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Abstract. We address the issue of quantitatively assessing the severity of incon-
sistencies in logic programs under the answer set semantics. While measuring
inconsistency in classical logics has been investigated for some time now, taking
the non-monotonicity of answer set semantics into account brings new challenges
that have to be addressed by reasonable accounts of inconsistency measures. We
investigate the behavior of inconsistency in logic programs by revisiting existing
rationality postulates for inconsistency measurement and developing novel ones
taking non-monotonicity into account. Further, we develop new measures for this
setting and investigate their properties.

1 Introduction

Inconsistency is an omnipresent phenomenon in logical accounts of knowledge repre-
sentation and reasoning (KR) [8, 9]. Classical logics usually suffer from the principle
of explosion which renders reasoning meaningless, as everything can be derived from
inconsistent theories. Therefore, reasoning under inconsistency [2, 22, 24] is an impor-
tant research area in KR. In general, one can distinguish two paradigms in handling
inconsistent information. The first paradigm advocates to live with inconsistency but to
provide non-classical semantics that allows to derive non-trivial information, such as
using paraconsistent reasoning [4], reasoning with possibilistic logic [8, 9], or formal
argumentation [1], to name just a few. The second paradigm is about explicitly restor-
ing consistency, thus changing the theory itself, as it is done in e. g. belief revision [18]
or belief merging [23]. A quantitative approach for analyzing inconsistencies is given
by the field inconsistency measurement [15, 20, 35, 21, 26, 27, 33, 3, 30, 29, 34] which
investigates functions that assign real numbers to (usually classical) theories, with the
intuitive meaning that large values indicate severe inconsistency.

Answer set programming (ASP, see [6] for an overview) is an emerging problem
solving paradigm. It is based on logic programs under the answer set semantics [14, 13],
a popular non-monotonic formalism for knowledge representation and reasoning which
consists of rules possibly containing default-negated literals. Inconsistencies occur in
ASP for two reasons, cf. [32]. First, the rules allow the derivation of two complemen-
tary literals l and ¬l—also called incoherence in e. g. [26]—thus producing inconsis-
tencies similar to the classic-logical case. Second, due to the use of default negation it
may happen that some literal assumed to be false is again derived (called instability).
Hence, analyzing and handling inconsistency in ASP poses additional challenges (in
comparison to the classical setting) that need to be addressed, cf. [12, 10]. Some few



works handle these challenges by adapting the classical techniques mentioned above to
ASP, such as paraconsistent reasoning [5] or belief revision [7].

In this paper, we investigate the problem of measuring inconsistency in ASP. Due to
the non-monotonicity of ASP, the classical framework of inconsistency measurement,
and in particular its rationality postulates for measures, is not directly applicable. A
central paradigm in classical inconsistency measurement is monotonicity of inconsis-
tency: adding additional information to a (possibly already inconsistent) theory cannot
decrease the value of inconsistency. This paradigm is not suitable for ASP, as we will
discuss in more detail in Section 3. More specifically, the main contributions of this
paper can be summarized as follows:

1. We revisit the notion of inconsistency measures for ASP, critically examine existing
rationality postulates, and develop novel ones taking non-monotonicity into account
(Section 4).

2. We develop four new inconsistency measures which are more appropriate for ASP
than classical measures (Section 5).

3. We analyze our new measures by checking their compliance with the rationality
postulates (Section 6).

Furthermore, we will give necessary preliminaries in Section 2 and conclude in Sec-
tion 7. Proofs of technical results are omitted due to space restrictions but can be found
in an extended version of this paper.3

2 Preliminaries

In this paper, we focus on extended logic programs under the answer set semantics [14,
13] which distinguish between classical negation “¬” and default negation “not”. LetA
be a set of atoms and L the corresponding set of literals, i. e., for every a ∈ A we have
a ∈ L and ¬a ∈ L. For a set M of literals, let A(M) be the set of all atoms occurring
in M . Furthermore, let Ld = L ∪ {not l | l ∈ L}.

An extended logic program P = {r1, ..., rn} is a set of rules of the form

l0 ← l1, . . . , lk, not lk+1, . . . , not lm. (1)

where l0, . . . , lm ∈ L and 0 ≤ k ≤ m. For a rule r of the form (1) we write head(r) =
l0, body(r) = {l1, . . . , lk, not lk+1, . . . , not lm}, pos(r) = {l1, . . . , lk} and neg(r) =
{lk+1, . . . , lm}. We letA(r) and L(r) be the set of all atoms and literals occurring in r,
respectively. Similarly, letA(P ) and L(P ) be the set of all atoms and literals that occur
in a program P , respectively. Further, let body(P ) = ∪r∈P body(r), and analogously
for pos(P ) and neg(P ). Let P be the set of all extended logic programs. We write “l0.”
instead of “l0 ← .” and call such rules facts. A rule without default negation is called
a classical rule and a program P consisting only of a set of classical rules is called a
classical logic program.4

3 Available online at http://www.mthimm.de/misc/utb_incasp.pdf
4 Similarly, rules (and programs) are called normal if the contain no classical negation, and

definite if they contain no negation at all.



We now turn to the semantics, i. e., the definition of answer sets. There are actually
variants of the definition in the literature which differ in whether inconsistent answer
sets are admitted or not. The original definition in [14] allows for a single inconsistent
answer set, namely L, in cases where a subset of rules without default negation gener-
ates an inconsistency. Later in [13] the inconsistent answer set was abandoned, and all
programs either have consistent answer sets or no answer set at all.

In this paper, we consider a third variant where different inconsistent answer sets
may arise. This is motivated by the goals of this paper: we want to measure the degree
of inconsistency of a program, and in this context disregarding inconsistent answer sets
is obviously the wrong thing to do. Moreover, we are interested in more fine-grained
distinctions than the single inconsistent answer set L would allow. For this reason an-
swer sets in this paper can be arbitrary subsets of L. Note that the variants derive from
differences in the way answer sets of classical programs are defined.

For a set M ⊆ L and a literal l we say M satisfies l (M � l) iff l ∈ M , and
M � not l iff l /∈ M . For a set L ⊆ Ld, M � L iff M � l for all l ∈ L. For a rule
r, M � r iff M � head(r) whenever M � body(r) and M � P for a program P iff
M � r for each rule r ∈ P . Furthermore, for a classical program P we use Cl(P ) to
denote the unique M ⊆ L satisfying M � P and M ′ 2 P for each set M ′ of literals
such that M ′ (M .

Definition 1. A set M of literals is called an answer set of a classical program P if
M = Cl(P ). M is an answer set of a logic program P if M is the answer set of PM ,
where PM = {head(r) ← pos(r) | r ∈ P, neg(r) ∩M = ∅} is the reduct of P with
respect to M .

A set M of literals is called consistent if it does not contain both a and ¬a for an atom
a. A program P is called consistent if it has at least one consistent answer set, otherwise
it is called inconsistent. P is called strongly consistent if it is has at least one answer set
and all of its answer sets are consistent. Let Ans(P ) denote the set of all answer sets of
P and AnsInc(P ) and AnsCon(P ) the inconsistent and consistent ones, respectively.

Let P be a program with at least one answer set. We say P entails a literal l, denoted
by P � l, ifM � l for all consistent answer setsM ∈ AnsCon(P ). We say a P strongly
entails l, denoted by P �s l, if M � l for all answer sets M ∈ Ans(P ), consistent or
not. Similarly, P (strongly) entails a set L of literals if it (strongly) entails all l ∈ L,
denoted as P � L (P �s L, respectively). If P is strongly consistent, then entailment
and strong entailment obviously coincide.

Example 1. The program P1 = {a← not a.} is inconsistent since it has no answer set.
The program P2 given via

P2 : a← not b. b← not a. ¬a← a.

has two answer sets, {a, ¬a} and {b}. The latter is consistent and so is the program.
b is entailed by the program, but not strongly entailed. If we add the rule “¬b ← b.”
the program P2 becomes inconsistent. Since ∅ is consistent, the program consisting of
a single rule “a← b.” is consistent.



3 Measuring Inconsistency in Logic Programs

In the classical literature on inconsistency measurement—see e. g. [19, 15, 34]—incon-
sistency measures are functions that aim at assessing the severity of the inconsistency in
knowledge bases formalized in propositional logic. Here, we are interested in measuring
inconsistency for (extended) logic programs and only consider measures defined on
those. Let R∞≥0 be the set of non-negative real values including∞.

Definition 2. An inconsistency measure I is a function I : P → R∞≥0.

The basic intuition behind an inconsistency measure I is that the larger the inconsis-
tency in P the larger the value I(P ). However, even in the setting of propositional
logic, inconsistency is a concept that is not easily quantified and there have been a cou-
ple of proposals for inconsistency measures in this classical setting, see [34] for a recent
survey. Some further measures have also been proposed for first-order logic [16], de-
scription logics [35], and probabilistic and other weighted logics [33, 30, 29]. There are
also works for measuring inconsistency for (fuzzy) answer set programming [26, 27]
which will be discussed and compared to our work in Section 7.

The issue of measuring inconsistency in logic programs is more challenging com-
pared to the classical setting due to the non-monotonicity of answer set semantics.
This becomes apparent when considering the monotonicity postulate which is usually
satisfied by classical inconsistency measures and demands I(P ′) ≥ I(P ) whenever
P ⊆ P ′, i. e., the severity of inconsistency cannot be decreased by adding new infor-
mation. Consider now the two logic programs P3 and P4 given as follows:

P3 : b← not a. P4 : b← not a.
¬b← not a. ¬b← not a.

a.

We have P3 ⊆ P4 but P3 is inconsistent while P4 is not, so we would expect I(P4) <
I(P3) for any reasonable measure I. Therefore, simply taking classical inconsistency
measures and applying them to the setting of logic programs does not yield the desired
behavior. For example, consider one of the most basic classical measures IMI [20] de-
fined via IMI(P ) = |MI(P )| where MI(P ) is the set of minimal inconsistent subsets of
P , i. e.

MI(P ) = {P ′ ⊆ P | AnsCon(P
′) = ∅,∀P ′′ ( P ′ : AnsCon(P

′′) 6= ∅}.

For logic programs, this measure does not behave as expected as consistent programs
may contain minimal inconsistent subsets. In particular, for P3 and P4 as above both
programs have {b ← not a., ¬b ← not a.} as a minimal inconsistent subset, yielding
IMI(P3) = IMI(P4) = 1.

Many rationality postulates such as monotonicity from above are already disputed in
the classical setting, cf. [3]. Taking non-monotonicity of the knowledge representation
formalism into account, a rational account of the severity of inconsistency calls for
a specific investigation, which we will undertake in the remainder of this paper. In
particular, we will discuss rationality postulates for inconsistency measures in logic
programs in Section 4, propose some novel measures in Section 5, and analyse the
latter in detail in Section 6.



4 Rationality Postulates

Research in inconsistency measurement is driven by rationality postulates, i. e. desir-
able properties that should hold for concrete approaches. There is a growing number of
rationality postulates for inconsistency measurement but not every postulate is gener-
ally accepted, see [3] for a recent discussion on this topic. In the following, we revisit
a selection of the most popular postulates—see e. g. [21, 33]—and phrase them within
our context of logic programs.

Let I : P → R∞≥0 be some inconsistency measure for logic programs andP, P ′ ∈ P
some extended logic programs. The most central property of any inconsistency measure
is that it is able to distinguish consistency from inconsistency.

Consistency P is consistent iff I(P ) = 0.

The above postulate establishes that 0 is the minimal inconsistency value and that it is
reserved for consistent programs.

We have already mentioned monotonicity as a desirable property for inconsistency
measures (in classical logics) in the previous section.

Monotonicity I(P ′) ≥ I(P ) whenever P ⊆ P ′.

Satisfaction of this postulate is generally not desirable for ASP. However, as we still
wish to require some form of monotonicity in special cases, we will consider some
alternative formalizations of this principle. First, if a program does not contain any
default negation and we only add new information without default negation, we are in
the classical setting and monotonicity should hold.

CLP-Monotonicity If P is a classical logic program and r∗ a classical rule, then
I(P ) ≤ I(P ∪ {r∗}).

In the above postulate, CLP stands for “classical logic program”. Furthermore, one
could argue that it is fine, if both the program P and the added rule r∗ contain default
negation as long as we make sure that the rule is not “involved in non-monotonicity” of
the program. To make this precise, we need the notion of the dependency graph:

Definition 3. Let P be an extended logic program. The dependency graph DP of a
program P is a labeled directed graph having L(P ) as vertices and there is an edge
(li, lj , s) iff P contains a rule r such that head(r) = lj and li ∈ pos(r) ∪ neg(r).
s ∈ {+,−} indicates whether li ∈ pos(r) or li ∈ neg(r). For any l ∈ L(P ), let
Path(P, l) be the set of all literals l′ (including l itself) such that there is a path from l
to l′ in DP .

The dependency graph DP of a program P allows us to check whether some given
literal has an influence on the derivation of other literals. Adding a rule r∗ to a program
P should not decrease the severity of inconsistency whenever the head of the rule has
no influence on default-negated literals. In order to motivate this postulate we can make
the following observations.

Lemma 1. Let P be an extended logic program and r∗ a rule with head(r∗) = a such
that Path(P ∪ r∗, a) ∩ neg(P ∪ r∗) = ∅. Then, for all answer sets X of P , there is an
answer set M of P ∪ {r∗} with X ⊆M .



Proof. Let X be an answer set of P . We show that there is a set X ⊆ M such that M
is an answer set of P ∪ {r∗}.

By assumption, X is the minimal model of the reduct PX . Consider (P ∪ {r∗})X .
If X 2 body({r∗}X), then X is also a minimal model of (P ∪ {r∗})X . Thus, X is
an answer set of P ∪ {r∗} which implies that our claim holds for M = X . So, we let
X � body({r∗}X) and in particular, {r∗}X 6= ∅. In this case, X is clearly no model of
(P ∪ {r∗})X . We construct it and show that it contains X and is an answer set of P .

Since X is the minimal model of PX and due to monotonicity of classical logic
programming, Cl((P ∪ {r∗})X) has the form Y ∪ X for a set Y of literals. We can
w. l. o. g. Y assume to be disjoint from X . To construct Cl((P ∪ {r∗})X), we use the
usual fixed point iteration:

Γ 0
P (I) = {l ∈ L(P ) | ∃r ∈ P : I � body(r), head(r) = l} .

We let Γ i+1
P (I) = Γ i

P (Γ
0
P (I)). Let m ∈ N be the smallest non-negative integer such

that Γm+1
(P∪{r∗})X (X) = Γm

(P∪{r∗})X (X). One can easily verify that Γm
(P∪{r∗})X (X) =:

M is the minimal model of (P ∪ {r∗})X .
Now we show:

– If we let Γm
(P∪{r∗})X (X) = Y ∪ X with Y ∩ X = ∅ as mentioned above, then

Y ⊆ Path(P ∪ r∗, a).

Supposing, we proved it, then since Y ⊆ Path(P∪r∗, a) implies Y ∩neg(P∪r∗) =
∅, the reduct remains invariant, i. e., (P ∪ {r∗})X = (P ∪ {r∗})X∪Y . So, since X ∪ Y
is the minimal model of (P ∪ {r∗})X , it is also the minimal model of (P ∪ {r∗})X∪Y .
However, this is precisely the definition ofM = X∪Y being an answer set of P∪{r∗},
which proves our claim.

However, Y ⊆ Path(P ∪ r∗, a) follows straightforward from induction over the
number of iterations i: We show Y ⊆ Path((P ∪r∗)X , a). Since the dependency graph
of (P ∪ r∗)X is a subgraph of DP∪r∗ , this is sufficient.

– Base step i = 0: Because of X = Cl(PX), our assumption X � body({r∗}X),
{r∗}X 6= ∅ and head(r∗) = a, we can calculate

Γ 0
(P∪{r∗})X (X) = {l ∈ L(P ) | ∃r ∈ PX ∪ {r∗}X : X � body(r), head(r) = l}

= {l ∈ L(P ) | ∃r ∈ PX : X � body(r), head(r) = l}
∪ {l ∈ L(P ) | ∃r ∈ {r∗}X : X � body(r), head(r) = l}
= X ∪ {a}.

So, Γ 0
(P∪{r∗})X (X) is indeed of the form X ∪Y with Y ⊆ Path((P ∪{r∗})X , a).

– Induction step i→ i+ 1: Assume

Γ i
(P∪{r∗})X (X) = X ∪ Yi

with Yi ⊆ Path((P ∪ {r∗})X , a). Consider a literal

l ∈ Γ i+1
(P∪{r∗})X (X) \ (X ∪ Yi) = Γ i+1

(P∪{r∗})X (X) \ Γ i
(P∪{r∗})X (X).



Then, there is a rule r ∈ (P∪{r∗})X such that head(r) = l. We haveX 2 body(r),
because otherwise,

l ∈ Γ 0
(P∪{r∗})X (X) ⊆ Γ i

(P∪{r∗})X (X)

would hold. However, l ∈ Γ i+1
(P∪{r∗})X (X) implies X ∪ Yi � body(r). So, body(r)

and Yi have at least one literal in common and since Yi ⊆ Path((P ∪ {r∗})X , a),
this means that l = head(r) ∈ Path((P ∪ {r∗})X , a). We obtain

Γ i+1
(P∪{r∗})X (X) \ (X ∪ Yi) ⊆ Path((P ∪ {r∗})X , a).

However,

Γ i+1
(P∪{r∗})X (X) =

(
Γ i+1
(P∪{r∗})X (X) \ (X ∪ Yi)

)
∪X ∪ Yi

and hence, Γ i+1
(P∪{r∗})X (X) is of the form X ∪ Yi+1 with Yi+1 ⊆ Path((P ∪

{r∗})X , a). ut

Lemma 1 states that we can augment any answer set of P with some additional literals
(or none) to obtain an answer set of P ∪ {r∗}. The other direction works as well.

Lemma 2. Let P be an extended logic program and r∗ /∈ P a rule with head(r∗) = a
such that Path(P ∪ {r∗}, a) ∩ neg(P ∪ {r∗}) = ∅. Then, for all answer sets M of
P ∪ {r∗}, there is an answer set X of P with X ⊆M .

Proof. Let M be an answer set of P ∪ {r∗}. Then, M is the minimal model of (P ∪
{r∗})M . Consider PM . This program has a minimal model, sayX . As seen in the proof
of Lemma 1, Cl((P ∪{r∗})M ) =M is of the form X ∪ Y with Y ∩neg(P ∪ r∗) = ∅.
Hence, PM = PX . Since X was assumed to be the minimal model of PM , it is also
the minimal model of PX , i. e., an answer set of P . ut

In particular, this means that moving from P∪{r∗} to P cannot introduce inconsistency.

Corollary 1. Let P be an extended logic program and r∗ a rule with head(r∗) = a
such that Path(P ∪ {r∗}, a) ∩ neg(P ∪ {r∗}) = ∅. If P ∪ {r∗} is consistent, then so
is P .

Proof. Let M be a consistent answer set of P ∪ {r∗}. Then, there is a subset X ⊆ M
such that X is an answer set of P . M being consistent implies X is consistent. So, P
has a consistent answer set. ut

Example 2. Consider the inconsistent program P5 given as follows:

P5 : a← not b. ¬a← not b. b← c. c← d.

If we add the fact r∗ = d., the program becomes consistent, having {b, c, d} as the only
answer set. Note that, even though d /∈ neg(P ), there is a path from d to b ∈ neg(P )
in the dependency graph of P5. So, we have Path(P, head(r∗)) ∩ neg(P ) 6= ∅ and
thus, this example does not contradict Corollary 1. Let us now add a rule that meets
the premise of the corollary: Consider P5 ∪ {a.}. We have Path(P, a) = {a} and
{a} ∩ neg(P ) = ∅. Indeed, P5 ∪ {a.} is inconsistent since it has {a, ¬a, } as the only
answer set.



Due to the above considerations, we deem the following postulate (I=“Independence”)
as desirable.

I-Monotonicity If r∗ is a rule with Path(P, head(r∗))∩neg(P∪r∗) = ∅, then I(P ) ≤
I(P ∪ {r∗}).

One can see that I-Monotonicity is stronger than CLP-Monotonicity.

Proposition 1. If I satisfies I-Monotonicity, then I satisfies CLP-Monotonicity.

Proof. IfP is a classical logic program and r∗ a classical rule, then Path(P, head(r∗))∩
neg(P ) = ∅ since neg(P ) = ∅. I satisfies I-Monotonicity, yielding I(P ) ≤ I(P ∪
{r∗}). ut

To elaborate on the idea of independence in dependency graphs, we can also consider
splitting of logic programs [25].

Definition 4. Let P be an extended logic program. A set U ⊆ L(P ) is called a splitting
set for P , if head(r) ∈ U implies L(r) ⊆ U for any rule r ∈ P . For a splitting set U ,
let botU (P ) be the set of all rules r ∈ P with head(r) ∈ U . This set of rules is called
the bottom part of P with respect to U .

This means that if l is a literal that is not contained in U , i. e., l ∈ L(P ) \ U , then it
cannot be the head of any rule outside of botU (P ). So, intuitively, the derivation of l is
independent of P \botU (P ). For the dependency graphDP , this means that while there
could be a path from a literal l′ ∈ U to l, the converse is not true. Splitting is used, for
example, to calculate answer sets because it allows to handle botU (P ) without taking
the rest of the program into account, see [25] for more details. However, since splitting
is generally useful to examine the structure of a program, we are also interested in this
notion here.

Example 3. Consider the program P6 given by

P6 : b← not a. ¬b← not a. c← b, not d. d← ¬b, not c.

For the splitting set U = {a, ¬b, b}, botU (P6) is the program botU (P6) = {b ←
not a., ¬b← not a.}.

Theorem 1 ([25]). Let U be a splitting set for a program P . Every answer set M of P
is of the form M = X ∪ Y with an answer set X of botU (P ) and a set Y of literals.

Corollary 2. Let U be a splitting set of P . If P is consistent, then so is botU (P ).

Proof. Let U be a splitting set of P and M a consistent answer set. Due to Theorem 1,
there is a subset X of M such that X is an answer set of botU (P ). M being consistent
implies X is consistent. Thus, botU (P ) is consistent. ut

Example 4. We continue Example 3. The bottom part botU (P6) has one answer set,
namely {b, ¬b}. Due to Theorem 1, all answer sets of P6 contain both b and ¬b. In-
deed, one can easily verify that P6 has the two answer sets {b, ¬b, c} and {b, ¬b, d}. In
particular, it is impossible to resolve the inconsistency of the program without chang-
ing the bottom part. For example, augmenting P6 with the fact “a.” would induce a
consistent program, having {a} as the unique answer set, but in this case, we modified
botU (P6).



Intuitively, if botU (P ) is inconsistent, changing the rest of the program will not remove
the reason why the bottom part is inconsistent; it is imposed on P . So, one could argue
that P will always be at least as inconsistent as botU (P ).

Split-Monotonicity If U is a splitting set of P , then I(botU (P )) ≤ I(P ).

Another postulates for classical inconsistency measures is dominance [21], which (in
its original definition) requires I(K∪{α}) ≥ I(K∪{β}) for a set of classical formulas
K whenever α 2 ⊥ and α � β. The idea behind this notion is that, since α carries more
information than β, K augmented with α is more likely to contain contradictions than
augmented with β. As expected, this property needs some adjustment for ASP due to
non-monotonicity.

Example 5. Consider P3 and P4 from above again:

P3 : b← not a. P4 : b← not a.
¬b← not a. ¬b← not a.

a.

Clearly, P3 augmented with ∅—i. e., additional tautological information—is inconsis-
tent, while P4 = P3 ∪ {a.} is not. So, dominance is not desirable here.

Since non-monotonicity is the reason why we cannot expect this notion of dominance
for ASP, one could argue that the postulate should hold for classical logic programs at
least.

CLP-Dominance IfH,P and P ′ are classical logic programs and P is consistent such
that P ′ �s l implies P �s l for all literals l, then I(H ∪ P ′) ≤ I(H ∪ P ).

CLP-Dominance is similar to CLP-Monotonicity. In a sense, both postulates state that a
classical logic program is considered more inconsistent the more information it carries.
The difference is that CLP-Dominance takes the entailed literals into account rather
than the program. It is not surprising that there is a relation between both postulates,
which is formalized in the following Proposition.

Proposition 2. If I satisfies CLP-Dominance, then I satisfies CLP-Monotonicity.

Proof. CLP-Monotonicity is a special case: Let H be a classical logic program, r∗

a classical rule and I a measure satisfying CLP-Dominance. If we let P ′ = ∅ and
P = {r∗}, then P is consistent and P ′ does not entail anything, so the implication as in
the description of CLP-Dominance clearly holds. Since I satisfies CLP-Dominance, we
obtain I(H) = I(H ∪P ) ≤ I(H ∪P ′) = I(H ∪ {r∗}) implying CLP-Monotonicity.

ut

Interestingly, the converse is not true: In Section 6, we will see that one of our proposed
measures satisfies CLP-Monotonicity, but not CLP-Dominance.

We will now discuss a final postulate which considers cases where the inconsistency
value should definitely not change. For that there is the notion of safe formulas [33]. A
consistent classical formula α ∈ K is safe in a set of classical formulas K if α and K \



{α} do not share any atoms. So, removing α from K will never resolve inconsistency.
The corresponding postulate safe-formula independence requires I(K) = I(K ∪ α)
whenever α ∈ K is safe.

One straightforward approach to adapt the notion of safe formulas in the ASP-
setting could be defining safe rules in the following way: requireA(P \{r∗})∩A(r∗) =
∅ for a rule r∗ and, to make sure r∗ is consistent, forbid head(r∗) as a literal in neg(r∗).
The latter would render rules like “a← not a.” unsafe. But this notion of safe formulas
would be clumsy: literals in the body of r∗ that do not appear elsewhere in the program
are meaningless, since they can never be derived. Hence, they always evaluate to “true”
if they appear in neg(r∗) and to “false” otherwise. Furthermore, whether r∗ can be re-
sponsible for contradictions or not depends on the head of the rule only. Taking this into
account, the following notion of safe rules seems reasonable.

Definition 5. Let P be a logic program. A rule r∗ ∈ P is called safe with respect to P
if A(head(r∗)) ∩ A(P \ {r∗}) = ∅ and pos(r∗) ∪ neg(r∗) ⊆ L(P ).
Now let P be a program, r∗ safe with respect to P and M an answer set of P (con-
sistent or not). Consider the reduct PM . Then: pos(r∗) ∪ neg(r∗) ⊆ L(P ) ensures
that whether {r∗}M = ∅ or not and whether M � body({r∗}M ) or not depends on
P \ {r∗} (and M ) only. Additionally, A(head(r∗)) ∩ A(P \ {r∗}) = ∅ ensures that
in any case, head(r∗) is not involved in contradictions in M . Furthermore, as long as
M � head({r∗}M ) if and only if M � body({r∗}M ), this rule does not influence
whether M = Cl(PM ) or not. Since this guarantees that r∗ can never be responsible
for (the absence of) inconsistency, the following postulate is desirable.

Safe-rule independence If P is a logic program and r∗ safe with respect to P , then
I(P ) = I(P ∪ {r∗}).

Example 6. Let P7 be a program consisting of the following rules:

P7 : b← not a. ¬b← not a. c← not a.

The rule “c ← not a.” is safe because c does not appear elsewhere in P7. P7 has
one answer set, namely {b, ¬b , c}, while P7 \ {c ← not a.} has {b, ¬b} as answer
set. An inconsistency measure satisfying safe-rule independence would assess P7 and
P7 \ {c← not a.} equally inconsistent.

Consider an extended logic program P and a rule r∗ that is safe with respect to P .
We can view U := L(P \ {r∗}) as splitting set of P ∪ {r∗} and obtain P as bot-
tom part. Then, for any measure I that satisfies Split-Monotonicity, we have I(P ) ≤
I(P ∪ {r∗}). The same holds for any measure I satisfying I-Monotonicity, since
Path(P, head(r∗)) ∩ neg(P ) = ∅ is clear for a safe rule r∗. Both Split-Monotonicity
and I-Monotonicity do not imply Safe-rule independence, though, since we do not ob-
tain I(P ) ≥ I(P ∪ {r∗}).

5 Inconsistency Measures

We now propose concrete inconsistency measures for logic programs. Inconsistency of
programs can occur due to two different reasons, namely because the program has no



answer set at all or because all answer sets are inconsistent, cf. [32]. Different measures
should assess those reasons differently. Furthermore, to measure inconsistency of a pro-
gram, one could either take the program itself or the answer sets into account. We will
cover both approaches.

Our first measure I± aims at measuring the distance of the program to a consistent
one. More specifically, it quantifies the number of modifications in terms of deleting
and adding rules, necessary in order to restore consistency. Deleting certain rules can
surely be sufficient to prevent P from entailing contradictions, but as already pointed
out before, adding rules can also resolve inconsistency.

Definition 6. Define I± : P → R∞≥0 via

I±(P ) = min
A,D∈P

{|A|+ |D| | (P ∪A) \D is consistent}

for all P ∈ P .

Example 7. Let P8 be the program given via

P8 : a1 ← not b. ¬a1 ← not b.

P8 is inconsistent, but since P8 ∪ {b.} is already consistent, we obtain I±(P8) = 1.
Now let P9 be defined via

P9 : a1 ← not b. ¬a1 ← not b.
a1 ← not c. ¬a1 ← not c.
a1 ← not d. ¬a1 ← not d.

P9 contains three contradicting pairs of rules. Since one can delete one rule in each of
them (or make them inapplicable by adding the corresponding fact), I±(P9) = 3. Now
consider P10 given by

P10 : a1 ← not b. ¬a1 ← not b.
a2 ← not b. ¬a2 ← not b.
a3 ← not b. ¬a3 ← not b.

Even though P10 also contains three contradicting pairs of rules, I±(P10) = 1 since
P10 ∪ {b.} is consistent.

The definition of I± allows the addition of any rule in order to restore consistency. But
in fact, it is sufficient to only consider addition of facts instead of general rules, as the
next proposition shows.

Proposition 3. Let P be an inconsistent program. If r∗ is a rule such that P ∪ {r∗} is
consistent, then P ∪ {head(r∗).} is also consistent.

Proof. Let M be an answer set of P ∪ {r∗}. P being inconsistent implies that M is
no answer set of P . Thus, M � body({r∗}M ) and {r∗}M 6= ∅ because otherwise one
could delete the rule while maintaining M as answer set. Since M is a model of PM ,
we obtain head(r∗) ∈M . However, this meansM is an answer set of P ∪{head(r∗).}.

ut



I± performs a hypothetical modification of the original program P itself to obtain con-
sistency. Another approach is to relax the definition of answer sets and consider modi-
fications of the reduct PM instead.

Definition 7. A consistent set M of literals is called a k-l-model of a classical logic
program P if M is a model of (P ∪ A) \ D with A,D ∈ P such that |A| ≤ k and
|D| ≤ l. M is called a k-l-answer set of an extended logic program P if M is a k-l-
model of PM .

Definition 8. Define I± : P → R∞≥0 via

I±(P ) = min{k + l |M is a k-l-answer set of P}

for all P ∈ P .

In other words, I± counts the minimal amount of rules we have to add to or delete from
the reduct of M to obtain a classical logic program that has M as the minimal model.

Example 8. Let us consider the programs P8, P9 and P10 from Example 7 again. The
reduct P {a1}

8 is given by two facts, namely {a1., ¬a1.}. Since {a1} is a model of it
after deleting the fact {¬a1.}, it is a 0-1-model of the reduct. Hence, I±(P8) = 1. In
Example 7, we obtained a consistent program by adding the fact {b.} to P8. Indeed, {b}
is a 1-0-answer set of P8: The reduct P {b}8 is the empty program and {b} is clearly a
1-0-model of it. One can also easily verify that {a1} is a 0-3-answer set of P9 and {b}
a 1-0-answer set of P10 and hence, I±(P9) = 3 and I±(P10) = 1.

Note that I± is similar in spirit to I± but considers hypothetical modifications of
the reduct rather than the original program. Interestingly, however, these two different
points of view are actually equivalent.

Proposition 4. For any extended logic program P , I±(P ) = I±(P ).

Proof. “≥”: Let I±(P ) = k. Suppose P̃ = (P ∪ A)\D is consistent and let|A| = kA
and |D| = kD with kA + kD = k. Let M be an answer set of (P ∪ A)\D. We show
that M is a kA-kD-answer set of P. Hence, I±(P ) ≤ kA + kD = k. We denote P,A
and D by {r1, ..., rn} , {rA1, ..., rAkA

} and {rD1, ..., rDkD
} , respectively. The reduct

P̃M is given by

P̃M =
(
{r1, ..., rn}M ∪ {rA1, ..., rAkA

}M
)
\ {rD1, ..., rDkD

}M

and by assumption,M is the minimal model of P̃M .Now considerPM = {r1, ..., rn}M .

By deleting {rD1, ..., rDkD
}M and adding {rA1, ..., rAkA

}M , we obtain P̃M havingM
as a minimal model. Hence, M is a kA-kD-answer set of P .

“≤”: Now let M be a kA-kD-answer set of P s. t. kA + kD = k and I±(P ) = k.
Suppose M is the minimal model of P̃M with

P̃M =
(
PM ∪ {rA1, ..., rAkA

}
)
\ {rD1, ..., rDkD

}M .



Since rA1, ..., rAkA
do not contain default negation, {rA1, ..., rAkA

}M = {rA1, ..., rAkA
}.

So, the reduct of

P̂ = (P ∪ {rA1, ..., rAkA
}) \ {rD1, ..., rDkD

}

coincides with P̃M . Thus, M is an answer set of P̂ and hence, I±(P ) ≤ kA+kD = k.
ut

The next measure we propose mainly focuses on programs without any answer set.
While for any program P , one can find a set M of literals such that M is a model of
PM , one cannot always guarantee M being the minimal model of the reduct. However,
for any M the reduct PM is a classical logic program and thus has a unique answer set
Cl(PM ). So, it seems reasonable to measure the distance between M and Cl(PM ). In
the following, we only consider the number of literals in the symmetric difference of
two sets as an example of a distance measure between sets. Investigating other distances
is left for future work.

Definition 9. Let M and M ′ be two sets of literals. The sd-distance (sd=“symmetric
difference”) dsd(M,M ′) betweenM andM ′ is defined via dsd(M,M ′) = |(M∪M ′)\
(M ∩M ′)|.

Definition 10. Define Isd : P → R∞≥0 via

Isd(P ) = min
M ⊆ L

M consistent

{dsd(M,Cl(PM )) | Cl(PM ) is consistent}

for all P ∈ P with min ∅ =∞.

Example 9. If we consider P11 = {a., ¬a.} we obtain Isd(P11) = ∞ because no
matter which set M of literals we choose, the reduct PM

11 will always have the incon-
sistent answer set {a, ¬a}. If we let P12 = {a← not a., b← not b., c.}, then for the set
{a, b, c}we obtain the reductP {a, b, c}12 = {c.} and hence, dsd({a, b, c},Cl(P {a, b, c}12 )) =
2. Indeed, one can verify Isd(P12) = 2 which is intuitive since this is the amount of
reasons why P12 has no answer set. Finally, consider P10 from Example 7 again. In this
case, Isd behaves similar to I±: adding b is the most efficient way to resolve inconsis-
tency. The reduct P {b}10 is the empty set and hence, Isd(P10) = 1.

It seems reasonable to measure inconsistency based on the amount of contradictions
a program induces. So, one conceivable approach is counting the number of comple-
mentary literals in any answer set. Since one consistent answer set is sufficient, we can
safely choose the answer set with the lowest amount of contradictions to assess the pro-
gram. Of course, we need to be able to distinguish inconsistent answer sets which is one
reason why we allow any subset of L to be an answer set. This motivates the following
definition.

Definition 11. A set M of literals is called k-inconsistent, k ∈ N ∪ {0}, if there are
exactly k atoms a s. t. a ∈M and ¬a ∈M .



I± = I± Isd I#

Consistency 3 3 3

Monotonicity 7 7 7

CLP-Monotonicity 3 3 3

I-Monotonicity 3 3 3

Split-Monotonicity 3 3 3

Safe-rule independence 3 3 3

CLP-Dominance 7 3 3

Table 1. Compliance of inconsistency measures wrt. our rationality postulates

Further, we have to take into account that a program might be inconsistent due to having
no answer set. In this case, the described approach does not work. We assign∞ to such
programs as they are a special case for this measure.

Definition 12. Define I# : P → R∞≥0 via

I#(P ) =

{
minM∈Ans(P ){k |M is k-inconsistent} if Ans(P ) 6= ∅,
∞ otherwise

for all P ∈ P .

Example 10. We consider our running example again. Both P8 and P9 have the answer
set {a1, ¬a1} and hence, I#(P8) = I#(P9) = 1. Meanwhile, I#(P10) = 3 since P10

has {a1, ¬a1, a2, ¬a2, a3, ¬a3} as its unique answer set.

6 Analysis

Table 1 gives an overview on the compliance of our measures with respect to the ra-
tionality postulates from Section 4 and thus summarizes Propositions 5, 6, 7, and Ex-
ample 11 below. Note that, naturally, none of our measures satisfies the classical mono-
tonicity postulate which is also not desired for ASP, cf. Section 3.

Proposition 5. I± satisfies Consistency, CLP-Monotonicity, I-Monotonicity, Split-Mo-
notonicity, and Safe-rule independence.

Proof. Consistency Clear due to definition of I±.
CLP-Monotonicity Note that adding classical rules to an inconsistent classical logic
program will never resolve inconsistency. Let I±(P ∪{r∗}) = k and let (P ∪{r∗})\D
with |D| = k be consistent. Here, we can assume A = ∅ for the following reason: Due
to Proposition 3, we can w. l. o. g. assume A to be a set of facts and in particular, A
is a set of classical rules in this case. So, P is a classical logic program and we only
delete rules and add facts. Thus, we will always consider classical programs where
adding rules cannot resolve inconsistency, as already mentioned above. So, w. l. o. g.
A = ∅. Now, (P ∪{r∗}) \D being consistent implies P \D is also consistent, because



otherwise, adding {r∗} to P \D would restore consistency which is impossible. Hence,
I±(P ) ≤ |D| = k.
I-Monotonicity Let I±(P ∪ {r∗}) = k. Let (P ∪ {r∗} ∪ A) \ D be consistent with
|A| + |D| = k. Let M be a consistent answer set of (P ∪ {r∗} ∪ A) \ D. Using
Proposition 3, we assume that A is a set of facts. So, since

Path(P, head(r∗)) ∩ neg(P ) = ∅,

we also obtain
Path((P ∪A) \D,head(r∗)) ∩ neg(P ) = ∅,

because adding facts (and deleting rules) does not extend the dependency graph. Fur-
thermore, we have

neg((P ∪A) \D) = neg(P \D) ⊆ neg(P )

and hence,
Path((P ∪A) \D,head(r∗)) ∩ neg(P ) = ∅

also implies

Path((P ∪A) \D,head(r∗)) ∩ neg((P ∪A) \D) = ∅.

So, we can apply Lemma 2 to the program (P ∪A)\D and the additional rule r∗: Since
M was assumed to be an answer set of(P ∪{r∗}∪A) \D, we obtain that (P ∪A) \D
has an answer set X with X ⊆ M . With M being consistent, X is consistent, too.
Likewise, (P ∪A) \D is consistent. Thus, I±(P ) ≤ |A|+ |D| = k = I±(P ∪ {r∗}).
Split-Monotonicity Let P be a program and U a splitting set. Let I±(P ) = k and
let (P ∪ A) \ D be consistent with |A| + |D| = k. As usual, we use Proposition 3
to assume that A is a set of facts. Thus, (P ∪ A) \ D contains no additional edges in
the dependency graph compared to P which implies that U is also a splitting set of
(P ∪A) \D. In particular, if we let AU be the subset of A such that r ∈ AU if and only
if head(r) ∈ U , then (botU (P ))∪AU )\D is the corresponding bottom program. Now
let M be a consistent answer set of (P ∪ A) \D. Due to Theorem 1, there is a subset
X ⊆M s. t. X is an answer set of (botU (P )) ∪AU ) \D. As a subset of the consistent
setM of literals,X is consistent. Therefore, (botU (P ))∪AU )\D is consistent. Hence,

I±((botU (P )) ∪AU ) \D) ≤ |D|+ |AU | ≤ |D|+ |A| = k.

Safe-Rule Independence I±(P ) ≤ I±(P ∪ {r∗}) follows from Split-Monotonicity
since P can be seen as bottom part of P ∪ {r∗}. On the other hand, let I±(P ) =
k and let (P ∪ A) \ D be consistent with |A| + |D| = k. Clearly, we can assume
(A ∪ D) ∩ {head(r∗)} = ∅. Now, if M is a consistent answer set of (P ∪ A) \ D,
then either M itself or M ∪ {head(r∗)} is also an answer set of (P ∪ A ∪ {r∗}) \D,
depending on whether {r∗}M 6= ∅ and M � body({r∗}M ) or not. But since r∗ is safe,
both M and M ∪ {head(r∗)} are consistent. So, (P ∪A∪ {r∗}) \D is consistent and
hence, I±(P ∪ {r∗}) ≤ I±(P ). ut



The following example shows that I± does not satisfy CLP-Dominance. Note that this
also shows that CLP-Monotonicity does not imply CLP-Dominance, since I± satisfies
CLP-Monotonicity. Consequently, this confirms that the converse of Proposition 2 is
not true, indeed.

Example 11. Consider the program H1 given via

H1 : ¬a. d. ¬a← d. e. ¬a← e.

Note that in order to preventH1 from entailing ¬a at least three rules have to be deleted.
Now consider P13 and P14 given as follows:

P13 : a. b. c.

P14 : a. b. a← b.

Clearly, both P13 and P14 are consistent and all literals entailed by P14 are also entailed
by P13 (and not the other way round). To prevent P13 ∪H1 from entailing a contradic-
tion, it is sufficient to delete “a.”, while for P14 ∪ H1 one needs to delete two rules,
e. g., “a.” and “b.”. So, I±(P13 ∪H1) = 1 < 2 = I±(P14 ∪H1). Thus, I± does not
satisfy CLP-Dominance.

Proposition 6. I# satisfies Consistency, CLP-Monotonicity, I-Montonicity, Split-Mo-
notonicity, Safe-Rule Independence, and CLP-Dominance.

Proof. Consistency Clear due to definition.
CLP-Monotonicity CLP-Dominance and Proposition 2.
I-Monotonicity Let I#(P ∪ {r∗}) = k∗ and let M be a k∗-inconsistent answer set
of P ∪ {r∗}. By Lemma 2, there is an answer set X of P with X ⊆ M . So, if X is
k-consistent, then k ≤ k∗ and we obtain I#(P ) ≤ k ≤ k∗ = I#(P ∪ {r∗}).
Split-Monotonicity Let P be a program and U a splitting set. Let X∗ be the an-
swer set of botU (P ) with a minimal amount of complementary literals, say 2k. Thus,
I#(botU (P )) = k. Now let M be an answer set of P . Due to Theorem 1, X ⊆ M for
an answer setX of botU (P ). Thus,M contains at least as many complementary literals
as X , which itself contains at least as many as X∗. Hence, I#(P ) ≥ k.
Safe-Rule Independence Since A(head(r∗)) ∩ A(P \ {r∗}) = ∅ and pos(r∗) ∪
neg(r∗) ⊆ L(P ), the correspondence between the answer sets of P and P ∪ {r∗}
is straightforward and the amount of complementary literals in any answer set remains
unchanged.
CLP-Dominance Due to monotonicity of classical logic programs, Cl(P ′) ⊆ Cl(P )
implies Cl(P ′∪H) ⊆ Cl(P∪H). So, the latter contains at least as many complementary
literals as the former. By definition of I#, we obtain I#(P ′ ∪H) ≤ I#(P ∪H) ut

Proposition 7. Isd satisfies Consistency, CLP-Monotonicity, I-Monotonicity, Split-
Monotonicity, Safe-Rule independence, and CLP-Dominance.

Proof. Consistency Assume Isd(P ) = 0. In this case, a set M of literals can be found
such that M is consistent and coincides with Cl(PM ). Thus, M is a consistent answer
set of P implying that P is consistent. Now let us assume P is consistent and M is a



consistent answer set of P . By definition, dsd(M,Cl(PM )) = 0 and hence, Isd(P ) =
0.
CLP-Monotonicity CLP-Dominance and Proposition 2.
I-Monotonicity The case Isd(P ∪{r∗}) =∞ is clear. So, we let Isd(P ∪{r∗}) = k <
∞. Let M be a consistent set of literals such that Cl((P ∪ {r∗})M ) =M ′ is consistent
and let dsd(M,M ′) = k.
Consider PM . As seen in the proof of Lemma 1, if we let Cl(PM ) = X ′, then
Cl((P ∪ {r∗})M ) is of the form X ′ ∪ Y ′ for a set Y ′ of literals that is disjoint from X ′

with PM = PM\Y ′ .
Now consider X =M \ Y ′. We have X ′ = Cl(PM ) = Cl(PM\Y ′) and

dsd(X,X
′) = dsd(M \ Y ′,M ′ \ Y ′) ≤ dsd(M,M ′) = k.

This implies Isd(P ) ≤ k.
Split-Monotonicity Let P be an extended logic program, U a splitting set and botU (P )
the corresponding bottom program. Again, we only have to consider the case Isd(P ) =
k < ∞. Let M be a consistent set of literals with dsd(M,Cl(PM )) = k, such that
Cl(PM ) is consistent. Note that U is a splitting set of PM and (botU (P ))

M is the
corresponding bottom part. So, due to Theorem 1, Cl(PM ) =:M ′ is of the formX ′∪Y ′
with X ′ = Cl((botU (P ))M ). We can w. l. o. g. assume X ′ ∩ Y ′ = ∅.
Now consider X = M ∩ U and Y = M \ X . Then, similar to X ′ and Y ′ we have
X ∪ Y =M and X ∩ Y = ∅.
We obtain (botU (P ))

M = (botU (P ))
X due to the construction of the reduct and U

being a splitting set. Thus, X ′ = Cl((botU (P ))X).
The last step argues that the constructed sets are disjoint: We have X,X ′ ⊆ U and
Y ∩U = Y ′ ∩U = ∅. So, X ∩Y ′ = X ′ ∩Y = ∅. Furthermore, X ∩Y = X ′ ∩Y ′ = ∅
was already mentioned. Thus, we can calculate

dsd(X,X
′) ≤ dsd(X ∪ Y,X ′ ∪ Y ′) = dsd(M,M ′) = k.

To summarize, we found a setX of literals withX ′ = Cl((botU (P ))X) and dsd(X,X ′) ≤
k. Hence, Isd(botU (P )) ≤ k.
Safe-Rule independence Isd(P ) ≤ Isd(P ∪ {r∗}) follows from Split-Monotonicity
since P can be seen as bottom part of P ∪ {r∗}.
We show “≥”: Let Isd(P ) = k < ∞. Let M be consistent, M ′ = Cl(PM ) and
dsd(M,M ′) = k. If M ′ 2 body({r∗}M ), then M ′ = Cl((P ∪ {r∗})M ) and the
claim clearly holds. Otherwise, considerM ∪{head(r∗)} andM ′∪{head(r∗)}. Since
A(head(r∗)) ∩ A(P ) = ∅, we have (P ∪ {r∗})M = (P ∪ {r∗})M∪{head(r∗)} and for
the same reason, M ′ being the minimal model of PM = PM∪{head(r∗)} implies that
M ′∪{head(r∗)} is the minimal model of (P∪{r∗})M∪{head(r∗)}. Further, augmenting
both sets with the additional literal does not change their distance, i. e.,

dsd(M
′ ∪ {head(r∗)},M ∪ {head(r∗)}) = dsd(M

′,M) = k.

Hence, Isd(P ) = k ≥ Isd(P ∪ {r∗}).
CLP-Dominance In this case, Isd(P ) depends only on whether the unique answer
set of a classical program is consistent or not. Due to monotonicity of classical logic
programs, we have Isd(H ∪ P ′) ≤ Isd(H ∪ P ). ut



Our analysis shows that the measures we considered here are indeed reasonable.
The proposed postulates are adapted from existing ones for classical logics, and the
most interesting ones are satisfied by our measures. Monotonicity is not a desirable
property for any inconsistency measure in the context of ASP anyway. Only I± violates
one postulate which may be desired in a specific context. Our results thus provide the
basis for an informed choice of a suitable measure in a particular application scenario.

We already showed that I± is equivalent to I± but it is still not clear whether
there exist some other relationships between our new measures. In order to compare
inconsistency measures we can use the following refinement order, cf. [17]. For two
inconsistency measures I1 and I2, the refinement order v is defined as I1 v I2 iff
I2(P ) ≥ I2(P ′) implies I1(P ) ≥ I1(P ′) for all P, P ′ ∈ P . I1 v I2 means that I2 is
a refinement of I1. If both I1 v I2 and I2 v I1, then I1 and I2 are order-compatible,
i. e., they induce the same ranking on programs without necessarily assigning the same
inconsistency values. Indeed, all our measures are incompatible, thus truly novel, and
provide different points of view on inconsistency.

Proposition 8. For every I1, I2 ∈ {I±, I#, Isd} with I1 6= I2, I1 6v I2.

Proof. I± and I#: Consider P9 and P10 from Example 7 again:

P9 : a1 ← not b. ¬a1 ← not b.
a1 ← not c. ¬a1 ← not c.
a1 ← not d. ¬a1 ← not d.

and

P10 : a1 ← not b. ¬a1 ← not b.
a2 ← not b. ¬a2 ← not b.
a3 ← not b. ¬a3 ← not b.

We already saw that I±(P9) = 3 and I±(P10) = 1, but I#(P9) = 1 and I#(P10) = 3.
So, I± 6v I# and I# 6v I±.
I± and Isd: For P11 = {a., ¬a.} and P12 = {a ← not a., b ← not b., c.} we

obtain I±(P11) = 1 and I±(P12) = 2, but Isd(P11) =∞ and Isd(P12) = 2.
Isd and I#: We have Isd(P9) = 3 (use M = {a, , b , c} and PM

9 = ∅) and
Isd(P10) = 1 as already pointed out. On the contrary, I#(P9) = 1 and I#(P10) = 3.

This completes the proof. ut

Of course, it holds I± v I± and I± v I± due to I± = I±.

7 Summary and Discussion

In this paper, we addressed the challenge of measuring inconsistency in ASP by criti-
cally reviewing the classical framework of inconsistency measurement and taking non-
monotonicity into account. We developed novel rationality postulates and measures that
are more apt for analyzing inconsistency in ASP than classical approaches. Intuitively,



some of our measures take the effort needed to restore the consistency of programs into
account (I±, I±), and our results show that it does not matter whether this is done on
the level of the original program or on the level of the reduct. Others measure incon-
sistency in terms of the quality of the produced output, e. g. I# which considers the
minimal number of inconsistencies in an answer set. We showed that our new measures
comply with many of our rationality postulates and illustrated their usage.

To the best of our knowledge, measuring inconsistency in extended logic programs
under the answer set semantics has not been addressed before. The closest related works
are by Madrid and Ojeda-Aciego, see e. g. [26, 27], who address inconsistencies in
residuated logic programs under fuzzy answer set semantics. In their setting, rules such
as (1) are augmented with fuzzy values in [0, 1] (or some arbitrary lattice) and inconsis-
tency is measured by considering minimal changes in the values to restore the existence
of fuzzy stable models. However, Madrid and Ojeda-Aciego do not discuss the classical
case and rationality postulates.

In future work, we would like to extend our analysis to more general classes of logic
programs, e. g., disjunctive logic programs which allow for disjunctions in the heads of
rules, programs with choice rules, weight constraints and aggregates. For an overview
on these extensions see [11]. It would also be interesting to see whether our measures,
or similar ones, can be applied to other non-monotonic formalisms, like default logic
[31] or autoepistemic logic [28].
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