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Abstract. Employing maximum entropy methods on probabilistic con-
ditional logic has proven to be a useful approach for commonsense rea-
soning. Yet, the expressive power of this logic and similar formalisms is
limited due to their foundations on propositional logic and in the past few
years a lot of proposals have been made for probabilistic reasoning in re-
lational settings. Most of these proposals rely on extensions of traditional
graph-based probabilistic models like Bayes nets or Markov nets whereas
probabilistic conditional logic does not presuppose any graphical struc-
ture underlying the model to be represented. In this paper we take an
approach of lifting maximum entropy methods to the relational case by
using a first-order version of probabilistic conditional logic. Furthermore,
we take a specific focus on representing relational probabilistic knowledge
by differentiating between different intuitions on relational probabilistic
conditionals, namely between statistical interpretations and interpreta-
tions on degrees of belief. We develop a list of desirable properties on
an inference procedure that supports these different interpretations and
propose a specific inference procedure that fulfills these properties. We
furthermore discuss related work and give some hints on future research.

1 Introduction

Applying probabilistic reasoning to relational representations of knowledge is a
very active and controversy research area. In the past few years the fields of
probabilistic inductive logic programming and statistical relational learning put
forth a lot of proposals that deal with combining traditional probabilistic models
of knowledge like Bayes nets or Markov nets [1] with first-order logic, see [2, 3]
for some excellent surveys. For example, two of the most prominent approaches
for extending propositional approaches to the relational case are Bayesian logic
programs [4] and Markov logic networks [5]. While Bayesian logic programs
extend Bayes nets using a logic programming language Markov logic networks
extend Markov nets using a restricted form of first-order logic. Both frameworks
use knowledge-based model construction techniques [6, 7] to reduce the problem



of probabilistic reasoning in a relational context to probabilistic reasoning in a
propositional context. In both frameworks—and also in most other approaches—
this is done by appropriately grounding the parts of the knowledge base that are
needed for answering a particular query and treating this grounded parts as a
propositional knowledge base. While most approaches to relational probabilistic
reasoning employ graphical models for probabilistic reasoning, in this paper we
take another direction by lifting probabilistic conditional logic [8,9] to the first-
order case and applying maximum entropy methods [10-12] for reasoning.

In (propositional) probabilistic conditional logic knowledge is captured using
conditionals of the form (¢ |v)[a] with some formulas ¢, of a given proposi-
tional language and « € [0,1]. A probabilistic conditional of this form partially
describes an (unknown) probability distribution P* by stating that P*(¢ | ) = «
holds. In contrast to Bayes nets probabilistic conditional logic does not demand
to fully describe a probability distribution but only to state constraints on it. On
the one hand this is of great advantage because normally the knowledge engineer
cannot fully specify a probability distribution for the problem area at hand. For
example, if one has to represent probabilistic information on the relationships
between symptoms and diseases then (usually) one can specify the probability of
a specific disease given that a specific symptom is present but not if the symptom
is not present. Probabilistic conditional logic avoids such problems by allowing
to only partially specify a probability distribution. On the other hand, an in-
complete specification of the problem area may lead to inconclusive inferences
because there may be multiple probability distributions that satisfy the speci-
fied knowledge. The naive approach to reason in probabilistic conditional logic
is to compute upper and lower bounds for specific queries by consulting every
probability distribution that is a model of the given knowledge base. While this
skeptical form of reasoning may be appropriate for some applications, usually the
inferences of this approach tend to be too weak to be meaningful. As a credulous
alternative, one can select a specific probability distribution from the models of
the knowledge base and do reasoning by just using this probability distribution.
A reasonable choice for such a model is the one probability distribution with
maximum entropy [10-12]. This probability distribution satisfies several desir-
able properties for commonsense reasoning and is uniquely determined among
the probability distributions that satisfy a given set of probabilistic conditionals,
see [10-12] for the theoretical foundations.

While applying maximum entropy methods in a direct fashion onto a first-
order probabilistic conditional logic has already been investigated for example in
[13-15], in this paper we take a special focus on relational probabilistic knowledge
representation, namely the differentiation between statistical information and
degrees of belief [16-18]. When considering conditionals, the modeled knowledge
becomes ambiguous by introducing variables. Consider the following example
inspired by [19]:

(likes(X,Y) | elephant(X) A keeper(Y))[0.8]
(likes(X, fred) | elephant(X) A keeper(fred))[0.4]
(likes(clyde, fred) | elephant(clyde) A keeper(fred))[0.6]



The first conditional represents the information that with a probability of 0.8 a
(typical) elephant likes his (typical) keeper. The second conditional states that
a (typical) elephant likes the keeper fred with a probability of 0.4 and the third
conditional states that the elephant clyde likes the keeper fred with a probability
of 0.6. From a commonsensical point of view this knowledge base makes perfect
sense. Given an adequate population of elephants and keepers this knowledge
base says that typically an elephant likes his keeper, fred is an exception and
mostly unpopular, but clyde likes fred still a bit more. But when treating the
first two conditionals as schemas for their propositional instantiations (given a
finite universe) then the grounded knowledge base becomes inconsistent because
there are instantiations of the first two conditionals that are in direct conflict
with each other and with the third conditional. The problem of inconsistency
arises when treating conditionals like the first one as schemas for conditionals
on the degrees of belief. But presumably what one really want to model when
representing conditionals of this form is some kind of statistical information or
maybe a default rule [19]. In the example above, the first conditional describes
some form of statistical distribution on the all pairs of elephants and keepers and
the second conditional describes a distribution on all elephants. In contrast to
the first two conditionals the third conditional does not mention any variable. In
fact, it mentions only ground instances regarding the constants clyde and fred
thus describing a degree of belief on the truth-value of likes(clyde, fred) given
that clyde is an elephant and fred is a keeper. As a consequence, the knowledge
represented by the third conditional describes some belief on the distribution of
possible worlds rather than on the individuals of the universe. In this paper, we
argue that an explicit differentiation of this two types of knowledge is important
in order to reason with relational probabilistic knowledge bases.

The rest of this paper is organized as follows. In the following Section 2
we give a brief overview on (propositional) probabilistic conditional logic and
continue in Section 3 with syntax and semantics of its extension to the first-order
case. In Section 4 we propose some properties a reasonable inference mechanism
should fulfill in order to interpret a relational probabilistic knowledge base in
the sense described above and present our approach for an inference mechanism
afterwards. In Section 5 we discuss our approach and review related work. In
Section 6 we conclude.

2 Preliminaries

Before introducing probabilistic conditional logic for a relational language we
begin by giving an overview on (propositional) probabilistic conditional logic.
We extend this framework to the relational case in the subsequent section. But
first, we consider a framework of propositional variables. Let V = {Vi,...,V,,}
be a set of propositional variables with finite domains Dom(V}), ..., Dom(V;,).
An expression of the form V; = v; is called a literal if v; is in the domain of V;, i. e.
v; € Dom(V;). The language Ly is generated using the connectives —, A, and V
on the literals in V in the usual way. For arbitrary formulas ¢, we abbreviate



conjunctions ¢ A 1) by ¢ and negation —¢ by overlining ¢. If V is a binary
variable, i. e., it is Dom(V) = {true,false}, we abbreviate V' = true by just V" and
V = false by V. We write T for tautological formulas, e.g. ¢V ¢ = T. A possible
world (interpretation) assigns to each variable V; € V a value in Dom(V;). If w
is a possible world, then w &= (V; = v;) if and only if w assigns v; to V;. For an
arbitrary formula ¢ the expression w = ¢ evaluates in the usual way. Let 2y, be
the set of all possible worlds of Ly,.

Propositional probabilistic knowledge bases are build using propositional
probabilistic conditionals, that impose certain restrictions on the conditional
probabilities of the models of the knowledge base. A (propositional) probabilistic
conditional r is an expression of the form r = (¢ |¥)[a] with formulas ¢, and
a € [0,1]. If¢p = T we write (¢)[a] instead of (¢ | T)[«]. A set of probabilistic con-
ditionals R = {ry,...,rn} is called a (propositional) knowledge base. The models
of a knowledge base R are the probability distributions P : 2, — [0, 1] that ful-
fill all restrictions on the conditional probabilities imposed by the probabilistic
conditionals in R. More specifically, a probability distribution P : 2y, — [0,1] is
a model for a knowledge base R, written P |= R, if and only if P |= r for every
r € R. That is

P (¢]Y)la] == P(o[9) = aand P() >0
—
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P(¢y)
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with

P(¢)= > Ppw)
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A knowledge base R made of probabilistic conditionals describes incomplete
knowledge. Usually, one is interested in performing inductive representation tech-
niques and thus in computing a single probability distribution that describes R
best and gives a complete description of the problem area at hand. This can
be done using methods based on maximum entropy, which feature several nice
properties [11,10,12,20]. The entropy H(P) of a probability distribution P is
defined as

H(P)=— Y P(w)log P(w)

wE Ny

and measures the amount of indeterminateness inherent in P. By selecting the
probability distribution P* among all probability distributions that satisfy a
given knowledge base R, i.e. by computing the solution to the optimization
problem
P* := ME(R) = arg max H(P)
P

)

we get the one probability distribution that satisfies R and adds as little infor-
mation as necessary.



3 Syntax and Semantics of First-Order Conditional Logic

In the following we give an extension of probabilistic conditional logic to the
relational case similar as in [21,14]. To simplify presentation we use the same
names for logical constructs as in propositional conditional language, e. g. we will
refer to relational probabilistic conditionals just by probabilistic conditionals.

Let Lp be a first-order language with a fixed finite universe (domain) D with-
out quantifiers and functions. We denote variables with a beginning uppercase,
constants with a beginning lowercase letter, and vectors of these in boldface. We
use greek letters ¢ and ¢ for formulas and £ for sentences (formulas with no
free variables). For a first-order formula ¢ let FREE(¢) denote the set of (free)
variables appearing in ¢. We will write ¢(X) to explicitly name the variables X
in ¢ and we denote by ¢(c) the grounded instance of ¢ with constants c. Let
ground~(¢) denote the set of grounded instances of ¢ with respect to a set of
constants C.

Definition 1 (Probabilistic Conditional). An expression of the form

(@19)la]

with first-order formulas ¢,v (not necessarily ground) and a real o € [0,1] is
called a probabilistic conditional. A probabilistic conditional (¢ |1)[a] is ground

if FREE(¢)) = FREE(%)) = 0).

As above we abbreviate (¢|T)[a] by (¢)[a]. For a probabilistic conditional
(@] )] let ground~((¢ | ¥)[c]) denote the set of all grounded probabilistic con-
ditionals of (¢ |)[a] with respect to the set of constants C.

Definition 2 (Knowledge base). A finite set R of probabilistic conditionals
18 called a knowledge base. A knowledge base R is ground if every probabilistic
conditional in R is ground. Let R denote the set of knowledge bases and Rp C R
the set of ground knowledge bases.

Remark 1. Bear in mind that a ground knowledge base R € Rp is equivalent to
a propositional knowledge base R’ by interpreting ground atoms in R as ordi-
nary propositional atoms. For the rest of this paper we treat ground relational
knowledge bases and propositional knowledge bases interchangeably.

The informal semantics of a probabilistic conditional (¢ |)[a] are as follows.

— If FREE(¢)) = () we interpret (¢|)[a] as an uncertainty assessment over
the possible worlds as in propositional probabilistic conditional logic, thus
specifying a degree of belief on a conditional probability.

— If FREE(¢v)) # () we interpret (¢|)[a] as a statistical assessment stating
that in the actual world a portion « of all ¥’s are ¢’s.

We illustrate our intuition behind this informal semantics by means of an exam-
ple.



Ezample 1. Consider again the scenario from the introduction. Let R be a knowl-
edge base given as follows.

R= { (likes(X,Y)|elephant(X) A keeper(Y))[0.8]
(likes(X, fred) | elephant(X) A keeper(fred))[0.4]
(likes(clyde, fred)|elephant(clyde) A keeper(fred))[0.6] }

In R we can assign the following informal meanings to the individual probabilistic
conditionals:

— (likes(clyde, fred) | elephant(clyde) A keeper(fred))[0.6]
This conditional states that our subjective degree of belief of clyde liking
fred is 0.6. So, if we know that clyde is an elephant and fred is a keeper we
expect in 60 % of all occasions that clyde likes fred.

— (likes(X, fred) | elephant(X) A keeper(fred))[0.4] X
This conditional states that we expect 40 % of all elephants to like fred.

— (likes(X,Y) | elephant(X) A keeper(Y))[0.8]X,Y
This conditional states that we expect for 80 % of all elephant-keeper com-
binations that the elephant likes the keeper.

For a knowledge base R we denote by Bel(R) its projection on Rp, i.e., it is
Bel(R) = {r € R|FREE(r) = (}. In other words, Bel(R) contains all uncertainty
assessments. Analogously, let Stat(R) = R\Bel(R) denote the set of all statistical
assessments of R.

Formal semantics for first-order conditional logic are given by probability
distributions. The probability distributions under consideration are defined over
the possible worlds of the given first-order language L£p. A possible world w for
L is a tuple w = (D, I) with domain D and interpretation I which maps in the
usual way constants to domain elements, unary predicate symbols to subsets of
D and so on. As a simplification we interpret constants by themselves, i.e., for
any constant c¢ it is I(¢) = ¢ in any possible world w. As D is fixed for all possible
worlds we will identify w = (D, I') with I when appropriate. Let £2p be the set of
all these possible worlds with domain D and so we are interested in probability
distributions P : £2p — [0, 1]. Let Probp be the set of probability distributions
for domain D. P € Probp is extended on first-order sentences (ground formulas)
€ by

P =Y Pw)
wl=¢
Interpreting uncertainty assessments with probability distributions can be done
analogously like in the propositional case. The problem at hand arises when
considering statistical assessments like

¢ = (likes(X, fred) | elephant(X) A keeper(fred))[0.5]

What is an appropriate satisfaction relation = such that for a probability
distribution P the statement P =P ¢ describes our intuition on statistical as-
sessments described above? We propose a new satisfaction relation =7 on prob-
abilistic conditionals that specifies when a probability distribution P € Probp



satisfies a given probabilistic conditional r. For the case of an uncertainty as-
sessment (¢(c) | ¢(c)), we define the satisfaction relation =7 through

PET (6 ]¢(e)la] = P(é(c) |¥(e) =a (1)

as in the propositional case. For a statistical assessment (¢(X) |9 (X))[a], we
say that a probability distribution P satisfies (¢(X) |4 (X))[«] if the average of
the conditional probabilities of all instantiations of (¢(X) | ¢¥(X))[a] is a. So it
is P =D (¢(X)|¢(X))[e] if and only if

22 (4(e)li(e)) eground  (o(X) (X)) L (@(€) [ ¥(c))
lground p, (¢(X) | (X))]

Notice, that Equation (2) also subsumes the case of uncertainty assessments in
Equation (1) as a special case. As usual, a probability distribution P satisfies a
knowledge base R, denoted P =% R, if P satisfies every probabilistic conditional
r € R. We say that R is consistent iff there is at least on P with P 7 R,
otherwise R is inconsistent.

=a . (2)

4 Inference in First-Order Conditional Logic

We are interested in finding a “good” probability distribution P that satisfies all
probabilistic conditionals of a given knowledge base R. More specifically, we are
interested in a function SRME(R) (Statistical relational maximum entropy) that
takes a knowledge base R and gives a probability distribution P = SRME(R)
as output such that P describes R “best” in a commonsensical manner. In the
following we state some properties on the operator SRME that derive from our
intuition and afterwards describe such a function that fulfills these properties.

4.1 Desirable Properties

When considering knowledge bases like the one in Example 1 we want to be
able to name a single probability distribution P that is the “best” model of
R. Taking a naive approach by grounding all conditionals in R universally and
taking this grounding R’ as a propositional knowledge base, we can not determine
any probability distribution that satisfies R’ due to its inherent inconsistency
[15]. So our first demand on an appropriate operator SRME is its well-definedness.
In the following, let SRME : SR — Probp be an operator that maps a knowledge
base R € MR onto a probability distribution P = SRME(R) € Probp such that P
commonsensical describes R.

(Well-Definedness) If R is a consistent then SRME(R) is well-defined.

We need some further notation to go on. For a formula ¢ let ¢[d/c] denote
the formula that is the same as ¢ except that every occurrence of the term c
(either a variable or a constant) is substituted with the term d. More generally,



let ¢[di/c1,...,dn/cy] denote the formula that is the same as ¢ except that
every occurrence of ¢; is substituted with d; for 1 < ¢ < n simultaneously. The
substitution operator [] is extended on sets of formulas and conditionals in the
usual way.

When considering knowledge bases based on a relational language the beliefs
one gains on specific individuals is of special interest. An important demand
to made is that the information one gains for different individuals is the same
when these individuals are indistinguishable. More specifically, if the explicit in-
formation encoded in R for two different individuals ¢y, cy € D is the same the
probability distribution P should treat them indistinguishable. We can formal-
izing this indistinguishable property by introducing an equivalence relation on
constants.

Definition 3 (Syntactical Equivalence). Let R be a knowledge base. The
constants c1,co € D are syntactical equivalent, denoted by ¢c; =g co, if and only
if R = Rlai/az,a2/a1].

Observe that =g is indeed an equivalence relation, i. e., it is reflexive, transitive,
and symmetric. The equivalence classes of = are called R-equivalence classes
and the set of all R-equivalence classes is denoted by Sg. Note, that the notion of
syntactical equivalence bears a resemblance with the notion of reference classes
[17] but on a pure syntactical level.

Using syntactical equivalence we can state our demand for equal treatment
of indistinguishable individuals as follows.

(Prototypical Indifference) Let R be a knowledge base and £ a ground sen-
tence. For any cq,co € D with ¢; =g ¢ it is

SRME(R)(¢) = SRME(R)(&[c1/c2, ca/cr])
From (Prototypical Indifference) some generalizations follow naturally.

Proposition 1. Let SRME satisfy (Prototypical Indifference).

1. Let R be a knowledge base and &1,&> be two ground sentences. For cy,co € D
with ¢y =g ¢o it holds

SRME(R)(&1 | §2) = SRME(R)(&1[c1/ca, ca/ca] | Ealer/e2, ca/en])

2. Let S € Sg, ¢1,...,¢, € S, and 0 : S — S a permutation on S, i.e. a
bijective function on S. Then it holds for a ground sentence &

SRME(R)(&) = SRME(R)(&[o(c1)/e1y -+ s0(cn)/cn))
Proof.
1. Because of (Prototypical Indifference) it holds directly

SRME(R)(&2) = SRME(R)(&2[c1/co, c2/c1])  and
SRME(R)(&1 A &2) = SRME(R)((&1 A &2)c1/c2, c2/c1])



and hence

SRME(R)(f A &)
SRME(R)(&2)
_ SRME(R)(&1 A &afer/ca, ca/ca])
SRME(R)(&2le1/ca, ca/ei])
= SRME(R)(&1[c1/c2, c2/en] | &2er/ca, ca/cil)

SRME(R)(&1 | &2) =

due to (&1 AN &)[i/yili=1,...n = &1[@i/Yi)i=1,...n N E2]Ti/Yili=1,...n-

2. This follows from the fact that every permutation can be represented as a
product of transpositions [22], i. e. permutations that exactly transpose two
elements. Let o1,...,0, be these transpositions of o and let 1. ; = 0; ©

ooy fori =1,...,m. Note, that 01..1 = 01 and o1, = 0. Due to
(Prototypical Indifference) it holds

SRME(R)(€) = SRME(R)(€[o (e1) /e, -, 1(cn) fen])

and for any i =2...,m it holds

SRME(R)(&[o1..i—1(c1)/c1y- - 01 im1(en)/cn])
= SRME(R)(¢[o1..s(c1) /1, - .. o1 i(en)/en))

Via transitivity and o1, = o it follows

SRME(R)(§) = SRME(R)(¢[o(e1) /er, - - a(en)/en])

O

Another aspect that should be satisfied by the operation SRME is some form
of compatibility to the propositional case. For (relational) knowledge bases that
are equivalent to propositional knowledge bases, i.e., ground knowledge bases,
the operation SRME should coincide with the ME operator on propositional
knowledge bases, cf. Section 2.

(Compatibility I) Let R be a ground knowledge base. If £ is a ground sentence
then it is ME(R)(§) = SRME(R)(&).

Moreover, as the uncertainty assessments of a knowledge base R describe “strict”
uncertain knowledge the probability distribution SRME(R) should reflect this
knowledge faithfully.

(Compatibility IT) Let R be a knowledge base. If (¢(c)|%(c))[a] € R is an
uncertainty assessment it is

SRME(R)(¢(c) | 1(c)) =



So far, we have not taken into account the intention for representing statistical
assessments. Given a statistical assessment r = (¢(X) |¢(X))[a] our intention
in representing r in a knowledge base R is that for every instantiation r’' =
(¢(c) |¥(e))[a] of r the conditional probability of ¢(c) given ¥(c) “should” be
«. But how do we capture this intention? Surely, we cannot guarantee that
every possible instantiation r’ of r will conform to a strict interpretation of this
demand. This follows mainly from the fact, that using uncertainty assessments
we should be able to give exceptions to this rule, cf. Example 1. What we are
really want to describe when representing a statistical assessment r is that given
an adequate large domain the conditional probability of the bigger part of the
interpretations (neglecting exceptions) will converge towards «. This behavior
resembles the intuition behind the “Law of Large Numbers” [23].

(Convergence) Let Ry, Ra, ... be knowledge bases on Lp,,Lp,,... with Ry =
Ry = ...and Dy C Dy C ... (for i € NT). For a statistical assessment
r=(¢(X)|¢¥(X))[ea] € Ry let v’ = (¢(c) | ¢(€))[e] be a proper instantiation
of 7 with constants ¢ that do not appear in R;. For any such r and 7’ it is

Jim SRME(R:)(6(c) | ¥(c)) = a

Another aspect of statistical assessments is their capability to comprehend for
exceptions. Usually, statistical assessments are defined to model some kind of
expected value over the set of instantiations. As such, if the probability of one
instantiation of a statistical assessment lies below the value of the statement
there has to be another instantiation with a probability higher than the value
of the statement in order to compensate for the other exception (remember that
the domain D is assumed to be finite).

(Compensation) Let R be a knowledge base and (¢(X)|¢(X))[e] € R a
statistical assessment with oo € (0,1) (the open interval). If ¢; is a vector
of constants such that SRME(R)(¢(c1) | ©(e1)) < a then there is another
vector of constants ca with SRME(R)(¢p(c2) | ¥(cz)) > a.

4.2 Statistical Relational Maximum Entropy

In the following we define a function SRME; : R — Probp that fulfills the desired
properties defined in the previous section. We define the function SRME; (R) us-
ing the the proposed semantics =7 analogously like in the propositional case by
selecting a probability distribution with maximum entropy among all probability
distributions that satisfy R.

SRME;(R) = arg max — »  P(w)log P(w) (3)
PEGR 25

Remark 2. Note, that it seems that the optimization problem defined by Equa-

tion (3) is (in general) not uniquely solvable because the set of probability distri-

butions defined by Equation (2) is non-convex. However, preliminary experimen-

tal results indicate that the probability distribution in Equation (3) is uniquely



determined. As the formal proof has yet to be made, we assume for the rest
of this paper that in Equation (3) an arbitrary probability distribution with
maximum entropy will be chosen. Nonetheless, if R is consistent there is at
least one probability distribution with maximum entropy that can be chosen in
Equation (3).

Example 2. We continue Example 1. Let £p be a first-order language with
predicates elephant/1, keeper/1, and likes/2 and domain D = {clyde, dumbo,
catty, giddy, fred,dave}. Let R be given by

(elephant(clyde))[1] (4)
(elephant(dumbo))[1] (5)
(elephant(catty))[1] (6)
(elephant(giddy))[1] (7)
(keeper(fred))[1] (8)
(keeper(dave))[1] (9)
(likes(X,Y) | elephant(X) A keeper(Y))[0.5] (10)
(likes(X, fred) | elephant(X) A keeper(fred))[0.25] (11)
(likes(clyde, fred) | elephant(clyde) A keeper(fred))[0.1] (12)

Here, the conditional (10) states that in 50% of the elephant/keeper combi-
nations the elephant likes the keeper, conditional (11) states, that 25% of the
elephants like fred and conditional (12) states that the probability of clyde lik-
ing fredis 0.1. In the following we give the probabilities of several instantiations
of likes in SRME; (R). Notice, how the probabilities of the instantiations of the
conditionals (10) and (11) change in order to compensate for the exceptional
instantiations involving clyde and fred.

SRME; (R)(likes(clyde, dave)) = 0.75
SRME; (R)(likes(dumbo, dave)) = 0.75
SRME; (R)(likes(catty, dave)) = 0.75
SRME; (R)(likes(giddy, dave)) = 0.75
SRME; (R)(likes(clyde, fred)) = 0.1
SRME; (R)(likes(dumbo, fred)) = 0.3
SRME; (R)(likes(catty, fred) = 0.3
SRME; (R)(likes(giddy, fred)) = 0.3

As there is no additional information on the elephants in R except clyde they
have to be treated in the same manner. Due to conditional (11) every elephant is
equally likely to like fred with a probability 0.3 and due to conditional (12) clyde
likes fred with probability 0.1. Due to conditional (10) the total percentage of like
relations that hold have to be 50 %. This information increases the probability
of the elephants liking dave accordingly to 75 %.



Considering the comments in Remark 2 we first state the following conjecture.
Conjecture 1. SRME; satisfies (Well-Definedness).

In the following we give some theoretical results mostly in form of proof sketches
that show that the proposed operator SRME; indeed fulfills the desired properties
discussed in Section 4.1.

Proposition 2. SRME; satisfies (Prototypical Indifference).

Proof. (Sketch) This is ensured by selecting in Equation (3) a probability dis-
tribution with mazimum entropy. Suppose (H(X) | (X))[a] € R is a statistical
assessment, ¢, ca vectors of constants that only differ in constants that do not

appear in R. If p1 = SRME1(R)(¢(c1) | ¢(c1)) # SRME1(R)(¢(c2) [ ¥ (c2)) = p2,
then the probability distribution P with

Ploler) [9ler) = Ploles) [ w(ea)) = P02

yields a higher entropy than SRME;(R) but still fulfills Equation (2). O
Proposition 3. SRME; satisfies (Compatibility I).

Proof. Let R be a ground knowledge base. Now, only Equation (1) is used for
determining the space of probability distributions, so =P is equivalent to |= in

the propositional case, cf. Section 2. Then Equation (3) also becomes equivalent
to the propositional case and it is ME(R')(§) = SRME(R)(&) for any ground

sentence &. a
Proposition 4. SRME; satisfies (Compatibility II).
Proof. This is ensured by Equation (1). O

Proposition 5. SRME; satisfies (Convergence).

Proof. (Sketch) This property follows from (Prototypical Indifference). When
the number of constants grows towards infinity, most of the instantiations of a
statistical assessment have the same probability in SRME;(R) and in order to
fulfill Equation (1) these probabilities must converge to «. O

Proposition 6. SRME; satisfies (Compensation).
Proof. Let R be a knowledge base and (¢(X) |9¥(X))[a] € R a statistical assess-
ment with a € (0,1). Suppose
SRME; (R)(4(c) | ¥(c)) < a
for all (¢(c) | ¥(e))[a] € ground(p(X) | ¥(X)). Then (for finite D) it is

2 (p(e) (@) eground p (3(X) 1w 3))) L (B(€) | ¥ (e))
lground p, (¢(X) | ¥(X))|
a - |ground 5 (¢(X) | Y(X))|
lground b (#(X) | ¥(X))]

=

contradicting SRME; (R) =7 R. 0




5 Discussion and Related Work

The work discussed in this paper is at a preliminary stage and more investiga-
tions and experiments have to be undertaken in order to demonstrate usability
and usefulness of the proposed approach. To this end the KREATE project!
investigates different approaches for combining relational representations and
probabilistic reasoning under maximum entropy. Within this project there are
some approaches of applying maximum entropy methods to relational knowl-
edge bases without taking into account statistical information explicitly. Loh
[15] and Fisseler [14] both employ the principle of maximum entropy directly on
a grounded version of the relational knowledge base. In [15] inconsistencies in
the grounded knowledge base are handled by removing contradictory instances
of the individual conditionals. This results in a consistent propositional knowl-
edge base for which the probability distribution with maximum entropy can
be computed as in the propositional case. Consequently, these approaches treat
conditionals with variables as schemas for their instances and thus use only an
interpretation of conditionals based on the degree of belief. Nevertheless, it seems
that even these approaches satisfy all properties discussed in this paper except
(Compensation). So it seems reasonable to assume that the list of properties is
incomplete for describing the intuition behind statistical assessments as well as
uncertainty assessments. For future work we plan to investigate these properties
in more depth and find new properties that characterize this intuition.

6 Summary

In this paper we investigated relational probabilistic reasoning from the point of
view of maximum entropy methods and by taking into account the differences
of statistical information and degrees of belief. We defined common sense prop-
erties for inference in first-order probabilistic conditional logic that represent
this distinction and proposed an inference operator that fulfills this properties.
Finally, we closed with some discussions.

As mentioned above the work reported here is at a preliminary stage and
further investigations of the topic are mandatory. A comprehensive comparison
of our approach and the approaches discussed in the previous section is part of
current research.
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