWERI is at least coNP-hard as deciding whether
I(K) ≥ x for some x > 0 entails that K is inconsistent3,
which itself is equivalent to the unsatisfiability problem UN-
SAT. Furthermore, we consider the following natural func-
tion problem for our investigation:
VALUEI Input: K ∈ K

Output: The value of I(K)

Table 1 gives an overview on the technical results shown
in the remainder of this paper. As can be seen, most
measures fall into the first level of the polynomial hierar-
chy (Id, Iη, Ic, Ihs, IΣ

dalal, Imax
dalal , Ihit

dalal), where the decision
problems UPPERI and LOWERI can be shown to be NP-
complete and coNP-complete, respectively, and thus not
computationally harder than SAT and UNSAT problems, re-
spectively. The remaining measures are either on the second
level of the polynomial hierarchy (Ip, Imv, Inc) or involve
counting (sub)problems whose complexity goes beyond the
second level of the polynomial hierarchy (IMI, IMIC , Imc).

Before we continue with the details of the technical re-
sults, we make some general observations first. In particu-
lar, in order to provide insights into the computational com-
plexity of the problem VALUEI it is useful to investigate the
number of values an inconsistency measure can attain for
knowledge bases of a given size, cf. (Thimm 2016a) for a
more detailed discussion of this topic.
Definition 3. Let φ be a formula. The length len(φ) of φ is
recursively defined as

len(φ) =


1 if φ ∈ At
1 + len(φ′) if φ = ¬φ′
1 + len(φ1) + len(φ2) if φ = φ1 ∧ φ2

1 + len(φ1) + len(φ2) if φ = φ1 ∨ φ2

Define the length len(K) of a knowledge base K via
len(K) =

∑
φ∈K len(φ).

Definition 4. For an inconsistency measure I and n ∈ N
define CI(n) = {I(K) | len(K) ≤ n}, i. e., CI(n) is the
set of different inconsistency values that can be attained by
I on knowledge bases of maximal length n.

3Note that determining the first possible positive value for every
considered inconsistency measure is straightforward; most mea-
sures are integer-valued, so the first possible positive value is 1, for
IMIC it is 1/|K|, for Imv it is 1/|At(K)|, and for Iη it is 1/2|At(K)|

(the latter is due to combinatorial considerations, we omit the for-
mal proof due to space restrictions).

EXACTI UPPERI LOWERI VALUEI

Id Dp1 NP-c coNP-c FPNP

IMI PSPACE PSPACE PSPACE #·coNP-c
IMIC PSPACE PSPACE PSPACE FPSPACE
Iη Dp1 NP-c coNP-c FPNP[logn]

Ic Dp1 NP-c coNP-c FPNP[logn]

Imc PSPACE PSPACE PSPACE FPSPACE†

Ip Dp2 Πp
2-c Σp2-c FPΣ

p
2 [logn]

Ihs Dp1 NP-c coNP-c FPNP[logn]

IΣ
dalal Dp1 NP-c coNP-c FPNP[logn]-c
Imax

dalal Dp1 NP-c coNP-c FPNP[logn]

Ihit
dalal Dp1 NP-c coNP-c FPNP[logn]-c
Imv Dp2-c Πp

2-c Σp2-c FPΣ
p
2 [logn]

Inc Dp2 Πp
2-c Σp2-c FPΣ

p
2 [logn]

Table 1: Computational complexity of the considered in-
consistency measures (all statements are membership state-
ments, an additionally attached “-c” also indicates complete-
ness for the class); under complexity-theoretic assumptions,
if VALUEI is #·coNP hard then the corresponding deci-
sion problems for I are presumably not contained in a class
of the polynomial hierarchy; †decomposes into a #·coNP-
complete and an FPNP[logn]-complete problem.

Lemma 1. For I ∈ {Id, Iη, Ic, Ip, Ihs, IΣ
dalal, Imax

dalal , Ihit
dalal,

Imv, Inc} there is k ∈ N such that |CI(n)| ∈ O(nk).

Proof. We omit the proof for Iη due to space restrictions.
For Id we trivially have |CId(n)| ∈ O(1) as Id only has
two different values. For Ic observe that a knowledge base
K with len(K) ≤ n cannot mention more than n differ-
ent propositions. Therefore Ic(K) ≤ n for every K with
len(K) ≤ n and |CIc(n)| ∈ O(n). For Ip note that
Ip(K) ≤ |K| ≤ n and therefore |CIp(n)| ∈ O(n). For
Ihs, observe that in the worst-case when every formula of
K is pair-wise inconsistent with each other, there is an H
with |H| = |K| that is a minimal hitting set of K. So either
Ihs(K) ≤ |K| ≤ n or Ihs(K) = ∞ (if there is a contra-
dictory formula) and therefore |CIhs(n)| ∈ O(n). For IΣ

dalal
observe that both the number of formulas and the number of
propositions inK with len(K) ≤ n are bounded by n. Then
dd(Mod(α), ω) ≤ n for every α ∈ K and ω ∈ Ω(At) and
therefore

IΣ
dalal(K) = min{

∑
α∈K

dd(Mod(α), ω) | ω ∈ Ω(At)}

≤
∑
α∈K

n = n2

and hence |CIΣ
dalal

(n)| ∈ O(n2). It also follows |CImax
dalal

(n)| ∈
O(n) and |CIhit

dalal
(n)| ∈ O(n). For Imv observe that

|
⋃
M∈MI(K) At(M)| ≤ n for K with len(K) ≤ n as

K cannot mention more than n propositions. It follows
|CImv (n)| ∈ O(n). Finally, observe Inc(K) ∈ {0, . . . , |K|}
and therefore |CInc(n)| ∈ O(n).

The above lemma basically states that the number of dif-
ferent values most of the investigated inconsistency mea-
sures can attain on knowledge bases up to a certain size,
is polynomially bounded by this size. Note that the state-
ment is not true in general for IMI, IMIC , and Imc (a knowl-
edge base may have an exponential number of minimal (in-
)consistent subsets).

Lemma 1 is in particular useful in combination with
(exact) complexity bounds for problems UPPERI and
LOWERI . If, e. g., UPPERI is in complexity class C for
a measure I for which it holds that |CI(n)| ∈ O(nk), we
can find the exact value of I(K) for a knowledge base K
with binary search on the possible values requiring thus to
solve just a logarithmic number of consecutive problems in
C. These considerations are summarized in the following
result.

Lemma 2. Let I be some inconsistency measure and i > 0
an integer. If UPPERI is in Σpi or in Πp

i , and |CI(n)| ∈
O(nk) for some k ∈ N, then VALUEI is in FPΣpi [logn].

The decision problems EXACTI , UPPERI , and LOWERI
are also related to each other. UPPERI and LOWERI are
complementary to each and EXACTI is the combination of
both. However, we need another condition on inconsistency
measures to see this.

Definition 5. An inconsistency measure I is called well-
serializable if the following two problems are in P:

1. Given n ∈ N and x ∈ CI(n), determine y ∈ CI(n) such
that y > x and there is no y′ ∈ CI(n) with y > y′ > x.

2. Given n ∈ N and x ∈ CI(n), determine y ∈ CI(n) such
that y < x and there is no y′ ∈ CI(n) with y < y′ < x.

In other words, a measure is called well-serializable if the
immediate successor and predecessor of a value of I can
be efficiently determined. Note that all considered measures
satisfy this property4.

Lemma 3. Let I be some well-serializable inconsistency
measure and i > 0 an integer. Let C ∈ {Σpi ,Π

p
i }.

• UPPERI is C-complete iff LOWERI is co-C-complete;
• if UPPERI or LOWERI is in C, then EXACTI is in Dpi .

Proof. Let K and x be an instance of UPPERI . This is a yes
instance iff K together with y—where y is the immediate
successor of x in CI(n)—is a no instance of LOWERI . If
UPPERI is Σpi -complete (Πp

i -complete) then LOWERI is in
Πp
i -complete (Σpi -complete). For the second item note that
I(K) = x holds iff I(K) ≥ x and I(K) ≤ x.

Lemma 2 and Lemma 3 taken together imply that showing
the complexity of either UPPERI or LOWERI gives crucial
insights into the computation of measure I.

In the following, we give the details on the technical con-
tributions summarized in Table 1. We structure our presenta-
tion by first discussing the problems on the first level of the
polynomial hierarchy (Section 4.1), then those on the sec-
ond level (Section 4.2), and finally those beyond the second
level of the polynomial hierarchy (Section 4.3).

4The argumentation is similar as for Footnote 3.

4.1 Problems on the first level of the polynomial
hierarchy

In this section we discuss the measures
Id, Iη, Ic, Ihs, IΣ

dalal, Imax
dalal , and Ihit

dalal and show that
the corresponding decision and function problems reside
on the first level of the polynomial hierarchy. For all these
measures, we start by showing that UPPERI is NP-complete
and then utilize Lemmas 2 and 3 to gain insights on the
remaining problems.

The first measure we investigate is the baseline inconsis-
tency measure, Id, which is equal to 0 if the given knowl-
edge base is consistent and 1 otherwise, making the problem
UPPERId obviously NP-complete.
Proposition 1. UPPERId is NP-complete.

As one can compute the value for Id by one call to a SAT-
solver we also have that VALUEId is in FPNP.
Proposition 2. UPPERIη is NP-complete.

Proof. (Sketch) Note that the problem to compute Iη(K)
can be represented as a linear program over an exponen-
tial number of variables (the possible worlds) and a linear
number of equalities and inequalities (Knight 2002). Any
solution to this problem is nonnegative and due to the small-
model-property of linear programs (Chvátal 1983), there is
a solution where only a polynomial number of variables re-
ceive a non-zero value. We can therefore guess a set of
polynomial many variables, set the objective function to the
given upper bound x, and solve the corresponding program
using a polynomial-time algorithm (as linear programming
is in P). If it is feasible, x is indeed an upper bound. Com-
pleteness for NP follows from the fact that we can reduce
SAT to UPPERIη with x = 0.

Proposition 3. UPPERIc is NP-complete.
Proposition 4. UPPERIhs is NP-complete.

The proofs of Propositions 3 and 4 are omitted due to
space restrictions, but the statements can be shown using
simple guess-and-check algorithms. For Proposition 3 see
also (Ma et al. 2010) where the result has been shown for a
variant of Ic.

We move on to the measures involving the distance mea-
sures (Grant and Hunter 2013). Membership in NP for UP-
PERI with I ∈ {Ihit

dalal, IΣ
dalal, Imax

dalal } relies on the fact that
we can non-deterministically guess multiple interpretations
and in polynomial time verify whether these interpretations
satisfy the given formulas and, additionally, compute the
(Dalal) distance between these interpretations in polynomial
time. For the measures Ihit

dalal and IΣ
dalal we also give exact

complexity bounds for their functional problems VALUEI .
Proposition 5. UPPERIhit

dalal
is NP-complete and VALUEIhit

dalal

is FPNP[logn]-complete.

Proof. We begin with the hardness proof for VALUEIhit
dalal

.

Let φs = {c1, . . . , cn} be an instance of the FPNP[logn]-
complete problem MaxSAT Size, where the task is to find
the maximum number of clauses ci of φs that can be si-
multaneously satisfied. We show that for φs = K we have

Ihit
dalal(K) = n − k with k the maximum number of clauses

that can be simultaneously satisfied in φs, i.e. k is the solu-
tion to φs in the MaxSAT Size problem.

n−max{|C| | C ⊆ K,
∧
c∈C
6|= ⊥}

=n−max{|{α ∈ K | dd(Mod(α), ω) = 0}| | ω ∈ Ω(At)}
= min{|{α ∈ K | dd(Mod(α), ω) > 0}| | ω ∈ Ω(At)}
=Ihit

dalal(K)

Thus, we have reduced MaxSAT Size to VALUEIhit
dalal

.
Hardness for UPPERIhit

dalal
follows since we can reduce SAT

to UPPERIhit
dalal

if we set bound x = 0.
Further, UPPERIhit

dalal
is in NP, since we can non-

deterministically guess an ω ∈ Ω(At) and interpretations for
each α ∈ K for a givenK, and verify that the dd-distance is 0
for at least bxc many elements in K for a given real x. This
implies that UPPERIhit

dalal
is NP-complete and VALUEIhit

dalal
is

FPNP[logn]-complete due to Lemma 2.

Proposition 6. UPPERIΣ
dalal

is NP-complete and VALUEIΣ
dalal

is FPNP[logn]-complete.

Proof. We again start showing hardness for VALUEIΣ
dalal

by
reduction from the functional problem MaxSAT Size. Let
φs = {c1, . . . , cn} be again an instance of MaxSAT Size
with φs over variables {x1, . . . , xm}. We construct K =
{α1, α2} with α1 =

∧
1≤i≤n(ci ∨ (¬yi)) and α2 =∧

1≤i≤n yi with fresh variables yi. We now show that for
k the maximum number of clauses in φs that can be simul-
taneously satisfied, n − k = IΣ

dalal(K). First, we prove that
∀ω ∈ Ω(At)

dd(Mod(α1), ω) + dd(Mod(α2), ω) ≥ n− k. (1)

Define shorthands dd(Mod(α1), ω) = a(ω) and
dd(Mod(α2), ω) = b(ω). Suppose the contrary, i. e.
∃ω ∈ Ω(At), a(ω) + b(ω) < n − k. The interpretation ω
assigns b(ω) many yi variables to false and n − b(ω) many
to true. By presumption, there must exist a model ω1 of α1

s. t. dd(ω1, ω) < n− k− b(ω). Consider now the maximum
number c of yi variables that ω1 assigns to false. Under
the previous constraint on the symmetric difference, ω1 can
assign all yi variables to false that are also assigned to false
by ω (b(ω) many), and additionally less than n − k − b(ω)
(remainder of symmetric difference). Thus we can bound
c by c < b(ω) + n − k − b(ω) and in turn by c < n − k.
This implies that ω1 satisfies at least n − c clauses of φs,
i. e. strictly more than k clauses, a contradiction. Thus,
Equation (1) holds. There always exists an ω2 ∈ Ω(At) that
assigns all yi to true s. t. Equation 1 holds with equality.
This implies our claim, i. e. n− k = IΣ

dalal(K).
By similar reasoning as for Ihit

dalal, we conclude that UP-
PERIΣ

dalal
is NP-complete and VALUEIΣ

dalal
is FPNP[logn]-

complete.

Proposition 7. UPPERImax
dalal

is NP-complete.

Proof. Membership follows from considering the following
algorithm. ForK = {α1, . . . , αn} guess (ω0, ω1, . . . , ωn) ∈
Ω(At)n+1. For each αi, i = 1, . . . , n, check whether
ωi |= αi (this a polynomial test). Then compute x =
maxi=1,...,n dd(ωi, ω0), also in polynomial time. It is easy
to see that x is an upper bound for Imax

dalal (K). NP-hardness
follows from the fact that SAT can be reduced to UPPERImax

dalal
with x = 0.

Utilizing Lemma 3, we directly obtain the following state-
ments regarding LOWERI and EXACTI and the inconsis-
tency measures from above.

Corollary 1. It holds that

• problems LOWERId , LOWERIη , LOWERIc , LOWERIhs ,
LOWERIΣ

dalal
, LOWERImax

dalal
, and LOWERIhit

dalal
are coNP-

complete; and
• problems EXACTId , EXACTIη , EXACTIc , EXACTIhs ,

EXACTIΣ
dalal

, EXACTImax
dalal

, and EXACTIhit
dalal

are in Dp1.

Regarding the functional problem VALUEI and by com-
bining lemmas 1 and 2 we obtain the following.

Corollary 2. It holds that VALUEIη , VALUEIc , VALUEIhs ,
and VALUEImax

dalal
are in FPNP[logn].

Note that in Proposition 5 and Proposition 6 we al-
ready showed FPNP[logn]-completeness for VALUEIhit

dalal
and

VALUEIΣ
dalal

, respectively.

4.2 Problems on the second level of the
polynomial hierarchy

We now turn to inconsistency measures which involve prob-
lems on the second level of the polynomial hierarchy. We
first recall a result regarding Imv from (Xiao and Ma 2012)
which is given without proof.

Proposition 8. EXACTImv is Dp2-complete, UPPERImv is
Πp

2-complete, LOWERImv is Σp2-complete, and VALUEImv
is in FPΣp2 [logn].

We now continue with two novel results regarding the in-
consistency measures Inc and Ip. For both we provide di-
rect proofs of Σp2-completeness for the problem LOWERI
and utilize again Lemmas 2 and 3 to gain insights on the re-
maining problems. Intuitively, the increase in terms of com-
plexity of measures in this section, compared to measures
discussed in previous Sec. 4.1 is due to the fact that to ver-
ify a lower bound we non-deterministically guess a witness
that guarantees the bound, but checking the witness itself is
a coNP-hard problem. This can be seen in the crucial ob-
servation for the first measure we study in this section, Inc,
where the lower bounds depends on the size of unsatisfiable
subsets of K.

Proposition 9. LOWERInc is Σp2-complete.

Proof. Observe

Inc(K) = |K| −max{n | ∀K′ ⊆ K : |K′| = n⇒ K′ 6|=⊥}
= |K| −min{m | ∃K′ ⊆ K : |K′| = m ∧ K′ |=⊥}+ 1

We non-deterministically guess a set K′ ⊆ K with |K′| = k
and ask an NP-oracle whether K′ is inconsistent. If it is
inconsistent then k is an upper bound for

min{m | ∃K′ ⊆ K : |K′| = m ∧ K′ |=⊥}

and thus |K| − k + 1 is a lower bound for Inc(K).
Regarding hardness, we provide a reduction from the Σp2-

complete problem of checking whether a given closed quan-
tified Boolean formula φ = ∃X∀Y ψ in prenex normal form
(PNF) is satisfiable. Let X = {x1, . . . , xn}. Construct an
instance of LOWERInc as follows.

χi = pi ∧ (d→ xi) χi = pi ∧ (d→ ¬xi)

χ =
∧

1≤i≤n

pi → (d ∧ ¬ψ)

Then let the knowledge base beK =
⋃

1≤i≤n{χi, χi}∪{χ}.
Further set bound x = |K|− (n+1)+1 = 2 · (n+1)−n =
n+ 1. Knowledge base K can be constructed in polynomial
time. We claim that φ is true iff Inc(K) ≥ n + 1. We start
with the following observation: it holds that any K′ ⊆ K is
satisfiable if (i) χ /∈ K′, or (ii) |K′| < n+ 1. If χ /∈ K′ then
there is a model of K′ assigning d to false. If |K′| < n + 1
then K′ is satisfiable, since either χ /∈ K′ or for one i with
1 ≤ i ≤ n neither χi nor χi ∈ K′ (pi can be assigned to
false). It holds that

Inc(K) ≥ n+ 1

iff ∃K′ ⊆ K s. t. K′ |= ⊥ and |K′| = n+ 1

iff ∃K′ ⊆ K s. t.

K′ |= ⊥, χ ∈ K′, and |K′ ∩ {χi, χi}| = 1 ∀i 1 ≤ i ≤ n
iff ∃ω defined on X s. t. ¬ψ[ω] |= ⊥
iff ∃ω defined on X s. t. > |= ψ[ω]

iff φ is true.

The next inconsistency measure computes the union of all
MIs of the knowledge base. Guessing non-deterministically
a subset of propositions and verifying for each whether they
are contained in one MI (which is in Σp2) establishes the fol-
lowing membership result.

Proposition 10. LOWERIp is Σp2-complete.

Proof. Let knowledge baseK together with x be an arbitrary
instance of LOWERIp . Eiter and Gottlob (1992) have shown
that checking whether some φ ∈ K is contained in any MI is
in Σp2. For membership of LOWERIp in Σp2, we guess K′ ⊆
K with |K′| = bxc and use the non-deterministic algorithm
utilizing a coNP oracle given by (Eiter and Gottlob 1992) to
verify that each φ ∈ K′ is contained in an MI of K.

For hardness, we utilize a similar, but simpler, reduc-
tion as in Proposition 9. Let φ = ∃X∀Y ψ be a closed
QBF in PNF with X = {x1, . . . , xn}. Construct K =⋃

1≤i≤n{xi,¬xi} ∪ {¬ψ}. We now claim that φ is true iff
Ip(K) = 2 · n + 1 = |K|. That is, 2 · n + 1 is a lower
bound iff φ is true. It is immediate that for any φ we have
Ip(K) ≥ 2 · n, since for any i with 1 ≤ i ≤ n it holds that

{xi,¬xi} is an MI. It holds that
I(K) ≥ 2 · n+ 1

iff ∃M ∈ MI(K) s.t. ¬ψ ∈M
iff ∃K′ ⊆ K s.t.

K′ ⊆ (K \ {¬ψ}) 6|= ⊥ and K′ ∪ {¬ψ} |= ⊥
iff ∃ω defined on X s.t. ¬ψ[ω] |= ⊥
iff φ is true.

Utilizing Lemma 3, we directly obtain the following state-
ments regarding LOWERI and EXACTI and the inconsis-
tency measures from above.
Corollary 3. It holds that
• UPPERInc and UPPERIp are Πp

2-complete; and
• EXACTInc and EXACTIp are in Dp2.

Regarding the functional problem VALUEI and by com-
bining lemmas 1 and 2 we obtain the following.
Corollary 4. VALUEInc and VALUEIp are in FPΣp2 [logn].

4.3 Problems beyond the second level of the
polynomial hierarchy

In this section we study complexity of measures IMI, Imc,
and IMIC . The main results in this section are that measures
IMI and Imc contain (sub)problems whose counting com-
plexity is higher than for propositional model counting. In
particular, we show #·coNP-completeness of the problems
of counting all MIs and also of the problem of counting all
MCs. We prove #·coNP hardness via subtractive reduc-
tions (Durand, Hermann, and Kolaitis 2005) (see Sec. 2 for
the definition). This, presumably drastic, jump in complex-
ity compared to other measures considered in this paper can
be intuitively explained by the fact that both the problems
of verifying if a given subset is an MI or if it is an MC are
Dp1-complete and, additionally, these measures admit expo-
nentially many possible values for a knowledge base K wrt.
the size of K.
Proposition 11. VALUEIMI

is #·coNP-complete via sub-
tractive reductions.

Proof. Regarding membership, we use the fact that
#·coNP = #·∆p

2 (Hemaspaandra and Vollmer 1995, The-
orem 1.5) and further that it holds that verifying whether
a given subset is an MI is a Dp1-complete problem (Pa-
padimitriou and Wolfe 1988). This means VALUEIMI

is in
#·coNP, since MI is the witness function producing finite
subsets for a given knowledge base, all such subsets are
polynomially bounded in size of the given knowledge base,
and checking whether such a set is indeed an MI is in ∆p

2.
For hardness, let χ(X) = ∀Y φ(X,Y) with X =

{x1, . . . , xn} be an arbitrary instance of the #·coNP-
complete problem #Π1SAT. In this problem we have to
compute the number of assignments on X that satisfy χ,
which contains also variables over set Y . We define
φi =pi ∧ (

∧
j 6=i

pj → xi), φi = pi ∧ (
∧
j 6=i

pj → ¬xi),

ψ =
∧

1≤i≤n

pi → ¬φ(X,Y).

We construct the following knowledge bases. Let P1 =⋃
1≤i≤n{φi} and P1 =

⋃
1≤i≤n{φi}. Finally, let P2 =

{ψ}∪P1∪P1. We now claim that the number of truth assign-
ments overX that satisfy χ is |MI(P2)|−|MI(P1∪P1)|, and
further that it holds that MI(P1∪P1) ⊆ MI(P2), i. e. that this
a subtractive reduction. The latter claim follows from mono-
tonicity of MI, i.e. if K1 ⊆ K2 then MI(K1) ⊆ MI(K2).

LetM ∈ MI(P2). It holds that for 1 ≤ i ≤ n that φi ∈M
or φi ∈ M . Suppose the contrary, i. e. there exists an i s. t.
neither φi nor φi is inM . Then a truth assignment assigning
all pj with j 6= i to true and pi to false satisfies all formulas
in M . This is a contradiction to M ∈ MI(P2).

Now assume that M ∈ MI(P2) s. t. ∃i with both φi ∈ M
and φi ∈ M . Then ψ /∈ M , since by observations above
we have for each 1 ≤ j ≤ n with j 6= i that φj ∈ M

or φj ∈ M and both for formulas for i. These formulas
together are inconsistent, and thus adding a further formula
(such as ψ) would not be minimal anymore. This means if
M ∈ MI(P2) s. t. ∃i with both φi ∈ M and φi ∈ M , then
M ∈ MI(P1 ∪ P1). Further, if M ∈ MI(P2) and @i with
both φi ∈ M and φi ∈ M , then ψ ∈ M (if one of φi or φi
is missing and also ψ is not present, then the set of formulas
is satisfiable).

Let K∗ ⊆ 2K be the set of subsets of K s. t. each K′ ∈ K∗
contains for each i with 1 ≤ i ≤ n exactly one of φi or
φi but not both, and in addition K′ contains ψ. We define a
bijection f from K′ ∈ K∗ to an interpretation over X by

f(K′)(xi) =

{
true if φi ∈ K′
false if φi ∈ K′.

For f(M) = ωM and by the observations above it holds that

M ∈ (MI(P2) \MI(P1 ∪ P1))

iff M ∈ MI(P2), ψ ∈M, and

|M ∩ {φi, φi}| = 1 ∀i with 1 ≤ i ≤ n
iff > |= φ(X,Y)[ωM]

iff wM satisfies ∀Y φ(X,Y).

Thus, there is a bijection between MI(P2 \ (P1 ∪ P1)) and
the set of satisfying assignments defined onX of χ(X).

We move on to the complexity of Imc. This measure
has two components, which we analyze separately. First,
we show the complexity of counting all maximal consistent
subsets of a knowledge base. For this, we introduce an aux-
iliary problem which counts the number of subset-maximal
models of a propositional formula wrt. to the propositions
assigned to true. For that, we define the ordering <t over
interpretations by ω <t ω

′ iff {p | ω(p) = true} ⊂ {p |
ω′(p) = true}.
#MaxModels Input: formula φ in CNF

Output: |{ω | @ω′ s. t. ω <t ω′}|
Durand, Hermann, and Kolaitis (2005) have shown (Theo-
rem 5.1) that the problem #CIRCUMSCRIPTION—which
is basically the dual of the problem #MaxModels as it
counts the subset-minimal models—is #·coNP-complete

(via subtractive reductions). We provide a corollary show-
ing that also counting the number of subset-maximal models
is #·coNP-complete (proof is omitted due to space restric-
tions).
Corollary 5. #MaxModels is #·coNP-complete via sub-
tractive reductions.

We are now prepared to show that counting the number
of maximal consistent subsets has the same complexity as
counting the number of minimal inconsistent subsets.
Proposition 12. The problem of counting all maximal con-
sistent subsets of a given knowledge base is #·coNP-
complete via subtractive reductions.

Proof. Membership follows from the fact that verifying
whether a subset of a knowledge base is a maximal consis-
tent subset is in Dp1. We show hardness by the following re-
duction from #MaxModels (#·coNP-completeness proved
in Corollary 5). Let φ be an instance of #MaxModels with
{x1, . . . , xn} the vocabulary of φ. ConstructK = {(xi∧φ) |
1 ≤ i ≤ n}. We claim that |MC(K)| is equal to the number
of subset maximal models.

M ∈ MC(K)

iff M 6|= ⊥ and @M ′ s. t. M ⊂M ′ and M ′ 6|= ⊥

iff φ ∧
∧

(xi∧φ)∈M

xi 6|= ⊥ and

φ ∧ (
∧

(xi∧φ)∈M

xi) ∧
∨

(xi∧φ)∈K\M

xi |= ⊥

iff ωM |= φ with ω(xi) = true iff (xi ∧ φ) ∈M and

ω′ 6|= φ ∀ω′ with wM <t w
′

The other component of Imc, the number of self-
conflicting formulas, is arguably easier to compute, the func-
tional problem is FPNP[logn]-complete.
Proposition 13. The problem of counting unsatisfiable for-
mulas in a given knowledge base is FPNP[logn]-complete.

Proof. Membership follows from posing logarithmically
many queries asking whether in a subset of size k every for-
mula is satisfiable (guessing the set together with interpre-
tations for each). Hardness follows from a reduction from
MaxSAT Size. Let φ = c1∧· · ·∧cn be an arbitrary instance
of MaxSAT Size. Construct K = {(EXACT(i, Y) ∧ φ′ |
1 ≤ i ≤ n} with φ′ = (c1 ∨ y1) ∧ · · · ∧ (cn ∨ yn),
Y = {y1, . . . , yn} fresh variables, and EXACT(i, Y) a
formula that evaluates to true under an assignment iff that
assignment assigns exactly i many variables of Y to true.
The formula EXACT(i, Y) can be constructed in polyno-
mial time wrt. the size of Y (Roussel and Manquinho 2009,
Section 22.2.3.). It follows immediately from construction
that (EXACT(i, Y) ∧ φ′) is satisfiable iff i many clauses of
φ can be satisfied simultaneously.

Although we have not given tight results for IMIC , we
think this measure is not easier than IMI, as the former is
defined by the cardinality of each MI instead of only the
number of MIs. Nevertheless, we show that the values of
IMI, Imc, and IMIC can be computed in polynomial space.

Proposition 14. For K ∈ K the values IMI(K), IMIC(K),
and Imc(K) can be computed in polynomial space.

Proof. For all problems we enumerate all subsets K′ ⊆ K
and verify depending on the problem whether K′ ∈ MI(K),
K′ ∈ MC(K), or K′ ∈ SC(K) via enumeration of all sub-
sets, resp. supersets, and interpretations.

From the above proposition it follows that the correspond-
ing decision problems are in PSPACE. Furthermore, it is
unlikely that UPPERI and LOWERI for I ∈ {IMI, Imc} are
contained in one finite level of the polynomial hierarchy e. g.
Σpi for i ≥ 0, as this would imply that the number of MIs
(or the number of models of a propositional formula) can be
computed via binary search with a deterministic polynomial-
time algorithm that has access to a Σpi oracle.

5 Discussion and Summary
The contributions of this paper provide new insights into
the challenge of measuring inconsistency and allow for a
broader comparison of existing measures in terms of their
complexity. One of the key insights in this paper is the parti-
tioning of inconsistency measures in three classes categories
of complexity, i. e., measures on the first level of the poly-
nomial hierarchy, measures on the second level, and those
beyond the second level. This also shows that inconsistency
measurement is sometimes not computationally harder than
solving the classical satisfiability problem SAT (for the mea-
sures residing on the first level of the polynomial hierarchy,
see Section 4.1). However, our results also show that incon-
sistency measurement can be computationally demanding,
as shown in Sections 4.2 and 4.3.

It is also interesting to note that the computational com-
plexity of inconsistency measures does not necessarily cor-
relate with their “logical” complexity. For example, the
measure IMI was one of the first inconsistency measures
presented and follows a simple idea to measure inconsis-
tency, i. e., simply taking the number of minimal inconsis-
tent subsets. Although we did not provide completeness
results for the corresponding decisions problems, both the
#·coNP-completeness result of the function problem and
also the results of (Papadimitriou and Wolfe 1988) related
to identifying minimal inconsistent sets, show that IMI be-
longs to the computationally most complex inconsistency
measures. Compare this to e. g. the measure IΣ

dalal which
features a quite complex definition, involving distances be-
tween propositional interpretations, but belongs to the easi-
est class of measures.

This paper is a first step towards a complete picture of the
computational complexity landscape of inconsistency mea-
surement. Current work is about complementing the results
of this paper by providing the missing completeness results
and investigating the computational complexity of further
approaches such as the measures presented in (Mu et al.
2011; Jabbour et al. 2015; Ammoura et al. 2015).

Acknowledgements
This work has been funded by Academy of Finland through
grants 251170 COIN and 284591.

References
Ammoura, M.; Raddaoui, B.; Salhi, Y.; and Oukacha, B.
2015. On measuring inconsistency using maximal consistent
sets. In Proceedings of the 13th European Conference on
Symbolic and Quantitative Approaches to Reasoning with
Uncertainty (ECSQARU’15), 267–276. Springer.
Ansótegui, C.; Bonet, M. L.; and Levy, J. 2013. SAT-based
MaxSAT algorithms. Artificial Intelligence 196:77–105.
Brewka, G.; Eiter, T.; and Truszczynski, M. 2011. Answer
set programming at a glance. Communications of the ACM
54(12):92–103.
Chvátal, V. 1983. Linear Programming. Freeman, San
Francisco.
Doder, D.; Raskovic, M.; Markovic, Z.; and Ognjanovic, Z.
2010. Measures of inconsistency and defaults. International
Journal of Approximate Reasoning 51:832–845.
Durand, A.; Hermann, M.; and Kolaitis, P. G. 2005. Subtrac-
tive reductions and complete problems for counting com-
plexity classes. Theoretical Computer Science 340(3):496–
513.
Eiter, T., and Gottlob, G. 1992. On the complexity of propo-
sitional knowledge base revision, updates, and counterfactu-
als. Artificial Intelligence 57(2-3):227–270.
Gomes, C. P.; Sabharwal, A.; and Selman, B. 2009. Model
counting. In Biere, A.; Heule, M.; van Maaren, H.; and
Walsh, T., eds., Handbook of Satisfiability. IOS Press. 633–
654.
Grant, J., and Hunter, A. 2011. Measuring consistency gain
and information loss in stepwise inconsistency resolution. In
Proceedings of the 11th European Conference on Symbolic
and Quantitative Approaches to Reasoning with Uncertainty
(ECSQARU 2011), 362–373. Springer.
Grant, J., and Hunter, A. 2013. Distance-based measures of
inconsistency. In Proceedings of the 12th Europen Confer-
ence on Symbolic and Quantitative Approaches to Reason-
ing with Uncertainty (ECSQARU’13), 230–241. Springer.
Hansson, S. O. 2001. A Textbook of Belief Dynamics.
Kluwer Academic Publishers.
Hemaspaandra, L. A., and Vollmer, H. 1995. The satanic
notations: counting classes beyond #P and other definitional
adventures. SIGACT News 26(1):2–13.
Hermann, M., and Pichler, R. 2010. Counting complexity
of propositional abduction. Journal of Computer and System
Sciences 76(7):634–649.
Hunter, A., and Konieczny, S. 2008. Measuring inconsis-
tency through minimal inconsistent sets. In Proceedings
of the Eleventh International Conference on Principles of
Knowledge Representation and Reasoning (KR’2008), 358–
366. AAAI Press.
Hunter, A., and Konieczny, S. 2010. On the measure of con-
flicts: Shapley inconsistency values. Artificial Intelligence
174(14):1007–1026.
Jabbour, S.; Ma, Y.; Raddaoui, B.; Sais, L.; and Salhi, Y.
2015. On structure-based inconsistency measures and their
computations via closed set packing. In Proceedings of the

14th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS’15), 1749–1750. ACM.
Knight, K. M. 2002. A Theory of Inconsistency. Ph.D.
Dissertation, University Of Manchester.
Liffiton, M.; Previti, A.; Malik, A.; and Marques-Silva, J.
2015. Fast, flexible MUS enumeration. Constraints 1–28.
Ma, Y.; Qi, G.; Xiao, G.; Hitzler, P.; and Lin, Z. 2010. Com-
putational complexity and anytime algorithm for inconsis-
tency measurement. International Journal of Software and
Informatics 4(1):3–21.
Ma, Y.; Qi, G.; and Hitzler, P. 2011. Computing inconsis-
tency measure based on paraconsistent semantics. Journal
of Logic and Computation 21(6):1257–1281.
Makinson, D. 2005. Bridges from Classical to Nonmono-
tonic Logic. College Publications.
Marques-Silva, J. 2012. Computing minimally unsatisfiable
subformulas: State of the art and future directions. Multiple-
Valued Logic and Soft Computing 19(1–3):163–183.
McAreavey, K.; Liu, W.; and Miller, P. 2014. Computa-
tional approaches to finding and measuring inconsistency in
arbitrary knowledge bases. International Journal of Approx-
imate Reasoning 55:1659–1693.
Morgado, A.; Heras, F.; Liffiton, M. H.; Planes, J.; and
Marques-Silva, J. 2013. Iterative and core-guided maxsat
solving: A survey and assessment. Constraints 18(4):478–
534.
Mu, K.; Liu, W.; Jin, Z.; and Bell, D. 2011. A Syntax-based
Approach to Measuring the Degree of Inconsistency for Be-
lief Bases. International Journal of Approximate Reasoning
52(7):978–999.
Papadimitriou, C. H., and Wolfe, D. 1988. The complexity
of facets resolved. Journal of Computer and System Sciences
37(1):2–13.
Priest, G. 1979. Logic of Paradox. Journal of Philosophical
Logic 8:219–241.
Roussel, O., and Manquinho, V. M. 2009. Pseudo-Boolean
and cardinality constraints. In Handbook of Satisfiability,
695–733. IOS Press.
Thimm, M. 2016a. On the expressivity of inconsistency
measures. Artificial Intelligence 234:120–151.
Thimm, M. 2016b. Stream-based inconsistency measure-
ment. International Journal of Approximate Reasoning
68:68–87.
Valiant, L. G. 1979a. The complexity of computing the
permanent. Theoretical Computer Science 8:189–201.
Valiant, L. G. 1979b. The complexity of enumeration and
reliability problems. SIAM Journal on Computing 8(3):410–
421.
Xiao, G., and Ma, Y. 2012. Inconsistency measurement
based on variables in minimal unsatisfiable subsets. In Pro-
ceedings of the 20th European Conference on Artificial In-
telligence (ECAI’12), 864–869. IOS Press.

