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Abstract. Knowledge discovery and data mining deal with the task of finding
useful information and especially rules in unstructured data. Most knowledge
discovery approaches associate conditional probabilities to discovered rules in
order to specify their strength. In this paper, we propose a qualitative approach to
knowledge discovery. We do so by abstracting from actual probabilities to quali-
tative information and in particular, by developing a method for the computation
of an ordinal conditional function from a possibly noisy probability distribution.
The link between structural and numerical knowledge is established by a pow-
erful algebraic theory of conditionals. By applying this theory, we develop an
algorithm that computes sets of default rules from the qualitative abstraction of
the input distribution. In particular, we show how sparse information can be dealt
with appropriately in our framework. By making use of the duality between in-
ductive reasoning and knowledge discovery within the algebraic theory of condi-
tionals, we can ensure that the discovered rules can be considered as being most
informative in a strict, formal sense.
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1 Introduction

Knowledge discovery is the overall process to extract new and useful information from
statistical data, with a focus on finding patterns and relationships that reveal generic
knowledge, i. e., knowledge that is not specific to a certain situation. Moreover, these
relationships should be presented to the user in an intelligible manner. This makes rules
appropriate candidates to encode knowledge that is searched for, as they establish (often
generic) relationships between isolated facts and are easily comprehensible for human
beings. Usually, a conditional probability is associated with each rule by the knowledge
discovery process to specify the strength, or the confidence of the rule.

However, while probabilities are a really expressive means to represent knowledge,
they are often of only limited use when it comes to commonsense reasoning. First,
there is no straightforward way to process probabilistic information. For instance, if the
rules “If symptom A then disease D with probability 0.632” and “If symptom B then
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disease D with probability 0.715” are shown to the user, what should he believe if the
patient he is facing has symptomsA and B? Second, while probabilities are appreciated
for their (seemingly objective) preciseness, users would not feel comfortable if they
had to distinguish sharply between, say, 0.715 and 0.721. Moreover, statistical data are
often noisy and may show particularities of the population they were taken from, which
does not match the aim of discovering generic, context-independent knowledge. This
suggests that precise probabilistic information is neither completely satisfactory nor
useful for knowledge discovery.

In this paper, we propose to solve such problems by extracting more coarse-grained
rules from data which are only equipped with an order of magnitude of the correspond-
ing probability. Such qualitative rules could be used to reveal plausible relationships to
the user, or even as default rules for commonsense reasoning, by applying one of the
well-known nonmonotonic inference formalisms (cf. e.g. [1–3]). This perspective of
discovering rules from data and feeding them into an inference engine to make induc-
tive reasoning possible will play a decisive part for the methodology to be presented in
this paper. More precisely, we will consider knowledge discovery and inductive reason-
ing as reverse processes (illustrated in Figure 1) – knowledge discovery extracts most
relevant partial knowledge that may serve as a basis for further reasoning from fre-
quency distributions representing complete probabilistic information, while inductive
model-based reasoning builds up a complete epistemic model from partial knowledge
in a knowledge base.

Fig. 1. Knowledge discovery and inductive reasoning as reverse processes

We build upon previous work. In [4, 5], these ideas have been developed and imple-
mented in a fully probabilistic framework. But the core methodology used in these
papers is based on structural, algebraic techniques for abstract conditionals and can
also be applied in a qualitative framework. However, we first have to transform proba-
bilistic information obtained from data to qualitative rankings. For this, we modify the
well-known approach for infinitesimal probabilities [6, 1] to obtain a so-called ordinal
conditional function [7] which assigns qualitative degrees of disbelief, or rankings, re-
spectively, to propositions and conditionals. The level of qualitative abstraction of prob-
abilities is determined by a parameter ε that specifies a measure of similarity between
probabilistic values, according to the needs of the user.
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Our approach offers a couple of nice advantages. First, the same methodology is
used both for learning and reasoning, handling structural knowledge in a profound al-
gebraic way. Second, the notion of relevance which is crucial for knowledge discovery
can be given a precise meaning – rules are relevant wrt. a given set of (already dis-
covered) rules, if they provide additional information for the inductively built model.
Third, the qualitative information derived from data reflects an intuitive similarity of
the probabilities, different from the approach in [8] in which sums of probabilities have
to be used.

The outline of the paper is as follows. In the next section, we will recall basic facts
on probabilistic reasoning and ordinal conditional functions. In section 3, we present
our approach to extract qualitative information from statistical data. We also propose
a heuristic how to find a proper abstraction parameter ε. Section 4 describes the core
methodology which can be used for inductive representation and knowledge discovery
and that is applied in section 5 for the knowledge discovery task. Based on this theo-
retical work, an algorithm for discovering default rules in statistical data is represented
in section 6. Section 7 concludes the paper with a summary and an outlook on further
work.

2 Inductive reasoning with probabilities and rankings

We consider a propositional framework over a finite set V = {V1, V2, . . .} of (multi-
valued) propositional variables Vi with finite domains. For each variable Vi ∈ V , the
values are denoted by vi. In generalizing the bivalued propositional framework, we call
expressions of the form Vi = vi literals, and abbreviate them by vi. The language L
consists of all formulas A built by conjoining finitely many literals by conjunction (∧),
disjunction (∨), and negation (¬) in a well-formed way. The conjunction operator, ∧,
will usually be omitted, so AB will mean A ∧B, and negation is indicated by overlin-
ing, i. e., A = ¬A. An elementary conjunction is a conjunction consisting of literals,
and a complete conjunction is an elementary conjunction where each variable from V
is instantiated by exactly one value. Let Ω denote the set of complete conjunctions of
L. Ω can be taken as the set of possible worlds ω, providing a complete description of
each possible state, and hence corresponding to elementary events in probability theory.

Conditionals are written in the form (B|A), with antecedents, A, and consequents,
B, both formulas in L, and may be read as uncertain rules of the form if A then B.
Let (L|L) denote the set of all conditionals over L. Single-elementary conditionals are
conditionals whose antecedents are elementary conjunctions, and whose consequents
consist of one single literal. To provide semantics for conditionals, a richer epistemic
framework is needed than a plain bivalued semantics. Basically, for a conditional (B|A)
to be accepted, its confirmation, AB, must be more probable, plausible etc. than its
refutation, AB. Moreover, numerical degrees of probability, plausibility and the like
can be assigned to conditionals to specify the strength with which they are believed,
according to the chosen epistemic framework. In this paper, we will use probabilities to
model a fully quantitative frame, and so-called ordinal conditional functions, OCFs, (or
simply ranking functions) to model a qualitative, respectively semi-quantitative frame.
We will briefly summarize basic facts on both modelling frames in the following. We
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will also address the problem which is crucial to this paper: Given partial information
in form of a conditional knowledge base, how to obtain an adequate complete model
that can be used for inductive reasoning?

Within a probabilistic framework, conditionals can be quantified and interpreted
probabilistically via conditional probabilities:

P |= (B|A)[x] iff P (A) > 0 and P (AB) = xP (A)

for x ∈ [0, 1]. A conditional probabilistic knowledge base is a setRprob = {(B1|A1)[x1],
. . . , (Bn|An)[xn]} of probabilistic conditionals.

Suppose such a conditional probabilistic knowledge base Rprob is given. For in-
stance, Rprob may describe the knowledge available to a physician when he has to
make a diagnosis. Or, Rprob may express commonsense knowledge like “Students are
young with a probability of (about) 80 %” and “Singles (i.e. unmarried people) are
young with a probability of (about) 70 %”, this knowledge being formally expressed
byRprob = {(young |student)[0.8], (young |single)[0.7]}. Usually, such rule bases rep-
resent incomplete knowledge, in that there are a lot of probability distributions apt to
represent them. So learning, or inductively representing, respectively, the rules means
to take them as a set of conditional constraints and to select a unique probability distri-
bution as a “best” model which can be used for queries and further inferences. Paris [9]
investigates several inductive representation techniques and proves that the principle
of maximum entropy, (ME-principle) yields the only method to represent incomplete
knowledge in an unbiased way, satisfying a set of postulates describing sound com-
monsense reasoning. The entropy H(P ) of a probability distribution P is defined as

H(P ) = −
∑
ω

P (ω) logP (ω)

and measures the amount of indeterminateness inherent in P . Applying the principle of
maximum entropy then means to select the unique distribution P ∗ = ME(Rprob) that
maximizes H(P ) subject to P |= Rprob. In this way, the ME-method ensures that no
further information is added, so that the knowledgeRprob is represented most faithfully.
ME(Rprob) can be written in the form

ME(Rprob)(ω) = α0

∏
1 ≤ i ≤ n
ω |= AiBi

α1−xi
i

∏
1 ≤ i ≤ n
ω |= AiBi

α−xii (1)

with the αi’s being chosen appropriately so as to satisfy all of the conditional con-
straints in Rprob (cf. [10]); ME(Rprob) is called the ME-representation of Rprob. The
ME-principle provides a most convenient and theoretically sound method to represent
incomplete probabilistic knowledge3 and for high-quality probabilistic reasoning (cf.
[11]).

3 Efficient implementations of ME-systems can be found via
www.informatik.fernuni-hagen.de/pi8/research/projects.html
and www.pit-systems.de
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A purely probabilistic representation gives precise numerical values to all proposi-
tions and conditionals of the underlying language. This can be problematic with respect
to two points: First, when the aim is to model subjective beliefs of an expert or an agent,
precise probabilities are hard to specify. Subjective probabilities are more or less rough
guidelines that are based on an agent’s experience. Second, even objective probabili-
ties derived from statistical data may not represent a completely accurate picture of the
world. Statistical data can be noisy and only reflect a snapshot of the world, which can
be quite accidental. Therefore, in this paper, we are interested in the qualitative knowl-
edge that underlies some given probabilistic information. To represent such qualitative
structures, we use ordinal conditional functions, OCFs, as introduced by Spohn [7] as
a qualitative abstraction of probability functions.

Definition 1. An ordinal conditional function (or ranking function) κ is a function κ :
Ω → N ∪ {∞} with κ−1(0) 6= ∅.

An OCF κ assigns a degree of implausibility (or ranking value) to each world ω: The
higher κ(ω), the less plausible is ω. A world ω with κ(ω) = 0 is regarded as being
completely normal (most plausible), and for a consistent modelling, there has to be at
least one such world. For formulas A ∈ L, a ranking is computed via

κ(A) =
{

min{κ(ω) | ω |= A} if A is satisfiable
∞ otherwise .

So we have κ(A∨B) = min{κ(A), κ(B)} and in particular, κ(A∨A) = 0. The belief
in (or acceptance of) a formula A is defined as

κ |= A iff κ(A) > 0 ,

i. e., κ(A) = 0 is necessary but not sufficient to believe A, because κ(A) might be 0 as
well; but κ(A) > 0 is sufficient, since it implies κ(A) = 0.

Similar to the probabilistic framework, conditionals can be quantified. An OCF κ
is extended to conditionals by setting

κ(B|A) =
{
κ(AB)− κ(A) if κ(A) 6=∞
∞ otherwise ,

and a conditional is accepted by κ,

κ |= (B|A) iff κ(AB) < κ(AB) iff κ(B|A) > 0.

As usual, a proposition A is identified with the conditional (A|>), hence κ |= (A|>)
iff κ(A) > κ(A) = 0, in accordance with what was said above.

The acceptance relation for quantified OCF-conditionals (B|A)[m] is defined by
using the difference between κ(AB) and κ(AB):

κ |= (B|A)[m] iff κ(AB) +m = κ(AB) iff κ(B|A) = m, m ∈ N,m ≥ 1. (2)

Thus, if (B|A) is believed with a degree of belief m then verifying the conditional is m
degrees more plausible than falsifying it. So, κ |= (B|A)[1] expresses belief in (B|A),
but only to the smallest possible degree. For a propositional fact A, this yields

κ |= A[m] iff κ(A) = m.
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Both qualitative and quantitative OCF-conditionals can be used as default rules for
commonsense reasoning [1, 11].

Ranking functions provide a perfect framework for qualitative reasoning, as they
allow us to handle conditionals in a purely qualitative manner, but also leave room
to take more precise, quantitative information into account. However, even numerical
information merely expresses an order of magnitude of probabilities; this will be made
more precise in the following section.

Moreover, in a qualitative framework with ordinal conditional functions, a similar
concept as an ME-representation can be defined in order to express a certain “well-
behavedness” of an OCF with respect to a set of OCF-conditionals [11]. We will come
back to these issues and present said concept in section 4. In the next section we will
first have a look on how to derive an OCF from an empirically obtained probability
distribution.

3 Deriving qualitative information from statistical data

Let P be a probability distribution over V that could have been collected via a statistical
survey. In this paper we are interested in the qualitative structure that underlies the
probabilities in P . So we represent P by qualitative probabilities yielding an ordinal
conditional function that approximates the quantitative structure in P .

For this reason we start by representing a probability of a specific world ω as polyno-
mial in a fixed base value ε in the spirit of [1]. Using this base representation, the order
of magnitude of a probability can be represented only by the corresponding exponents
and different probabilities can be compared by these exponents yielding a qualitative
abstraction of the original values.

Definition 2. Let ε ∈ (0, 1) be a base value to parameterize probabilities. Then a
probability value P (ω) can be expressed as a polynomial in ε ,

Pε(ω) = a0ε
0 + a1ε

1 + a2ε
2 + . . . ,

with appropriate coefficients ai ∈ N respecting 0 ≤ ai < ε−1 for all i to match the
value P (ω).

Due to the restriction 0 ≤ ai < ε−1 the above definition is sound and uniquely deter-
mines a base representation Pε(ω) for given P (ω) and ε with Pε(ω) = P (ω).

Example 1. Let ε = 0.3. Then the probability P (ω1) = 0.171 is written as a polyno-
mial Pε(ω1) = 0 · 0.30 + 0 · 0.31 + 1 · 0.32 + 3 · 0.33 in ε.

Observe that in the above approach the value of a0 is always zero, except for the case
that the world ω has a probability of 1, which is unlikely the case in real world sce-
narios. Furthermore the above definition differs from the definition of polynomial base
representations in [1] in the sense, that Goldszmidt and Pearl implicitly use negative
coefficients for their base representation, representing probabilities as polynomials of
the form P ′ε(ω) = 1 − aε or P ′ε(ω) = aε2 − bε4. However, an additive represen-
tation of positive values like probabilities seems more appropriate for our intentions.
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Nonetheless, Goldsmizdt and Pearl restrict their attention on qualitative abstractions
of probabilities to the case of infinitesimal bases yielding the following definition of a
complete translation of all probability values into rankings.

Definition 3 (see [1]). Let P be a probability distribution and let the probability P (ω)
be written as a polynomial P ′ε(ω) in ε with an infinitesimal ε. A ranking function κP0 (ω)
is defined as follows

κP0 (ω) =
{

min{n ∈ N | limε→0
P ′ε(ω)
εn 6= 0} if P ′ε(ω) > 0

∞ if P ′ε(ω) = 0

The general idea of the above definition is to capture the most significant term of the
base representation of a probability of a world ω, i. e., the first coefficient ai that differs
from zero, and use this value as the rank of ω

κP0 (ω) = min{i | ai 6= 0}, Pε(ω) = a0ε
0 + a1ε

1 + . . . (3)

In this paper, we use this idea for a fixed value ε for the base representation and take
this value throughout the process of qualitative knowledge discovery as an indicator for
the granularity of the qualitative probabilities. Given a fixed base value ε, we determine
the most significant term of a base representation with respect to ε and use this value as
a rank value for an OCF κ̃Pε as in equation (3). More specifically, let ω be a world and
P (ω) its (empirical) probability. From now on let ε ∈ (0, 1) be a fixed base value and
let

Pε(ω) = a0ε
0 + a1ε

1 + a2ε
2 + . . .

be the base representation of P (ω) according to Definition 2. We are looking for the
first ai that differs from zero to define the rank of ω:

κ̃Pε (ω) = min{i | ai 6= 0} .

Let i satisfy ai 6= 0. Then it holds that

P (ω) ≥ aiεi ≥ εi

because ai is a natural number and ai > 0. From this observation, it follows immedi-
ately

P (ω) ≥ εi

⇔ logP (ω) ≥ i log ε

⇔ logP (ω)
log ε

≤ i .

Therefore for the minimal i satisfying ai 6= 0 and so for the rank assigned to ω it follows

κ̃Pε (ω) =
⌈

logP (ω)
log ε

⌉
(4)

In general, the function κ̃Pε defined using equation (4) does not satisfy (κ̃Pε )−1(0) 6=
∅. Therefore, we normalize κ̃Pε by shifting all ranking values appropriately, i. e., by
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defining κPε (ω) := κ̃Pε (ω) − c with c = min{κ̃Pε (ω) | ω ∈ Ω}. Then κPε defines
an ordinal conditional function according to Definition 1. As κPε is the only ordinal
conditional function we are dealing with, we will write just κ for κPε , when P and ε are
clear from context.

Example 2. (Continuing Example 1)
With ε being 0.3, the probability P (ω1) = 0.171 is written as a polynomial Pε(ω1) =
0 · 0.30 + 0 · 0.31 + 1 · 0.32 + 3 · 0.33 in ε and therefore κ(ω1) = 2. The probabilities
P (ω2) = 0.39 and P (ω3) = 0.48 are written as Pε(ω2) = 0 · 0.30 + 1 · 0.31 + 1 · 0.32

and Pε(ω3) = 0 · 0.30 + 1 · 0.31 + 2 · 0.32, respectively, and so they are both projected
to the same ranking value κ(ω2) = κ(ω3) = 1.

A process of transforming a given probability distribution into a qualitative represen-
tation (according to equation (4)) is crucially influenced by the chosen base value ε.
It depends on ε how similar some probabilities must be to be projected to the same
ranking value. Thus, ε is the parameter that controls the qualitative smoothing of the
probabilities. For this reason, an appropriate choice for ε is important for the qualita-
tive modeling since it determines the variation in the resulting ranking values and this
way it heavily influences all following calculations based on this values. If the value for
ε is close to 1, then even quite similar probabilities will still be projected to different
ranking values.

However, a too small value of ε will have the effect that even quite different proba-
bilities will be assigned an identical ranking value. Thus, an unacceptable large amount
of information contained in the probabilities will be lost, i. e., the probabilities are
smoothed so much that the resulting ranking values do not carry enough information
to be useful as a qualitative abstraction.

The following example will illustrate to what degree the choice of ε influences the
resulting ranking values.

Example 3. Suppose in our universe are animals (A), fish (B), aquatic beings (C),
objects with gills (D) and objects with scales (E). Table 1 may reflect our observa-
tions. Table 2 shows the ranking values that result from different choices of ε. Choosing

ω object frequency probability

ω1 abcde 59 0.5463
ω2 abcde 21 0.1944

ω3 abcde 11 0.1019

ω4 abcde 9 0.0833

ω5 abcde 6 0.0556

ω6 abcde 2 0.0185

Table 1. Empirical probabilities for Example 3
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ranking value
ω ε =0.1 ε =0.6 ε =0.9

ω1 1 2 6
ω2 1 4 16
ω3 1 5 22
ω4 2 5 24
ω5 2 6 28
ω6 2 8 38

Table 2. Ranking values resulting from different choices of ε

ε = 0.1 assigns identical ranking values to ω1, ω2 and ω3 and to ω4, ω5 and ω6, respec-
tively. Mapping the latter ones to the same rank could be acceptable, but mapping the
former ones to a common rank is inappropriate, since the probabilities of these worlds
cover a (comparative) large range between 0.5463 and 0.1019. Hence, this choice for ε
smoothes the probabilities too much, leading to a qualitative abstraction that is so coarse
that almost all information of the observed distribution is lost. Choosing ε = 0.9 leads
to different ranking value for all ω, although some of the probabilities are quite similar
and therefore should not be distinguished in a qualitative setting. Hence, this choice for
ε does not seem very appropriate as well because it does not smooth the probabilities
effectively. Choosing ε = 0.6 results in a common ranking value for the (comparative)
similar probabilities of ω3 and ω4. This choice for ε seems to be appropriate to obtain
ranking values that form a qualitative representation of the observed probabilities.

In this very small example, the worlds ω offer quite high probabilities. For this reason,
the appropriate value for ε is quite big, too. In a more realistic setting with considerably
smaller probabilities, a much smaller value for ε would be chosen.

The parameter ε defines a measure of similarity that is to make probabilities indis-
tinguishable. In principle, it is up to the user to set ε, depending on his point of view,
but clustering techniques applied to the logarithmic probabilities may help to find an
appropriate ε. A useful heuristic may be to fix a logarithmic similarity α, i.e. probabil-
ities should not be distinguished if their logarithmic distance does not exceed α. Then
clusters of logarithmic probabilities with maximal width α are built. A dendrogram
computed by, e. g., a complete link clustering procedure (cf. [12]) may provide helpful
information for this. Moreover, α should be chosen in such a way that no multiple kα
of α falls within one of the clusters. Finally, ε = e−α may serve to extract ranking
infomation from the empirical probabilities. We will illustrate this in our Example 3.

Example 4. Table 3 shows the logarithmic probabilities loge P (ω) of our example. If
we use a logarithmic similarity α = 0.5, then only P (ω3) and P (ω4) are close enough
to be identified, and all multiples of 0.5 discriminate the clusters clearly. Hence ε =
e−0.5 ≈ 0.6 yields an adequate ranking function.
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ω object frequency probability log. probability

ω1 abcde 59 0.5463 −0.60
ω2 abcde 21 0.1944 −1.64

ω3 abcde 11 0.1019 −2.28

ω4 abcde 9 0.0833 −2.49

ω5 abcde 6 0.0556 −2.89

ω6 abcde 2 0.0185 −3.99

Table 3. Logarithmic probabilities

In the next section, we develop an algebraic theory of conditionals, that is used to ob-
tain structural information from such ordinal conditional functions like the one derived
above.

4 Conditional structures and c-representations

In order to obtain structural information from data, one usually searches for causal
relationships by investigating conditional independencies and thus non-interactivity be-
tween sets of variables [13–16]. Some of these algorithms also make use of optimiza-
tion criteria which are based on entropy [17, 18]. Although causality is undoubtedly
most important for human understanding, it seems to be too rigid a concept to repre-
sent human knowledge in an exhaustive way. For instance, a person suffering from a
flu is certainly sick (P (sick |flu) = 1), and they often will complain about headache
(P (headcache |flu) = 0.9). Then we have

P (headcache |flu) = P (headcache |flu ∧ sick),

but we would surely expect

P (headcache |¬flu) 6= P (headcache |¬flu ∧ sick)!

Although, from a naı̈ve point of view, the (first) equality suggests a conditional indepen-
dence between sick and headcache, due to the causal dependency between headcache
and flu, the (second) inequality shows this to be (of course) false. Furthermore, a physi-
cian might also wish to state some conditional probability involving sick and headache,
so that we would obtain a complex network of rules. Each of these rules will be consid-
ered relevant by the expert, but none will be found when searching for conditional inde-
pendencies! So, what actually are the “structures of knowledge” by which conditional
dependencies (not independencies!) manifest themselves in data? What are the “foot-
prints” conditionals leave on probabilities after they have been learned inductively?

A well-known approach to answer this question is system Z [1] that builds up a com-
pletely specified ranking function from a set of conditionals {(B1|A1), . . . , (Bn|An)}
and yields an inductive reasoning method that satisfies basic properties of default rea-
soning. In this paper, however, we use c-representations for qualitative inductive rea-
soning that have been developed in [4, 11]; all proofs and lots of examples can be found
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in [11]. This approach follows the same structural lines as ME-reasoning and provides
the techniques for model-based inductive reasoning in a qualitative environment the
quality of which outperforms system Z clearly [19, 20].

We first take a structural look on conditionals, bare of numerical values, that is, we
focus on setsR = {(B1|A1), . . . , (Bn|An)} of unquantified conditionals.

In order to model its non-classical uncertainty, we represent a conditional (B|A) as
a three-valued indicator function on worlds

(B|A)(ω) =


1 : ω |= AB
0 : ω |= AB
u : ω |= A

where u stands for unknown, following an idea of de Finetti (cf., e. g., [21, 22]). Two
conditionals are equivalent iff they yield the same indicator function, so that (B|A) ≡
(D|C) iff AB ≡ CD and AB ≡ CD.

We generalize this approach by associating to each conditional (Bi|Ai) in R two
abstract symbols a+

i ,a
−
i , symbolizing a (possibly) positive effect on verifying worlds

and a (possibly) negative effect on falsifying worlds:

σi(ω) =


a+
i if ω |= AiBi

a−i if ω |= AiBi
1 if ω |= Ai

(5)

with 1 being the neutral element of the (free abelian) group FR = 〈a+
1 ,a

−
1 , . . . ,

a+
n ,a

−
n 〉, generated by all symbols a+

1 ,a
−
1 , . . . ,a

+
n ,a

−
n . The function σR : Ω → FR,

defined by

σR(ω) =
∏

1≤i≤n

σi(ω) =
∏

1≤i≤n
ω|=AiBi

a+
i

∏
1≤i≤n
ω|=AiBi

a−i (6)

describes the all-over effect of R on ω. σR(ω) is called the conditional structure of ω
with respect toR.

Example 5. Let R = {(c|a), (c|b)}, where A,B,C are bivalued propositional vari-
ables with outcomes {a, a}, {b, b} and {c, c}, respectively, and let FR = 〈a+

1 ,a
−
1 ,

a+
2 ,a

−
2 〉. We associate a+

1 ,a
−
1 with the first conditional, (c|a), and a+

2 ,a
−
2 with the sec-

ond one, (c|b). Since ω = abc verifies both conditionals, we obtain σR(abc) = a+
1 a+

2 .
In the same way, e.g., σR(abc) = a−1 a−2 , σR(abc) = a+

1 and σR(abc) = a−2 .

Let Ω̂ := 〈ω̂ | ω ∈ Ω〉 be the free abelian group generated by all ω ∈ Ω, and consisting
of all products ω̂ = ω1

r1 . . . ωm
rm with ω1, . . . , ωm ∈ Ω and integers r1, . . . rm. Note

that, although we speak of multiplication, the worlds in such a product are merely jux-
taposed, forming a word rather than a product. With this understanding, a generalized
world ω̂ ∈ Ω̂ in which only positive exponents occur simply corresponds to a multi-set
of worlds. We will often use fractional representations for the elements of Ω̂, that is,
for instance, we will write

ω1

ω2
instead of ω1ω

−1
2 . Now σR may be extended to Ω̂ in a

straightforward manner by setting

σR(ω1
r1 . . . ωm

rm) = σR(ω1)r1 . . . σR(ωm)rm
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yielding a homomorphism of groups σR : Ω̂ → FR.
Having the same conditional structure defines an equivalence relation ≡R on Ω̂:

ω̂1 ≡R ω̂2 iff σR(ω̂1) = σR(ω̂2), i. e. iff ω̂1ω̂
−1
2 ∈ ker σR := {ω̂ ∈ Ω̂ | σR(ω̂) = 1}.

Thus the kernel of σR plays an important part in identifying the conditional structure
of elements ω̂ ∈ Ω̂. ker σR contains exactly all group elements ω̂ ∈ Ω̂ with a balanced
conditional structure, that means, where all effects of conditionals in R on worlds oc-
curring in ω̂ are completely cancelled. Since FR is free abelian, no nontrivial relations
hold between the different group generators a+

1 ,a
−
1 , . . . ,a

+
n ,a

−
n of FR, so we have

σR(ω̂) = 1 iff σi(ω̂) = 1 for all i, 1 ≤ i ≤ n, and this means

ker σR =
n⋂
i=1

ker σi .

In this way, each conditional inR contributes to ker σR.
Besides the explicit representation of knowledge byR, also the implicit normalizing

constraint κ(>|>) = 0 for ordinal conditional functions has to be taken into account. It
is easy to check that ker σ(>|>) = Ω̂0, with

Ω̂0 := {ω̂ = ω1
r1 · . . . · ωmrm ∈ Ω̂ |

m∑
j=1

rj = 0} .

Two elements ω̂1 = ωr11 . . . ωrmm , ω̂2 = νs11 . . . ν
sp
p ∈ Ω̂ are equivalent modulo Ω̂0,

ω̂1 ≡> ω̂2, iff ω̂1Ω̂0 = ω̂2Ω̂0, i.e. iff
∑

1≤j≤m rj =
∑

1≤k≤p sk. This means that ω̂1

and ω̂2 are equivalent modulo Ω̂0 iff they both are a (cancelled) product of the same
number of generators, each generator being counted with its corresponding exponent.
Set

ker0 σR := ker σR ∩ Ω̂0 = ker σR∪{(>|>)} .

In the following, if not stated otherwise, we will assume that all ordinal conditional
functions are finite, i. e., it is κ(A) 6= ∞ for every A. For the methods to be described,
this is but a technical prerequisite, permitting a more concise presentation of the basic
ideas. The general case may be dealt with in a similar manner (cf. [11]). Moreover, in
section 5 we will see that we can get rid of all infinite ranking values (which correspond
to zero probabilities in the empirical distribution) right from the beginning.

Finite ranking functions κ may be extended easily to homomorphisms κ : Ω̂ →
(Z,+) from Ω̂ into the additive group of integers in a straightforward way by setting

κ(ω1
r1 . . . ωm

rm) = r1κ(ω1) + . . .+ rmκ(ωm) .

Definition 4 (Conditional indifference). Suppose κ is a (finite) ordinal conditional
function, and let R = {(B1|A1), . . . , (Bn|An)} be a set of conditionals. κ is (condi-
tionally) indifferent with respect to R iff κ(ω̂1) = κ(ω̂2), whenever both ω̂1 ≡R ω̂2

and ω̂1 ≡> ω̂2 hold for ω̂1, ω̂2 ∈ Ω̂.

If κ is indifferent with respect to R, then it does not distinguish between elements
ω̂1 ≡> ω̂2 with the same conditional structure with respect to R. Conversely, any
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deviation κ(ω̂) 6= 0 can be explained by the conditionals in R acting on ω̂ in a non-
balanced way. Note that the notion of indifference only aims at observing conditional
structures, without making use of any degrees of belief that are associated with the
conditionals.

The following proposition shows, that conditional indifference establishes a con-
nection between the kernels ker0 σR and

ker0 κ := {ω̂ ∈ Ω̂0 | κ(ω̂) = 0}

which will be crucial to elaborate conditional structures:

Proposition 1. An ordinal conditional function κ is indifferent with respect to a set
R ⊆ (L|L) of conditionals iff ker0 σR ⊆ ker0 κ.

If ker0 σR = ker0 κ, then κ(ω̂1) = κ(ω̂2) iff σR(ω̂1) = σR(ω̂2), for ω̂1 ≡> ω̂2. In
this case, κ completely follows the conditional structures imposed by R – it observes
R faithfully.

The next theorem characterizes indifferent ordinal conditional functions:

Theorem 1. An ordinal conditional function κ is indifferent with respect to a set R =
{(B1|A1), . . . , (Bn|An)} ⊆ (L|L) iff κ(Ai) 6= ∞ for all i, 1 ≤ i ≤ n and there are
rational numbers κ0, κ

+
1 , κ

−
1 , . . . , κ

+
n , κ

−
n ∈ Q, such that

κ(ω) = κ0 +
∑

1 ≤ i ≤ n
ω |= AiBi

κ+
i +

∑
1 ≤ i ≤ n
ω |= AiBi

κ−i , (7)

for all ω ∈ Ω.

There are striking similarities between (1), (6), and (7). The equations (1) and (7) are
both implementations of (6): while in (1) multiplication is used for combining the
operands, in (7) it is addition. Furthermore, in (1), the abstract symbols a+

i ,a
−
i of

(6) have been replaced by the numerical values α1−xi
i and α−xii , respectively (α0 is

simply a normalizing factor). In (7), additive constants κ+
i , κ

−
i realize the structural ef-

fects of conditionals. Both the αi’s and the κi’s bear crucial conditional information,
leaving “footprints” on probabilities resp. ranking values when inductively represent-
ing conditionals (also cf. [10]). In [11] it is shown that ordinal conditional functions
and probability distributions can be subsumed by the general concept of conditional
valuation functions.

Example 6. We continue Example 5. Here we observe

σR

(
abc · abc
abc · abc

)
=
σR(abc) · σR(abc)
σR(abc) · σR(abc)

=
a+

1 a+
2 · 1

a+
1 · a

+
2

= 1,

that is,
abc · abc
abc · abc

∈ ker0 σR. Then any ordinal conditional function κ that is indifferent

with respectRwill fulfill κ
(
abc · abc
abc · abc

)
= 0, i. e., κ(abc)+κ(abc) = κ(abc)+κ(abc).
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In [23], we investigate the exact relationship between conditional indifference and con-
ditional independence and show that conditional indifference is the strictly more general
concept.

Now, in order to obtain a proper representation of a set of conditionals R, we can
use the schema (7) and impose the constraints induced by the conditionals inR.

Definition 5 (C-representation 1). An ordinal conditional function κ is a c-represen-
tation of a set R = {(B1|A1), . . . , (Bn|An)} of conditionals iff κ is indifferent with
respect toR and accepts all conditionals inR, i. e. κ |= R.

For the constraints κ |= (Bi|Ai), 1 ≤ i ≤ n, to hold, the additive constants κ+
i , κ

−
i

have to satisfy certain relationships which can be checked easily.

Proposition 2. An ordinal conditional function κ is a c-representation of a set R =
{(B1|A1), . . . , (Bn|An)} of conditionals, iff κ has the form (7) and the κ+

i , κ
−
i , 1 ≤

i ≤ n, fulfill the following inequality:

κ−i − κ
+
i > min

ω|=AiBi
(
∑
j 6=i

ω|=AjBj

κ+
j +

∑
j 6=i

ω|=AjBj

κ−j ) (8)

− min
ω|=AiBi

(
∑
j 6=i

ω|=AjBj

κ+
j +

∑
j 6=i

ω|=AjBj

κ−j )

This approach can be generalized in a straightforward manner to handle quantified
OCF-conditionals. If ROCF = {(B1|A1)[m1], . . . , (Bn|An)[mn]} is a set of quan-
tified OCF-conditionals, then we denote by R = {(B1|A1), . . . , (Bn|An)} its corre-
sponding set of purely qualitative conditinals.

Definition 6 (C-representation 2). An ordinal conditional function κ is a c-represen-
tation of a set ROCF = {(B1|A1)[m1], . . . , (Bn|An)[mn]} of quantified OCF-con-
ditionals iff κ is indifferent with respect toR and accepts all conditionals inROCF, i. e.
κ |= ROCF.

According to (2), the constraints imposed by κ |= (Bi|Ai)[mi] can be handled in a way
similar to the purely qualitative case.

Proposition 3. An ordinal conditional function κ is a c-representation of a setROCF =
{(B1|A1)[m1], . . . , (Bn|An)[mn]} of quantified OCF-conditionals, iff κ has the form
(7) and the κ+

i , κ
−
i , 1 ≤ i ≤ n, fulfill the following inequality:

κ−i − κ
+
i = mi + min

ω|=AiBi
(
∑
j 6=i

ω|=AjBj

κ+
j +

∑
j 6=i

ω|=AjBj

κ−j ) (9)

− min
ω|=AiBi

(
∑
j 6=i

ω|=AjBj

κ+
j +

∑
j 6=i

ω|=AjBj

κ−j )

For the sake of informational economy, the difference κ−i −κ
+
i reflecting the amount of

distortion imposed by a conditional belief should be minimal. A reasonable approach
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to obtain “small” c-representations κ is to set κ+
i = 0 and to choose κ−i minimal, in

accordance with (8) resp. (9). This simplifies the reasoning with c-representations a lot.
The schema (7) shrinks to

κ(ω) =
∑

1 ≤ i ≤ n
ω |= AiBi

κ−i , ω ∈ Ω, (10)

as for consistent sets of conditionals the normalizing constant κ0 is always zero, and
the inequalities (8) now read

κ−i > min
ω|=AiBi

(
∑
j 6=i

ω|=AjBj

κ−j )− min
ω|=AiBi

(
∑
j 6=i

ω|=AjBj

κ−j ) (11)

However, different from the ME-principle in the probabilistic case, even minimal c-
representations are not uniquely determined. It is still an open problem of research to
specify conditions for unique c-representations. For the knowledge discovery problem
dealt with in this paper, this is not a severe problem, as the ranking function is not
searched for, but is derived from the given empirical distribution.

In summary, any ordinal conditional function κ that is indifferent with respect to
a set of conditionals ROCF follows the conditional structures that are imposed by the
conditionals inR onto the worlds and is thus most adequate to represent ordinal condi-
tional knowledge.

In the following, we will put these ideas in formal, algebraic terms and prepare the
theoretical grounds for the data mining techniques to be presented in this paper.

5 Discovering structural information

In this section, we will describe our approach to knowledge discovery which is based
on the algebraic theory of conditionals sketched above. More precisely, we will show
how to compute sets R, or ROCF, respectively, of (quantified) default rules that are
apt to generate some given (finite) ordinal conditional function κP that is indifferent
with respect to R, respectively ROCF. κP has been chosen to represent the observed
statistical data P , as has been described in Section 3. More details and all proofs can be
found in [11]; a generalization to multivalued variables (instead of bivalued variables)
is straightforward.

In our scenario, an empirically obtained probability distribution P is given that may
simply consist of relative frequencies. Usually, the aim of a data mining task is to com-
pute a set of probabilistic rules Rprob = {(B1|A1)[x1], . . . , (Bn|An)[xn]}, such that
this set predicts P best. This task was handled in [5] and also uses the algebraic theory
of conditionals sketched above. The problem with the approach of [5] is that usually
the empirically obtained probability distribution P is noisy and one can not find an ap-
propriate (and particularly compact) set of probabilistic rules Rprob that explains the
observed P . The set of computed probabilistic rules tends to be large and the rules are
getting too specific to be helpful in a general context. On this account we present an al-
ternative approach to knowledge discovery that also makes use of the algebraic theory
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of conditionals of [11] but is based on a representation of P by qualitative probabilities,
i. e. by rankings.

As a first step, the probability distribution P is qualified in a sense, that we compute
its ranking representation κP regarding equation (4). By doing this, we fuse several
similar probabilities, that should not be distinguished in a qualitative setting, to one
rank value of the obtained ranking function. Therefore we minimize the noise, that
could be present in the original distribution P , obtaining a qualitative representation.
We can now use the formalism of the algebraic theory of conditionals to compute a set
ROCF = {(B1|A1)[m1], . . . , (Bn|An)[mn]} of OCF-conditionals, that best explains
κP , i. e., that is (in the best case) a faithful representation of κP . More precisely, we
are looking for a set R of (unquantified) conditionals, such that κP is indifferent with
respect toR, i. e., ker0 σR ⊆ ker0 κP by Proposition 1. Ideally, we would have κP to
representR faithfully, that is,

κP |= R and ker0 κP = ker0 σR (12)

This means κP is indifferent with respect toR, and no equation κP (ω̂) = 0 is fulfilled
accidentally, but any of these equations is induced byR.

Finally, we can assign rankings to these conditionals, derived immediately from κP

thus obtaining a setROCF of OCF-conditionals.
Under the assumption of faithfulness, the structures of the conditionals inR become

manifest in the elements of ker0 κP , that is, in elements ω̂ ∈ Ω̂ with κP (ω̂) = 0. As a
further prerequisite, we will assume that this knowledge inherent to κP is representable
by a set of single-elementary conditionals. This restriction is not too hard, because
single-elementary conditionals are expressive enough to represent most commonsense
knowledge. As our approach will work for any given ranking function κ, we omit the
superscript P in this section.

So assume ROCF = {(b1|A1)[m1], . . . , (bn|An)[mn]} is an existing, but hidden
set of single-elementary conditionals, such that (12) holds. Let us further suppose that
ker0 κ (or parts of it) is known from exploiting numerical relationships. Since condi-
tional indifference is a structural notion, the quantifications mi of the conditionals will
not be needed in what follows. Let σR : Ω̂ → FR = 〈a+

1 ,a
−
1 , . . . ,a

+
n ,a

−
n 〉 denote a

conditional structure homomorphism with respect toR .
Besides conditional structures, a further notion which is crucial to study and exploit

conditional interactions is that of subconditionals: (D|C) is called a subconditional
of (B|A), and (B|A) is a superconditional of (D|C), written as (D|C) v (B|A),
iff CD |= AB and CD |= AB, that is, iff all worlds verifying (falsifying) (D|C)
also verify (falsify) (B|A). For any two conditionals (B|A), (D|C) ∈ (L|L) with
ABCD ≡ ABCD ≡ ⊥, the supremum (B|A) t (D|C) in (L|L) with respect to
v exists and is given by

(B|A) t (D|C) ≡ (AB ∨ CD|A ∨ C)

(cf. [11]). In particular, for two conditionals (B|A), (B|C) with the same consequent,
we have

(B|A) t (B|C) ≡ (B|A ∨ C)
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The following lemma provides an easy characterization for the relation v to hold be-
tween single-elementary conditionals:

Lemma 1. Let (b|A) and (d|C) be two single-elementary conditionals. Then (d|C) v
(b|A) iff C |= A and b = d.

This lemma may be generalized slightly to hold for conditionals (b|A) and (d|C) where
A and C are disjunctions of conjunctions of literals not containing b and d, respectively.

From (5), Definition 4 and Proposition 1, it is clear that in an inductive reasoning
process such as a propagation that results in an indifferent representation of conditional
knowledge R, all subconditionals of conditionals in R also exert the same effects on
possible worlds as the corresponding superconditionals. The basic idea is to start with
most basic conditionals, and to generalize them step-by-step to superconditionals in
accordance with the conditional structure revealed by ker0 κ. From a theoretical point
of view, the most adequate candidates for rules to start with are basic single-elementary
conditionals, which are single-elementary conditionals with antecedents of maximal
length:

ψv,l = (v | Cv,l) (13)

where v is a value of some variable V ∈ V and Cv,l is an elementary conjunction
consisting of literals involving all variables from V except V . It is clear that considering
all such conditionals is intractable, but we are still on theoretical grounds, so let us
assume for the moment we could start with the set

B = {ψv,l | v ∈ V, l suitable}

of all basic single-elementary conditionals in (L|L), and let FB = 〈b+
v,l,b

−
v,l〉v,l be

the free abelian group corresponding to B with conditional structure homomorphism
σB : Ω̂ → FB. Note that σB and FB are known, whereas σR and FR are not. We only
know the kernel, ker0 σR, of σR, which is, by assuming faithfulness (12), the same as
the kernel, ker0 κ, of κ. Now, to establish a connection between what is obvious (B)
and what is searched for (R), we define a homomorphism g : FB → FR via

g(b±v,l) :=
∏

1≤i≤n
ψv,lv(bi|Ai)

a±i =
∏

1≤i≤n
bi=v,Cv,l|=Ai

a±i , (14)

where the second equality holds due to Lemma 1. g uses the subconditional-relationship
in collecting for each basic conditional in B the effects of the corresponding supercondi-
tionals inR. Actually, g is a “phantom” which is not explicitly given, but only assumed
to exist. Its crucial meaning for the knowledge discovery task is revealed by the follow-
ing theorem:

Theorem 2. Let g : FB → FR be as in (14). Then

σR = g ◦ σB

In particular, ω̂ ∈ ker0 σR = ker0 κ iff ω̂ ∈ Ω̂0 and σB(ω̂) ∈ ker g.
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This means, that numerical relationships observed in κ (and represented by elements of
ker0 κ) translate into group theoretical equations modulo the kernel of g.

Proposition 4. Let ω̂ = ωr11 · . . . · ωrmm ∈ Ω̂0. Then σB(ωr11 · . . . · ωrmm ) ∈ ker g iff for
all literals v in L,∏

Cv,l

∏
1≤k≤m
ωk|=Cv,lv

(b+
v,l)

rk ,
∏
Cv,l

∏
1≤k≤m
ωk|=Cv,lv

(b−v,l)
rk ∈ ker g. (15)

So each (generating) element of ker0 σR gives rise to an equation modulo ker g for
the generators b+

v,l,b
−
v,l of FB. Moreover, Proposition 4 allows us to split up equations

modulo ker0 g to handle each literal separately as a consequent of conditionals, and
to separate positive from negative effects. These separations are possible due to the
property of the involved groups of being free abelian, and they are crucial to disentangle
conditional interactions (cf. also [11]).

Now the aim of our data mining procedure can be made more precise: We are going
to define a finite sequence of sets S(0),S(1), . . . of conditionals approximating R, in
the sense that

ker0 σS(0) ⊆ ker0 σS(1) ⊆ . . . ⊆ ker0 σR = ker0 κ (16)

The set B of basic single elementary conditionals proves to be an ideal starting point
S(0):

Lemma 2. σB is injective, i.e. ker0 σB = {1}.

So σB provides the most finely grained conditional structure on Ω̂: No different ele-
ments ω̂1 6= ω̂2 are equivalent with respect to B.

Step by step, the relations mod ker g holding between the group elements are ex-
ploited with the aim to construct S(t+1) from S(t) by eliminating or joining condi-
tionals by t, in accordance with the equations modulo ker g (i. e., by assumption,
with the numerical relationships found in κ). Each S(t) is assumed to be a set of
conditionals φ(t)

v,j with a single literal v in the conclusion, and the antecedent D(t)
v,j

of φ(t)
v,j is a disjunction of elementary conjunctions not mentioning the variable V .

Let FS(t) = 〈s(t)
v,j

+
, s(t)
v,j

−
〉v,j be the free abelian group associated with S(t), and

σS(t) : Ω̂ → FS(t) the corresponding structure homomorphism; let g(t) : FS(t) → FR
be the homomorphism defined by

g(t)(s(t)
v,j

±
) =

∏
1≤i≤n

v=bi,D
(t)
v,j
|=Ai

a±i

such that g(t) ◦ σS(t) = σR. Let ≡g(t) denote the equivalence relation modulo ker g(t),
i. e., s1 ≡g(t) s2 iff g(t)(s1) = g(t)(s2) for any two group elements s1, s2 ∈ FS(t) . In the
following, for ease of notation, we will omit the +,− superscripts on group generators;
this is justified, since, by Proposition 4, only one {+,−}-type of generators is assumed
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to occur in the equations to be dealt with in the sequel. It is clear that all equations can
be transformed such that on either side, only generators with positive exponents occur.

The basic type of equation that arises from ker0 κ by applying Theorem 2 and the
faithfulness assumption (12) is of the form

s(t)
v,j0
≡g(t) s(t)

v,j1
. . . s(t)

v,jm
(17)

To obtain the new set S(t+1) by solving this equation, the following steps have to be
done:

1. eliminate φ(t)
v,j0

from S(t);
2. replace each φ(t)

v,jk
by φ(t+1)

v,jk
= φ

(t)
v,j0
t φ(t)

v,jk
for 1 ≤ k ≤ m.

3. retain all other φ(t)
w,l in S(t).

This also includes the case m = 0, i.e. φ(t)
v,j0
≡g(t) 1; in this case, Step 2 is vacuous and

therefore is left out.
It can be shown (cf. [11]) that

g(t+1) ◦ σS(t+1) = σR

and hence
ker0 σS(t) ⊆ ker0 σS(t+1) ⊆ ker0 σR

as desired. Moreover, ker g(t+1) can be obtained directly from ker g(t) by straightfor-
ward modifications. Since the considered equation has been solved, it can be eliminated,
and other equations may simplify.

Now, that the theoretical background and the basic techniques have been described,
we will turn to develop an algorithm for conditional knowledge discovery.

6 Learning default rules from data

In this section, we will describe an adjusted version of the CKD-algorithm (= Con-
ditional Knowledge Discovery) for the determination of default rules from qualitative
approximations of statistical data. This algorithm is sketched in Figure 2. The origi-
nal CKD-algorithm for mining probabilistic conditionals from statistical data has been
implemented in the CONDOR-system (for an overview, cf. [24]). The resulting set of
default rules or OCF-conditionals will reveal relevant relationships and may serve to
represent inductively the corresponding ordinal conditional function faithfully.

A problem that has already been mentioned but postponed in section 5 is that the
set B of all basic single elementary conditionals is virtually unmanageable. Therefore
it cannot be used as an adequate starting set in the algorithm. Another problem emerges
from the frequency distributions calculated from a data set. In a realistic setting, these
distributions are sparse, i. e., they deliver zero values for many worlds. Hence, the prob-
ability value of these worlds is zero as well and according to Definition 3, a world with a
zero probability is assigned an infinite ranking value. Besides calculational difficulties,
the correct interpretation of such worlds, which have not been observed in the ana-
lyzed data and therefore have a frequency of zero, is not clear: On the one hand, these
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Algorithm CKD for OCFs
(Conditional Knowledge Discovery)

Input A probability distribution P obtained from statistical data,
(only explicitly listing those entries with positive probabilities)
together with information on variables and appertaining values
and an abstraction parameter ε ∈ (0, 1)

Output A set of OCF-conditionals (default rules)

Begin
% Qualitative representation
Calculate the ranking value κ̃P

ε (ω) for each input value P (ω);
Normalize κ̃P

ε to obtain the ordinal conditional function κP
ε ;

% CKD Initialization
Compute the basic tree of conjunctions;
Compute the list NC of null-conjunctions;
Compute the set S(0) of basic rules;
Compute ker0 κP

ε ;
Compute ker g;
Set K := ker g;
Set S := S(0);

% CKD Main loop
While equations of type (17) are in K Do

Choose gp ∈ K of type (17);
Modify (and compactify) S;
Modify (and reduce) K;

% Present results
Calculate the degrees of belief of the conditionals in S;
Return S and appertaining degrees of belief;

End.

Fig. 2. The CKD-algorithm for OCFs

worlds might just have not been captured when recorded the data; perhaps because the
amount of recorded data was not large enough and they have merely been missed. In
this case, assigning these worlds a zero probability would be misleading. On the other
hand, these worlds might not exist at all (and could therefore not have been recorded),
so a zero probability would be completely justified; but this could never be assured by
pure observation. The problem of zero probabilities is addressed more deeply in [5].

Both of these problems – the exponential complexity of the ideal conditional starter
set and the sparse and mostly incomplete knowledge provided by statistical data – can
be solved in our framework in the following way: The zero values in an observed fre-
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quency distribution are taken to be unknown, but equal probabilities, that is, they are
treated as non-knowledge without structure. More exactly, let P be the frequency dis-
tribution computed from the set of data under consideration. Then, for each two worlds
ω1, ω2 not occurring in the database and thus being assigned an unknown but equal
probability, we have P (ω1) = P (ω2); with κP being the corresponding ordinal con-
ditional function, this leads to κP (ω1) = κP (ω2) and hence ω1

ω2
∈ ker0 κ

P . In this
way, all these so-called null-worlds contribute to ker0 κP , and their structure may be
theoretically exploited to shrink the starting set of conditionals in advance.

In order to represent missing information in a most concise way, null-conjunctions
(i. e. elementary conjunctions with frequency 0) have to be calculated as disjunctions of
null-worlds. To this end, the basic tree of conjunctions is built up. Its nodes are labelled
by the names of variables, and the outgoing edges are labelled by the corresponding
values, or literals, respectively. The labels of paths going from the root to nodes define
elementary conjunctions. So, the leaves of the tree either correspond to complete con-
junctions occurring in the database, or to null-conjunctions. These null-conjunctions
are collected and aggregated to define a set NC of most concise conjunctions of ranking
value∞.

Now we are able to set up a set S(0) of basic rules also with the aid of tree-like
structures. First, it is important to observe that, due to Proposition 4, conditionals may
be separately dealt with according to the literal occurring in their consequents. So S(0)

consists of sets S(0,v) of conditionals with consequent v, for each value v of each vari-
able V ∈ V . Basically, the full trees contain all basic single-elementary conditionals
from B, but the trees are pruned with the help of the set NC of null-conjunctions. The
method to shorten the premises of the rules is the same as has been developed in the
previous section with finite ranking values, except that now appropriate modifications
have to be anticipated, in order to be able to work with a set of rules of acceptable size
right from the beginning.

Now, that the missing values in the frequency distribution corresponding to infi-
nite degrees of disbelief have been absorbed by the shortened basic rules, we explore
the finite rankings derived from P to set up ker0 κP . Usually, numerical relationships
κP (ω̂) = 0 induced by single-elementary rules can be found between neighboring
complete conjunctions (i.e. complete conjunctions that differ in exactly one literal). We
construct a neighbor graph from κP , the vertices of which are the non-∞-worlds, la-
belled by their finite ranking values, and with edges connecting any two neighbors.
Then any such relationship κP (ω̂) = 0 corresponds to a cycle of even length (i. e. in-
volving an even number of vertices) in the neighbor graph, such that the alternating sum
built from the values associated with the vertices, with alternating coefficients +1 and
−1 according to the order of vertices in the cycle, amounts to 0. Therefore, the search
for numerical relationships holding in κP amounts to searching for cycles with sum 0
in the neighbor graph.

At this point, an important advantage of using qualitative probabilities, i. e., ranking
values, becomes clear: Because the ranking values are discrete values, we can demand
that the vertices of a cycle must sum up to exactly zero. In the approach of [5] that uses
the empirically obtained probabilities directly, one can only demand that vertices of a
cycle must approximately fulfill the corresponding equation, because equality can usu-
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ally not be reached when calculating with the exact probabilities, i. e., with continuous
values. So in the approach of [5] the important step of exploring the numerical relation-
ships depends implicitly on the notion of ”approximately”. But by using an (appropri-
ate) explicit parameter ε for the qualitative abstraction of the original probabilities, the
search for numerical relationships is defined precisely.

Finally, as the last step of the initialization, ker g has to be computed from ker0 κ
P

with respect to the set S(0) of conditionals, as described in the previous section.
In the main loop of the algorithm CKD, the sets K of group elements and S of con-

ditionals are subject to change. In the beginning,K = ker g and S = S(0); in the end, S
will contain the discovered conditional relationships. More detailed, the products in K
which correspond to equations of type (17) are used to simplify the set S. The modified
conditionals induce in turn a modification of K, and this is repeated as long as elements
yielding equations of type (17) can be found in K. Note that no ranking values are used
in this main loop – only structural information (derived from numerical information) is
processed. It is only afterwards, that the ranking values of the conditionals in the final
set S are computed from κP , and the OCF-conditionals (default rules) are returned.

Although equations of type (17) are the most typical ones, more complicated equa-
tions may arise, which need further treatment. The techniques described above, how-
ever, are basic to solving any group equation. More details will be published in a forth-
coming paper. But in many cases, we will find that all or nearly all equations in ker g
can be solved successfully and hence can be eliminated from K.

We will illustrate our method by the following example.

Example 7. (Continuing Example 3)
From the observed probabilities, we calculate qualitative probabilities, using ε = 0.6 as
base value. We adjust the calculated qualitative probabilities by subtracting the normal-
ization constant c = 2, so that the lowest ranking becomes 0. This gives us the ranking
values κP (ω) that define the ordinal conditional function κP , as can be seen from Table
4.

object frequency probability rank

abcde 59 0.5463 0
abcde 21 0.1944 2

abcde 11 0.1019 3

abcde 9 0.0833 3

abcde 6 0.0556 4

abcde 2 0.0185 6

Table 4. Empirical probabilities and corresponding ranking values

The set of null-conjunctions is calculated as NC = {a, c, b d} – no object matching
any one of these partial descriptions occurs in the data base. These null-conjunctions
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are crucial to set up a starting set B of basic rules of feasible size:

B = { φb,1 = (b|acde) φd,1 = (d|abce)
φb,2 = (b|acde) φd,2 = (d|abce)
φb,3 = (b|d) φd,3 = (d|b)
φe,1 = (e|abcd) φa,1 = (a|>)
φe,2 = (e|abcd)
φe,3 = (e|abcd) φc,1 = (c|>) }

So, the missing information reflected by the set NC of null-conjunctions helped to
shrink the starting set B of rules from 5 · 24 = 80 basic single-elementary rules to only
11 conditionals. The next step is to analyze numerical relationships. In this example,
we find two numerical relationships between neighboring worlds that are balanced:

κP (abcde) = κP (abcde) and κP (abcde)−κP (abcde) = κP (abcde)−κP (abcde)

At this point, it becomes clear how crucial an appropriate choice for ε is. If ε had been
chosen too high, e. g. ε = 0.9 as in Example 3, then the neighboring worlds ω3 and ω4

would have been assigned different ranking values, so the first numerical relationship
would not hold. Thus an important piece of structural information would have been
missed. On the other hand, if ε had been chosen much too small, e. g. ε = 0.01, then
all worlds would have been projected to the same ranking value. Thus relationships be-
tween all neighboring worlds would have been established, leading to no useful results.

Continuing the example, the first relationship can be translated into the following
structural equations by using σB, according to Theorem 2:

b+
a,1b

−
b,1b

+
c,1b

+
d,3b

+
e,3 ≡g b+

a,1b
−
b,2b

+
c,1b

+
d,3b

−
e,3

⇒ b−b,1 ≡g b−b,2 and b+
e,3 ≡g b−e,3 ≡g 1

So φb,1 and φb,2 are joined to yield (b|acd), and φe,3 is eliminated. In a similar way,
by exploiting the second relationship in κP , we obtain b±d,1 ≡ b±d,2 and b±e,1 ≡ b±e,2,
that is, the corresponding conditionals have to be joined. As a final output, the CKD
algorithm returns the set of conditionals that is shown in Table 5.
All these conditionals are accepted in κP . For each of them the degree of belief regard-
ing κP can be stated as well as the probability regarding the observed distribution P .
So all objects in our universe are aquatic animals which are fish or have gills. Aquatic
animals with gills are mostly fish (with a degree of belief 3 and a probability of 0.80),
aquatic fish usually have gills (with a degree of belief 4 and a probability of 0.91) and
scales (with a degree of belief 2 and a probability of 0.74).

Furthermore, an approximated probability based on the ranking values can be calculated
for each conditional (B|A). Because the ranking values are determined according to
equation (4), each probability P (ω) is qualitatively approximated by its corresponding
ranking value, so we have:

P (ω) ≈ εκ
P (ω) (18)
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conditional empirical probability degree of belief

(a|>) 1 ∞
(b|d) 1 ∞

(b|acd) 0.80 3

(e|abc) 0.74 2

(c|>) 1 ∞
(d|b) 1 ∞

(d|abc) 0.91 4

Table 5. Conditionals calculated by the CKD algorithm

By taking into consideration the equation

P (B|A) =
1

P (A)
P (AB)

=
1

P (AB)+P (AB)
P (AB)

=
1

1 + P (AB)
P (AB)

,

we can approximate the probability of a conditional by its degree of belief4 m:

P (B|A) ≈ 1

1 + εκP (AB)

εκP (AB)

=
1

1 + εκP (AB)−κP (AB)
=

1
1 + εm

(19)

Example 8. (Continuing Example 7)
The application of formula (19) results in approximated conditional probabilities, listed
in Table 6. Compared to the exactly calculated empirical probabilities (cf. Table 5),

conditional degree of belief approx. probability

(a|>) ∞ 1

(b|d) ∞ 1

(b|acd) 3 0.82

(e|abc) 2 0.74

(c|>) ∞ 1

(d|b) ∞ 1

(d|abc) 4 0.89

Table 6. Conditionals and their approximated probabilities

4 At this point, is does not matter whether the ranking values originating directly from equation
(4) or the normalized ones are used, because the normalization constant will be cancelled out
when considering conditionals.
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the deviation of the approximated conditional probabilities is comparatively small. Al-
though the statistical probability values P (ω) have been abstracted by qualitative values
and the approximation in equation (18) might appear somewhat coarse, the results are
nevertheless quite accurate. This illustrates that the qualitative abstraction of the orig-
inal probabilities conserves enough information to be useful in handling questions of
structural relationship.

7 Summary and further work

We have proposed an approach to qualitative knowledge discovery that followed the
mechanisms of reverse inductive knowledge representation developed in [5] but is based
on a qualitative representation of the empirically obtained probability distributionP that
serves as input to the data mining process. An ordinal conditional function κP based on
qualitative probabilities [1] was used to capture the qualitative information inherent to
P . With the use of an algebraic theory of conditionals, the approach generates default
rules that are apt to compactly represent the information of κP . We briefly described
the theoretical and methodological background, and also made clear how our method
can be implemented by sketching an algorithm.

A problem of open research is the question, of how to determine the abstraction
parameter that is needed to represent the probabilities as polynomials in that parameter
in an optimal way. As mentioned before, this determination is crucial when computing
the qualitative abstractions of the information inherent in the original distribution be-
cause the precision of the computed qualitative representation depends particularly on
the chosen parameter.

The purely probabilistic version of the described algorithm has been developed and
implemented during the CONDOR-project5. CONDOR is an integrated system for learn-
ing, reasoning and belief revision in a probabilistic environment. For future work, we
are planning to implement the algorithm for qualitative knowledge discovery presented
in this paper and integrate it into CONDOR to also provide qualitative learning and
reasoning facilities. The common methodological grounds based on c-representations
which can be used both for probabilistic and default reasoning will establish clear links
between quantitative and qualitative frameworks, as was illustrated in the running ex-
ample of this paper.
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